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Abstract

Parallel computing is an essential technique to deal with large scaled problems. In re-

cent years, while hardware for parallel computing is getting widely available, developing

software for parallel computing remains as a hard task for many programmers. The main

difficulties are caused by the communication, synchronization, and data distribution re-

quired in parallel programs.

This thesis studies the theory and practice of parallel programming for trees based on

parallel primitives called tree skeletons. Trees are important data structures for repre-

senting structured data. However, their irregular and ill-balanced structure makes it hard

to develop efficient parallel programs on them, because naive divide-and-conquer parallel

computation may lead to poor performance for ill-balanced trees. To remedy this situa-

tion, this thesis develops a new framework for parallel programming for trees on the basis

of the programming model called skeletal parallel programming. Skeletal parallel pro-

gramming, first proposed by Cole, encourages programmers to develop parallel programs

by composing ready-made components called parallel skeletons (or algorithmic skeletons).

A theory has been proposed for design of parallel skeletons for lists based on constructive

algorithms, and several libraries of parallel skeletons have been developed to bring the

theory into practice. This thesis extends these ideas from lists to trees.

The following are three important contributions in the thesis.

The first contribution is the design of parallel tree skeletons for both binary trees and

general trees of arbitrary shape. Our parallel tree skeletons have a sequential interface but

with a parallel implementation; the sequential interface is designed based on the theory

of constructive algorithmics, while the parallel implementation is either based on tree

contraction algorithms or newly developed ones.

The second contribution is a set of theories for skeletal parallel programming on trees.

These theories provide us with a systematic method for deriving skeletal parallel programs

from sequential programs. We illustrate effectiveness of the method by solving two classes

of nontrivial problems, maximum marking problems and XPath queries.

The third contribution is an implementation of a parallel skeleton library for trees. We

developed a new implementation algorithm for tree skeletons, in which a tree is divided

with high locality and good load balance and tree skeletons are executed efficiently in
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parallel even on distributed-memory parallel computers. These skeletons are implemented

in C++ with the MPI library, and provided as a skeleton library called SkeTo.
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Chapter 1

Introduction

1.1 Background

The amount of data we need to deal with is getting larger and larger, and parallel comput-

ing is an essential technique for obtaining sufficient computational power to manipulate

huge amount of data. Parallel computing has become widely available due to faster and

cheaper computers and networks, such as clusters of tens or even hundreds of PCs con-

nected by Gigabit Ethernet networks. Furthermore, multi-core processors, which are now

also available for PCs, offer more opportunities for parallel computing.

Though parallel computers are widely available, parallel programming is still a difficult

task. One reason is that parallel programs are more complicated than sequential ones.

Programmers developing efficient parallel programs must take into account communication

among processors, synchronization among processes, and allocation of data and resources.

Another reason is the large variety of parallel computer architectures. Initially, shared

memory computers modeled as Parallel Random Access Machines (PRAMs) were used;

now, distributed-memory architectures such as PC clusters are also used. In the future,

more complicated architectures achieved by integrating chip-level multiprocessing and grid

computing will be the target platform for parallel programs.

Skeletal parallelism, first proposed by Cole [33] and described well by Rabhi and Gor-

latch [110], is a novel paradigm for overcoming these difficulties. In skeletal parallelism,

users build parallel programs by combining ready-made components called parallel skele-

tons (or algorithmic skeletons). These parallel skeletons are abstract computational pat-

terns that can be implemented efficiently in parallel on many parallel computers. Skeletal

parallelism provided by these parallel skeletons conceals their complicated parallel imple-

mentations form users. Skeletal parallelism has several advantages; the two most impor-

tant ones are that users can build parallel programs as if they were building sequential ones

without considering implementation details and that the programs are not only efficient

but also architecture independent.

There have been many studies on skeletal parallelism for lists and arrays [19, 32, 34,

52,65,117,118], some of which have used constructive algorithmics [15,18,67] to formalize
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parallel skeletons. Constructive algorithmics is a theory originally proposed for systematic

development of sequential algorithms. Formalization based on constructive algorithmics

endows the parallel skeletons with many attractive features, allowing optimization by

fusion transformation [65], for example.

This thesis addresses parallel programming for trees, which are important datatypes

that are often used to represent structured data such as XML. As XML has become the

de facto standard for storing and exchanging data, a growing amount of data is stored

in the form of trees. As a result, there is a great demand for methods and systems for

manipulating huge trees efficiently. Parallel computing is a promising approach to meeting

this demand.

Developing efficient parallel tree programs is, however, a much harder task for program-

mers than developing list programs, because of the irregular and ill-balanced structure of

trees. In sequential programming, programs for manipulating trees are written using

recursive functions. In parallel programming, the computations that can be performed

in parallel must be identified. A naive way to transform a recursive function on trees

into a parallel function is to program the independent recursive calls to be computed in

parallel. This corresponds to the parallel divide-and-conquer approach, but naive divide-

and-conquer programs are inefficient when the input trees are ill-balanced.

Tree contraction algorithms, first proposed by Miller and Reif [98], are well-known

parallel algorithms for manipulating trees. The main idea of these algorithms is to per-

form local contractions (remove some nodes by merging them with an adjacent node) in

parallel not only at the bottom of the tree but also at the middle point. The most im-

portant advantage of tree contraction algorithms is that the parallel computation time

is guaranteed even if the input tree is completely ill-balanced. There have been many

studies on the implementation of tree contraction algorithms for several architecture mod-

els [2, 8, 46, 94, 98, 125], and on the derivation of tree contraction algorithms for problems

related to trees and graphs [35,57,86,100,101].

Though there have been many studies on tree contraction algorithms, programmers

still find it problematic to develop programs by tree contraction algorithms. There are

three problems in particular.

• The implementation of a tree contraction algorithm greatly depends on the target

architecture model, and there has been insufficient abstraction based on solid theory.

This complicates the derivation of parallel programs from sequential programs.

• There have been few studies on manipulating general trees by using tree contraction

algorithms. The original tree contraction algorithms by Miller and Reif [98] did not

limit the tree shape to binary, but many implementations of these algorithms require

the assumption of a binary-tree shape for efficiency. Therefore, systematic methods

of manipulating general trees based on the manipulation of binary trees are required.
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• While there are a few libraries and tools that support development of parallel tree

programs, they mainly work on shared-memory parallel computers [38, 111]. Since

distributed-memory parallel computers, such as PC clusters, are now widely used, an

efficient library of parallel tree manipulations for use on distributed-memory parallel

computers is necessary.

This thesis examines principles and practices for constructing parallel programs to

manipulate trees in the context of skeletal parallelism. In the following section, a “short

tour” is presented to illustrate the contributions of this thesis.

1.2 A Short Tour

The contributions of this thesis are illustrated with a well-known problem on trees called

the party planning problem [36]. This problem is an instance of the maximum marking

problems [17,115] for which the derivation of parallel programs is described in Chapter 8.

The president of a company wants to have a company party. To make the party

fun for all attendees, the president does not want both an employee and his or

her direct supervisor to attend. The company has a hierarchical structure; that

is, the supervisory relations form a tree rooted at the president. The personnel

office has ranked each employee with a conviviality rating, which is a real

number. Given the structure of the company and the ratings of the employees,

the problem is to select the guests so that the sum of their conviviality ratings

is maximized.

The structure of the company is assumed to be a binary tree, for simplicity. In the

following, let us derive a parallel program that returns a binary tree of boolean values

where the selection of a node is represented by a mark of True.

The first step in the tour is to develop a sequential program. A known sequential pro-

gram for solving the party planning problem is given in Figure 1.1. It uses two recursive

functions: max_sums and mark_node. Recursive function max_sums takes a tree and com-

putes two values in a bottom-up manner: the first value is the maximum sum when the

root node is marked; the second value is the maximum sum when the root is not marked.

Recursive function mark_node computes the resulting mark for each node in a top-down

manner using max_sums.

The next step is to develop an efficient parallel program from this sequential program.

One approach is to use a naive divide-and-conquer manner, in which we compute two

recursive functions max_sums and mark_node in parallel. This is acceptable because these

calls are independent. This approach works well for balanced binary trees but not always

for ill-balanced trees. Another approach is to utilize the tree contraction algorithms.

However, these tree contraction algorithms have been mainly developed for shared-memory
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pair max_sums( node<int> n ) {
if ( n.is_leaf( ) ) {
return pair( n.v, 0 );

} else {
pair lv = max_sums( n.l );
pair rv = max_sums( n.r );
return pair( n.v + lv.snd + rv.snd,

max( lv.fst, lv.snd ) + max( rv.fst, rv.snd ) );
}

}

node<bool> mark_node( node<int> n, bool is_parent_marked ) {
node<bool> ret;
pair sums = max_sums( n );
ret.v = ( !is_parent_marked ) && ( sums.fst > sums.snd );
if ( !n.is_leaf( ) ) {
ret.l = mark_node( n.l, ret.v );
ret.r = mark_node( n.r, ret.v );

}
return ret;

}

int main( int argc, char** argv ) {
...
node<bool> result = mark_node( tree, false );
...

Figure 1.1. Sequential program for solving party planning problem.

pair max_sums_leaf( int v ) {
return pair( v, 0 );

}

pair max_sums_node( int v, pair lv, pair rv ) {
return pair( v + lv.snd + rv.snd,

max( lv.fst, lv.snd ) + max( rv.fst, rv.snd ) );
}

bool mark_node_g( pair v, bool is_parent_marked ) {
return ( !is_parent_marked ) && ( v.fst > v.snd );

}

int main( int argc, char** argv ) {
...
node<pair> tree2 = uAcc( max_sums_leaf, max_sums_node, tree1 );
node<bool> tree3 = dAcc( mark_node_g, mark_node_g, false,

tree2 );
...

}

Figure 1.2. Skeletal sequential program for solving party planning problem.
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architecture models, so it is hard for sequential programmers to develop parallel programs

based on them.
In this thesis, an approach is proposed based on skeletal parallel programming for

developing parallel programs manipulating trees. One goal is to enable users to develop
parallel programs systematically by composing parallel tree skeletons without considering
the details of the parallel algorithms. Another goal is to have the skeletal parallel programs
run reasonably quickly with efficient implementation of the parallel tree skeletons.

The first task is to design parallel tree skeletons based on the solid theory of construc-
tive algorithmics. As illustrated in Figure 1.1, we often develop programs for manipulating
trees as recursive functions on the structure of trees. These recursive functions, which are
defined over the data structure, can be formalized as homomorphisms in constructive algo-
rithmics theory. In the case of binary trees, these functions are called tree homomorphisms.
Skillicorn [119] formalized five primitive functions, called tree skeletons, for parallel pro-

gramming on trees. These tree skeletons are special cases of tree homomorphisms and
capture a wide area of computations on trees. On the basis of Skillicorn’s study, we for-
malize parallel tree skeletons that have an interface of recursive functions for binary trees
(Chapter 2) and general trees (Chapter 4).

With the recursive interface of tree skeletons, the sequential program shown in Fig-
ure 1.1 can be converted into the skeletal program shown in Figure 1.2. The function

max_sums in the sequential program computes in a bottom-up manner, so it is imple-
mented using the upwards accumulate skeleton (uAcc) with two parametric functions
(max_sums_leaf called for leaves and max_sums_node called for internal nodes). The
function mark_node computes in a top-down manner, so it is implemented using the down-
wards accumulate skeleton (dAcc) with one parametric function (mark_node_g called for
left and right children). As shown by the example in Figure 1.2, parallel skeletons can

be used for many types of programs if suitable parametric functions are supplied. The
decomposition of complex recursive functions into combinations of tree skeletons can be
systematically done by applying diffusion theorems, which are described in Chapter 5. It
is worth noting that the skeletal program shown in Figure 1.2 is still a sequential program
since we only provide parametric functions that specify sequential computation.

The second task is to formalize the conditions for parallel execution of skeletons through

the use of systematic derivation. We can develop efficient parallel programs by using tree
contraction algorithms, but there are some conditions for using them. The conditions for
parallel computations on binary trees are formalized based on their balanced ternary-tree
representations in Chapter 3. Since the conditions formalized in Chapter 3 may still be
unfamiliar to users, three algebraic properties of the parametric functions are described
and a systematic method of deriving auxiliary functions for parallel implementation given

these properties is proposed in Chapter 5.
In our example, the function max_sums uses two operators, + and max, that form

a commutative semiring, and the function mark_node_g returns either true or false
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for each node in the tree. The former attribute, called the “tupled-ring property”, is

formalized in Section 5.2.4, and the latter, called the “finiteness property”, is formalized

in Section 5.2.2. These properties are used to derive parallel programs systematically.

In fact, some steps in the derivation can be performed automatically by code generators

(Section 7.3) that take sequential functions with some annotations and generate parallel

programs with tree skeletons. The generated parallel program for the party planning

problem is shown in Figure 1.3. The SKETO_DEF_UNOPs and SKETO_DEF_TEROPs define

parametric functions for the tree skeletons.

The third task is to provide an efficient implementation of tree skeletons. The de-

veloped parallel skeleton library, SkeTo1 (Chapter 7), does this. In this skeleton library,

tree skeletons are implemented in C++ on MPI (message passing interface) libraries for

distributed-memory parallel computers. The skeletal parallel program shown in Figure 1.3

can be executed on the SkeTo library. We developed a new implementation algorithm of

parallel tree skeletons for distributed-memory computers, which has two important prop-

erties of efficient parallel programs, high locality and good load balance (Chapter 6). The

tree skeletons were implemented carefully to achieve high performance on distributed trees

based on m-bridges in basic graph theory. The cost model of the tree skeletons helps to

achieve good load balance.

The experimental results for the derived parallel program are plotted in Figure 1.4.

The input trees were balanced one, randomly generated one, and completely ill-balanced

one, each with 16,777,215 (= 224 − 1) nodes. The program was executed on a cluster of

identical PCs with two Pentium 4 2.8-GHz CPUs and 2-GB memory (one CPU is used for

each PC). The PCs were connected by Gigabit Ethernet. Even for the ill-balanced tree,

there was a good speedup. The experimental results are presented in Section 7.4.

1.3 Contributions and Organization of the Thesis

The body of the thesis consists of two parts. The first part (Chapters 2–5) addresses

the principle of skeletal parallel programming for trees. These chapters cover the design

of tree skeletons and the systematic derivation of skeletal parallel programs from given

sequential programs. The second part (Chapters 6–9) addresses the practice of parallel

programming for trees. These chapters describe the implementation of the SkeTo parallel

skeleton library for distributed-memory environments and illustrate the effectiveness of

parallel tree skeletons using two classes of nontrivial examples.

Principles of Parallel Programming for Trees

In Chapter 2, the notational conventions are presented and important previous stud-

ies on parallel programming for binary trees are reviewed. First, a general definition of
1SkeTo is the abbreviation for “SKEletons in TOkyo”; it also means a supporter or a helper in Japanese.
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struct max_sums_ret {
int v0, v1;

};

struct max_sums_inter {
int v;
int a00, a01, a10, a11;

};

SKETO_DEF_UNOP( max_sums_leaf, int,
max_sums_ret,

max_sums_ret ret;
ret.v0 = x; ret.v1 = 0;
return ret; )

SKETO_DEF_TEROP( max_sums_node, int, max_sums_ret, max_sums_ret,
max_sums_ret,

max_sums_ret ret;
ret.v0 = x + y.v1 + z.v1;
ret.v1 = max( y.v0, y.v1 ) + max( z.v0, z.v0 );
return ret; )

SKETO_DEF_UNOP( max_sums_phi, int,
max_sums_inter,

max_sums_inter ret;
ret.v = x;
ret.a00 = 0; ret.a01 = INT_MIN;
ret.a10 = INT_MIN; ret.a11 = 0;
return ret; )

SKETO_DEF_TEROP( max_sums_psiN, max_sums_inter, max_sums_ret,
max_sums_ret, max_sums_ret,

max_sums_ret ret0 = max_sums_node( x.v, y, z );
max_sums_ret ret;
ret.v0 = max( x.a00 + ret0.v0, x.a01 + ret0.v1 );
ret.v1 = max( x.a10 + ret0.v0, x.a11 + ret0.v1 );
return ret; )

/* definition of other function objects */

int SketoMain( int argc, char** argv ) {
...
dist_tree<max_sums_ret> *tree2
= uAcc( max_sums_leaf, max_sums_node, max_sums_phi,

max_sums_psiN, max_sums_psiL, max_sums_psiR,
tree1 );

dist_tree<bool> *tree3
= dAcc( mark_node_gl, mark_node_gr, mark_node_phil,

mark_node_phir, mark_node_psiu, mark_node_psid,
false, tree2 );

...

Figure 1.3. Skeletal parallel program for solving party planning problem.
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tree computations called “tree homomorphisms” is introduced followed by two important

studies on tree contraction algorithms: Miller and Reif’s original tree contraction algo-

rithm [98] and a novel implementation of the tree contraction algorithms on an exclusive-

read exclusive-write (EREW) PRAM [2]. Then, the binary-tree skeletons, first formalized

by Skillicorn [119], are introduced with some extensions.

In Chapter 3, the parallelism in the computation on binary trees is formalized. We

propose the balanced ternary-tree representation based on the flexible division of trees, and

formalize tree associativity on an analogy to the associativity in the parallel computation

on lists. We develop a parallel implementation of basic tree skeletons on this ternary-tree

representation, and investigate an algorithm for generating balanced ternary trees from

given binary trees.

In Chapter 4, parallel skeletons for general trees with an arbitrary shape, called rose

trees [96], are examined. There have been many studies on the parallel manipulation of

binary trees, but few studies on general trees. We define seven basic rose-tree skeletons

based on the idea of constructive algorithmics. These rose-tree skeletons are a straightfor-

ward extensions of parallel skeletons for binary trees, and can be implemented in parallel

by using parallel binary-tree skeletons.

In Chapter 5, the derivation of skeletal parallel programs is described. Sequential pro-

grams for manipulating trees are often given as recursive functions, and there are often

gaps between sequential recursive programs and skeletal parallel programs. We develop

diffusion theorems for decomposing a complicated recursive function into simpler recur-

sive functions that can be computed using tree skeletons. We, then show three algebraic

properties for the systematic derivation of auxiliary functions for parallel tree skeletons.

Practices of Parallel Programming on Trees

In Chapter 6, implementation algorithms of parallel binary-tree skeletons for distributed-

memory parallel computers are described. This implementation has two major features:

good performance for local computation due to the serialized representation of trees, and

concise cost model of the skeletons, which supports load balancing using information on

the cost of parameter functions.

In Chapter 7, the implementation issues of the SkeTo library are shown. Three im-

portant issues are: implementation of the skeleton library in C++ and MPI based on the

implementation algorithm of the binary-tree skeletons, an optimization mechanism using

fusion transformation implemented using meta-programming techniques, and code gener-

ators based on the theories developed in Chapter 5. Several experiment results are shown

here.

In Chapter 8, the derivation of parallel programs is shown for the maximum marking

problems. The maximum marking problems include many important dynamic program-

ming problems, an instance of which is the party planning problem used in the short tour.
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Using the derivation methods presented, we can easily derive parallel programs for a class

of maximum marking problems from efficient sequential programs given by Sasano et al.’s

derivation methods [115,116].

In Chapter 9, a more involved example is shown: the parallelization of XPath queries.

XPath is a widely used language for addressing parts of an XML tree, but few studies

have addressed the parallel processing of XPath queries. Parallel tree skeletons are shown

to be applicable to the implementation of nontrivial XPath queries.

Chapter 10, related work is reviewed. It includes work on tree contraction algorithms

and their applications, other approaches to implementing parallel computing for trees,

skeletal parallel programming for trees and other data structures, program derivation

techniques for parallelization, and skeletal environments.

In Chapter 11, the thesis concludes with remarks on future directions.
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Chapter 2

Basis of Parallel Tree Computing
on Binary Trees

2.1 Notations

In this thesis, we borrow the notation of Haskell [16, 107]. In the following, we briefly

introduce important notations and data structures used in the thesis. Roughly speaking,

the functions in this thesis can be read as mathematical function definitions except for the

function applications denoted by spaces.

Functions and Operators

Function application is denoted by a space and the argument may be written without

brackets. Thus f a means f(a). Functions are curried, and the function application

associates to the left. Thus f a b means (f a) b. The function application binds stronger

than any other operator, so f a ⊕ b means (f a) ⊕ b, but does not f (a ⊕ b). Function

composition is denoted by an infix operator ◦. By definition, we have (f ◦ g) a = f (g a).

Function composition is associative and its unit is the identity function denoted by id .

In some cases arguments do not affect the result of the functions. In such cases the

arguments may be called don’t-care and denoted as −.

Infix binary operators will be denoted by ⊕, ⊗, etc, and their units are written as

ι⊕, ι⊗, respectively. These operators can be sectioned and be treated as functions, i.e.

a⊕ b = (a⊕) b = (⊕b) a = (⊕) a b holds.

In addition to the arithmetic operators, we use the following two operators. Operator

↑ returns the larger of the two arguments, and operator ↓ returns the smaller of the two.

Using if -expression, we can define these two operators as follows.

a ↑ b = if a > b then a else b
a ↓ b = if a < b then a else b
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Tuples

Tuples are constructed with the fixed number of elements that may have different types.

We donate tuples with parenthesis such as (1, 2) and (1, 0.1, "a"). A tuple with exact two

elements is called a pair, and a tuple with exact three elements is called a triple.

Function fst takes out the first element of the input tuple. Similarly, functions snd

and thd take out the second and third elements, respectively.

Some functions that take an input of the same type can be gathered by operator �.

For example, (f � g) x = (f x, g x).

Lists and List Comprehension

Lists are finite sequences of elements of the same type. Lists can be constructed in two

ways; cons lists and join lists. A cons list is constructed either by an empty list (Nil) or by

adding an element x to a list xs (Cons x xs). The datatype of a cons list whose elements

are of type α is defined as follows.

data List α = Nil
| Cons α (List α)

In the thesis we denote the type and type constructor in the sans serif font for readability.

We use abbreviations: [α] for List α, [ ] for Nil, and (a : as) for (Cons a as).

A join list is constructed by an empty list (Nil), a singleton list with element a

(Singleton a), or by concatenating two smaller lists (Concat xs ys). The datatype of a

join list whose elements are of type α is defined as follows.

data List α = Nil
| Singleton α
| Concat (List α) (List α)

We use abbreviations: [a] for Singleton a, and (xs ++ ys) for (Concat xs ys). We may use

either of these definitions unless particularly noted.

List comprehension is a syntax sugar of generation of lists. Let ts be a list, expression

[1..#ts ] generates a list of increasing integers from one to the number of elements in ts ,

and list comprehension [f ti | i ∈ [1..#ts ]] generates a list by applying function f to each

element in ts . In this thesis, we denote ti for the i-th element of list ts , and we use similar

notations such as ri and rs .

We introduce a notation for consumption of lists. Let ⊕ be an associative operator

with its unit ι⊕, then
∑

⊕ denotes the reduction of a list with the operator ⊕. Informally,

the operation
∑

⊕ is defined as follows.∑
⊕[ ] = ι⊕∑
⊕[a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an

We introduce two functions called scans or prefix-sums. The scan operation on lists,

scan , takes an associative operator and a list, and accumulates values with the operator
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from left to right. Function scan ′ is a reversed scan operation. Informally, these two

functions are defined as follows.

scan (⊕) [a1, a2, . . . , an] = [ι⊕, a1, . . . , a1 ⊕ · · · ⊕ an−1]
scan ′ (⊕) [a1, a2, . . . , an] = [a2 ⊕ · · · ⊕ an, a3 ⊕ · · · ⊕ an, . . . , an, ι⊕]

Binary Trees

Binary trees are trees whose internal nodes have exactly two children. The datatype of

binary trees whose internal nodes have values of type α and whose leaves have values of

type β is defined as follows.

data BTree α β = BLeaf α
| BNode (BTree α β) β (BTree α β)

The BNode is the constructor for internal nodes and takes three parameters, the left

subtree, the value of the node, and the right subtree, in this order.

We introduce two functions for manipulating binary trees. Function rootb returns the

value of the root node, and function setrootb takes a binary tree and a value, and replaces

the value of the root node with the input value. Note that we use − to denote a don’t-care

value.

rootb (BLeaf a) = a
rootb (BNode − b −) = b

setrootb (BLeaf −) a′ = BLeaf a′

setrootb (BNode l − r) b′ = BNode l b′ r

Rose Trees

Rose trees (a term coined by Meertens [96]) are trees whose internal nodes have an arbi-

trary number of children. In this thesis we assume all the nodes in a rose tree have values

of the same type. The datatype of rose trees whose nodes have the values of type α is

defined as follows using lists.

data RTree α = RNode α [RTree α]

The first argument of RNode is the value of the node, and the second argument is the list

of subtrees. A leaf of a rose tree is represented by the RNode with an empty list.

Similar to binary trees, we introduce two functions for manipulating rose trees. Func-

tion root r returns the value of the root node, and function setroot r replaces the value of

the root node with the specified value.

root r (RNode a ts) = a

setroot r (RNode − ts) a′ = RNode a′ ts



14 Chapter 2 Basis of Parallel Tree Computing on Binary Trees

2.2 Tree Homomorphisms

Once a (recursive) datatype is specified, its manipulations are defined along with the
specification of the datatype. Homomorphisms, which are natural manipulations defined

along with a datatype, play important roles in the theories of constructive algorithmics.
For binary trees, we can define the following general form of recursive functions called

binary-tree homomorphism (or tree homomorphism for short) [118,119].

Definition 2.1 (Tree Homomorphism) Let kl and kn be given functions. A function
h is called tree homomorphism (or simply homomorphism), if it is defined in the following

recursive form.

h (BLeaf a) = kl a
h (BNode l b r) = kn (h l) b (h r)

We may denote the tree homomorphism above as h = ([kl, kn])b. �

We can specify many tree manipulations in the form of tree homomorphism. An

example of tree homomorphism is function heightb that computes the height of a binary
tree.

heightb (BLeaf a) = 1
heightb (BNode l b r) = 1 + (heightb l ↑ heightb r)

This function is indeed a tree homomorphism heightb = ([height l, heightn])b with the two

parameter functions defined as follows:

height l a = 1
heightn l b r = 1 + (l ↑ r) .

Tree homomorphisms that return a basic value, like the heightb function, are often called

tree reductions.
Many tree computations return trees instead of basic values as seen in the short tour

in the introduction. For such computations we define the following two computational

patterns called tree accumulations. Note that these two tree accumulations are in fact tree
homomorphisms as stated later.

Definition 2.2 Let kl and kn be given functions. A function hu is called upwards accu-
mulation, if it is defined in the following recursive form.

hu (BLeaf a) = BLeaf (kl a)
hu (BNode l b r) = let l′ = hu l

r′= hu r
in BNode l′ (kn b (rootb l

′) (rootb r
′)) r′ �

Definition 2.3 Let gl and gr be given functions. A function hd is called downwards
accumulation, if it is defined in the following recursive form with additional parameter c.

hd c (BLeaf a) = BLeaf c
hd c (BNode l b r) = BNode (hd (gl c b) l) c (hd (gr c b) r) �
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These tree accumulations are in fact tree homomorphisms. The upwards accumulation

hu defined with two parameter functions kl and kn is a tree homomorphism, hu = ([k′l, k
′
n])b,

in which the two parameter functions are defined as follows.

k′l a = BLeaf (kl a)
k′n l b r = BNode l (kn b (root b l) (rootb r)) r

The downwards accumulation hd defined with two functions gl and gr is a higher-order

tree homomorphism, hd c t = ([kl, kn])b t c, in which the two parameter functions are

defined as follows.

kl a = λc.BLeaf c
kn b l r = λc.BNode c (l (gl c b)) (r (gr c b))

2.3 Tree Contraction Algorithms

Tree contraction algorithms are very important parallel algorithms for efficient tree ma-

nipulations. The idea of tree contraction algorithms was first introduced by Miller and

Reif [98], and then many implementations of tree contraction algorithms have been devel-

oped on various kinds of parallel-computing models [2, 8, 35,41,78,95,113].

In this section, we introduce two important implementations of tree contraction algo-

rithms: the original tree contraction algorithm by Miller and Reif [98], and a cost-optimal

algorithm on an EREW PRAM developed by Abrahamson et al. [2].

2.3.1 Miller and Reif’s Algorithm

Tree contraction algorithms were originally developed for tree reductions. In the following,

we review the basic idea of Miller and Reif’s tree contraction algorithm by showing how

we reduce a tree into one node by parallel removals of nodes. Note that Miller and Reif’s

algorithm accepts trees of any shape not limited to binary trees.

A naive parallel algorithm for tree reductions is to remove all leaves in parallel in

a bottom-up manner. This parallel algorithm, of course, works well for balanced trees,

but it runs as slow as a sequential one for completely ill-balanced trees because it takes

computational cost depending on the height of the input tree.

The inefficiency of the naive parallel algorithm is caused by a long path from the root

to a leaf, which the naive algorithm reduce sequentially. To reduce such a long path in

parallel, we can adopt the well-known technique called pointer jumping. By using the

pointer jumping, we can remove a half number of nodes on the path at one step.

We define two local operations named rake and compress as in Figure 2.1.

• Rake operation removes a leaf.

• Compress operation applied to an internal node with only one child removes the

node and connects its parent and its child.
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rake compress

Figure 2.1. Two basic operators in Miller and Reif’s tree contraction algorithm.

Miller and Reif’s algorithm applies these operations in parallel. Note that the algorithm

given below runs on concurrent-read concurrent-write (CRCW) PRAMs.

Algorithm 2.1 (Miller and Reif ’s Tree Contraction Algorithm)

Input: A tree of any shape (not necessarily to be a binary tree).

Output: The root node.

1. Repeat the following steps (a) and (b) until only one node remains.

(a) Apply the rake operation in parallel to all the leaves.

(b) Apply the compress operation in parallel to internal nodes that have only one

child. To prevent the tree from becoming disconnected, we do not apply the

compress operation to the root node nor two adjacent internal nodes simulta-

neously. �

Theorem 2.1 Let N be the number of nodes in the input tree. Miller and Reif’s tree

contraction algorithm computes reductions in O(logN) parallel steps on CRCW PRAMs

with N processors. �

2.3.2 Abrahamson et al’s Algorithm

Based on Miller and Reif’s idea, several efficient tree contraction algorithms have been

developed. In this section, we review an efficient and practical algorithm on exclusive-

read exclusive-write (EREW) PRAMs developed by Abrahamson et al. [2].

In Abrahamson et al.’s algorithm, we assume that the input tree is a binary tree.

Under this assumption, application of the rake operation to a leaf make its parent node

have only one child, and thus application of the compress operation to the parent node

may follow. With this in mind, we define two tree contracting operations called contractL

and contractR1. The contractL operation is applied to an internal node whose left child
1These two operations are also called shunt, and Abrahamson et al.’s tree contraction algorithm is also

called shunt contraction.
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contractL contractR

Figure 2.2. Two basic operations in Abrahamson et al.’s tree contraction algorithm.

is a leaf, and removes the node and its left leaf as shown in Figure 2.2. The contractR
operation is symmetric to the contractL operation.

To implement tree reductions on EREW PRAMs, we need to apply the two contract
operations to disjoint parts in parallel. Abrahamson et al.’s algorithm solves this problem
by a novel scheduling based on the prefix numbering of leaves from left to right. This
numbering can be computed efficiently in parallel on the Euler-tour of trees which can be
constructed by the list-ranking technique [112].

Based on the numbering of leaves, Abrahamson et al.’s tree contraction algorithm
applies the two contracting operations in parallel. The algorithm reduces the number of
nodes to the half for each step. The detail of the algorithm is as follows.

Algorithm 2.2 (Shunt Contraction Algorithm [2])

Input: A binary tree.
Output: The root node.

1. Number the leaves from left to right starting from 0. This numbering is a prefix-sum
computation on the Euler-tour of the tree.

2. Iterate �log n	 − 1 times the following steps (a)–(c) where n is the number of nodes
in the input tree.

(a) Apply the contractL operation to each internal node whose left child is an
odd-numbered leaf except the root node.

(b) Apply the contractR operation to each internal node whose right child is an
odd-numbered leaf except the root node and nodes involved in the previous
step.

(c) Renumber leaves by dividing their number by 2.

3. Remove two children of the root node. �

Theorem 2.2 ([2]) Let N be the number of nodes in the input binary tree, and P be
the number of processors. The shunt contraction algorithm reduce the tree into a node in
O(N/P + logP ) parallel steps on EREW PRAMs. �
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We have shown how we can reduce a tree into its root node in parallel, without men-

tioning the computation along the contractions. In fact, we require some conditions on the

parameter functions to compute tree manipulations based on tree contraction algorithms.

In the following, we review the conditions given by Abrahamson et al. [2]. Abrahamson et

al. discussed the condition for applying the tree contraction algorithm to the algebraic tree

computations. There are two types of algebraic tree computations: the bottom-up alge-

braic tree computation (B-ATC) and the top-down algebraic tree computation (T-ATC).

Let S be a set of values, F be a set of binary functions over S, G be a set of unary

function over S. A tree of B-ATC problem (S,F ,G) is a binary tree where every leaf

has a value in S and every internal node has a binary function in F , and we want to

evaluate the expression associated to the tree. For this B-ATC problem, Abrahamson et

al. showed the following condition for the parallel implementation based on tree contraction

algorithms [2].

Lemma 2.1 ([2]) For a given tree of B-ATC problem (S,F ,G), tree reduction and up-

wards accumulation on the tree are computed in the same cost as tree contraction algo-

rithms if the following conditions are satisfied.

• The set F is an indexed set whose elements can be evaluated in O(1) sequential time.

• The set G is an indexed set whose elements can be evaluated in O(1) sequential time

and includes the identity function.

• For all gi, gj ∈ G, fm ∈ F , and a ∈ S, the functions gs and gt given by

gs(x) = gi(fm(gj(x), a)) and gt(x) = gi(fm(a, gj(x)))

both belong to G and their indices s and t can be computed in O(1) sequential time

from i, j, m, and a. �

Let S be a set of values, G be a set of unary function on S, a tree of T-ATC problem

(S,G) is a binary tree where the root has a value in S and every edge has a function in G.

Given a T-ATC tree we want to compute a value for each path from the root to a node by

evaluating the functions on the path from the root. For the T-ATC problem, Abrahamson

et al. showed the following condition for the parallel implementation.

Lemma 2.2 ([2]) For a given tree of T-ATC problem (S,G), downwards accumulation

on the tree can be computed in the same cost as the tree contraction algorithm, if the

following conditions are satisfied.

• The set G is an indexed set whose element can be evaluated in O(1) sequential time

and includes the identity function.
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• The set G is closed under composition and for each gi, gj ∈ G the index of gi ◦ gj can

be computed in O(1) sequential time from i and j. �

The third item in Lemma 2.1 and the second item in Lemma 2.2 formalize certain

closure properties in the set of functions. These closure properties are the most important

conditions for the parallel implementation.

As we have reviewed, Abrahamson et al. only showed the conditions for the parallel

evaluation of algebraic tree computations. In general, however, we have more complicated

tree computation in which the computation on an internal node is defined with its value.

We show another condition in the following section for parallel tree skeletons based on the

closure property of parameter functions for those tree manipulations.

2.4 Binary-Tree Skeletons

Parallel binary-tree skeletons are basic computational patterns manipulating binary trees

in parallel. In this section, we introduce a set of binary-tree skeletons with some discussions

on their formalization and parallelization, and then provide three additional skeletons for

specialized computations.

2.4.1 Basic Binary-Tree Skeletons

A set of binary-tree skeletons, first proposed by Skillicorn [119], includes the following five

higher-order functions. These skeletons are basic primitives in the parallel computation

for trees.

• Two node-wise computations: mapb and zipwithb

• Two bottom-up computations: reduceb and uAccb (upwards accumulate)

• One top-down computation: dAccb (downwards accumulate)

We give the formal denotational definition of them as sequential recursive functions

in Figure 2.3. We denote the parallel binary-tree skeletons in the sans-serif font with

a subscript b. In the following, we show the intuitive meaning of the basic binary-tree

skeletons together with additional conditions for parallel implementation.

The parallel skeleton mapb takes two functions kl and kn and a binary tree, and

applies kl to each leaf and kn to each internal node. The parallel skeleton zipwithb takes

two functions kl and kn and two binary trees of the same shape, and zips the trees up

by applying kl to each corresponding pair of leaves and kn to each corresponding pair

of internal nodes. Since the functions are applied independently to the nodes, these two

skeletons require no additional condition for their parallel implementation.

The parallel skeleton reduceb takes a function k and a binary tree, and collapses the

tree into a value by applying the function k to each internal node in a bottom-up manner.
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The parallel skeleton uAccb takes a function k and a binary tree, and applies the function

k in a bottom-up manner while putting the intermediate result on each node. These two

skeletons require an additional condition for the existence of an efficient parallel imple-

mentation of them. The skeletons reduceb and uAccb called with parameter function k

require the existence of four auxiliary functions φ, ψn, ψl, and ψr satisfying the following

three equations.

k x n y = ψn x (φ n) y
ψn (ψn n′ x y) n r = ψn x (ψl n′ n r) y
ψn l n (ψn n′ x y) = ψn x (ψr l n n′) y

We denote the function k satisfying the condition above as k = 〈φ,ψn, ψl, ψr〉u.
The parallel skeleton dAccb takes a pair of functions gl and gr, a parameter c and a

binary tree. This skeleton updates parameter c in a top-down manner using gl for the left

child and gr for the right child, and puts the parameter c on each node. The parameter c

is called accumulative parameter. This skeleton also requires an additional condition for

an efficient parallel implementation. The dAccb skeleton called with parameter functions

gl and gr requires the existence of auxiliary functions φl, φr, ψu, and ψd satisfying the

following three equations.

gl c n = ψd c (φl n)
gr c n = ψd c (φr n)
ψd (ψd c n) m = ψd c (ψu n m)

We denote the pair of functions gl and gr satisfying the condition above as (gl, gr) =

〈φl, φr, ψu, ψd〉d.

The conditions for the parallel implementation of the reduceb, uAccb, and dAccb skele-

tons given as auxiliary functions are newly introduced by the author. We discuss the

conditions more in details in Chapter 3.

These parallel tree skeletons can be implement efficiently in parallel for many parallel

architectures. Here, let the model of parallel computers be EREW PRAM with P pro-

cessors, and N denote the number of nodes of a tree. We assume that all the functions

including auxiliary functions passed to skeletons are computed sequentially in constant

time, and that the conditions of the reduceb, uAccb and dAccb are satisfied. The mapb and

zipwithb skeletons can be implemented just by applying functions independently to each

node, and they run in O(N/P ) parallel time. The reduceb skeleton can be implemented

by tree contraction algorithms and it runs in O(N/P + logP ) parallel time. The uAccb

and dAccb skeletons are generalized computational patterns of the algebraic tree compu-

tations [2], and Gibbons et al. [50] developed parallel implementations of them based on

tree contraction algorithms. With their implementations, the uAccb and dAccb skeletons

can be computed in O(N/P + logP ) parallel time. In other words, the mapb and zipwithb

skeletons achieve linear speedup under P ≤ O(N), and the reduceb, uAccb, and dAccb
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mapb :: (α→ γ) → (β → δ) → BTree α β → BTree γ δ
mapb kl kn (BLeaf n) = BLeaf (kl n)
mapb kl kn (BNode l n r) = BNode (mapb kl kn l) (kn n) (mapb kl kn r)

zipwithb :: (α→ α′ → γ) → (β → β′ → δ) → BTree α β → BTree α′ β′

→ BTree γ δ
zipwithb kl kn (BLeaf n) (BLeaf n′) = BLeaf (kl n n′)
zipwithb kl kn (BNode l n r) (BNode l′ n′ r′)

= BNode (zipwithb kl kn l l
′) (kn n n′) (zipwithb kl kn r r

′)

reduceb :: (β → α→ α→ α) → BTree α β → α
reduceb k (BLeaf n) = n
reduceb k (BNode l n r) = k (reduceb k l) n (reduceb k r)

uAccb :: (β → α→ α→ α) → BTree α β → BTree α α
uAccb k (BLeaf n) = BLeaf n
uAccb k (BNode l n r) = let l′ = uAccb k l

r′= uAccb k r
in BNode l′ (k (root b l

′) n (rootb r
′)) r′

dAccb :: ((γ → β → γ), (γ → β → γ)) → γ → BTree α β → BTree γ γ
dAccb (gl, gr) c (BLeaf n) = BLeaf c
dAccb (gl, gr) c (BNode l n r) = BNode (dAccb (gl, gr) (gl c b) l) c

(dAccb (gl, gr) (gr c b) r)

Figure 2.3. Definition of basic binary-tree skeletons.

getchlb :: α→ BTree β β → BTree α β
getchlb c (BLeaf n) = BLeaf c
getchlb c (BNode n l r) = BNode (rootb l) (getchlb c l) (getchlb c r)

getchrb :: α→ BTree β β → BTree α β
getchrb c (BLeaf n) = BLeaf c
getchrb c (BNode n l r) = BNode (rootb r) (getchrb c l) (getchrb c r)

getparentb :: β → BTree α β → BTree β β
getparentb c (BLeaf n) = BLeaf c
getparentb c (BNode n l r) = BNode c (getparentb n l) (getparentb n r)

Figure 2.4. Definition of three additional communication skeletons.
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skeletons achieve linear speedup under P ≤ O(N/ logN). For distributed-memory paral-

lel computers, we will develop an efficient implementation of the parallel tree skeletons,

and with our implementation the tree skeletons achieve linear speedup under P ≤ O(
√
N).

See Chapter 6 for more details.

From a theoretical view point, parallel tree skeletons can be defined as instances of

tree homomorphism. The mapb, reduceb, and uAccb skeletons can be defined in the form

of tree homomorphism as follows.

mapb kl kn = ([k′l, k
′
n])b

where k′l a = BLeaf (kl a)
k′n l b r = BNode l (kn b) r

reduceb k = ([id , k])b

uAccb k = ([k′l, k
′
n])b

where k′l a = BLeaf a
k′n l b r = BNode l (k (rootb l) b (rootb r)) r

The dAccb skeleton can be defined as the following higher-order tree homomorphism.

dAccb (gl, gr) c = λt.([k′l, k
′
n])b t c

where k′l a = λc′.BLeaf c′

k′n fl b fr = λc′.BNode (fl (gl c′ b)) c′ (fr (gr c′ b))

The zipwithb skeleton cannot be defined as a tree homomorphism, but we can formalize it

with tree anamorphism [97].

There is another formalization of the uAccb and dAccb skeletons based on the tree

homomorphism, which was studied by Gibbons [48] and Skillicorn [118, 119]. In the for-

malization, the uAccb is computed by gathering the subtree for each node followed by the

mapping of reduceb to each node. The dAccb is formalized in a reversed way where another

homomorphism, called path homomorphism, is introduced to formalize paths from the root

to nodes. In Chapter 9, we review the formalization of these two tree accumulations and

use them to derive parallel programs for XPath queries.

Worth noting is the application scope of the binary-tree skeletons under the conditions

for parallel implementations. Our conditions cover a wider class of tree manipulations

than those introduced by Skillicorn [118, 119] do. For algebraic tree computations our

conditions cover the same class as those studied by Abrahamson et al. [2], even though

they are specified in a different way. We show that our conditions are given in a natural

way based on flexible division of binary trees in the following chapter.

2.4.2 Specialized Binary-Tree Skeletons

The five basic parallel skeletons are general computational patterns covering a wide class

of tree manipulations. In the following, we introduce three specialized skeletons for lo-

cal communication. The formal definition of three communication skeletons is given in

Figure 2.4. These skeletons enhance the readability and efficiency of skeleton programs.
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The parallel skeleton getchlb shows an upwards communication on a binary tree where

for each node the value of an internal node is given by its left-child’s value, and the value of

each leaf is given as the argument of the getchlb skeleton. The parallel skeleton getchrb is

symmetric to the getchlb skeleton: this skeleton takes right-child’s value for each internal

node, and assigns the argument to each leaf. In fact, these two skeletons can be expressed

with the mapb and uAccb skeletons; the getchlb skeleton is given as follows.

getchlb c = mapb fst fst ◦ uAccb 〈φ,ψn, ψl, ψr〉u ◦ mapb (λa.(c, a)) id
where φ n = (True, n,−)

ψn (−, lc) (True, n,−) (−,−) = (lc, n)
ψn (−,−) (False, n, c) (−,−) = (c, n)
ψl (−, n′,−) (True, n,−) (−,−) = (False, n, n′)
ψl (−,−,−) (False, n, c) (−,−) = (False, n, c)
ψr (−, lc) (True, n,−) (−,−,−) = (False, n, lc)
ψr (−,−) (False, n, c) (−,−,−) = (False, n, c)

The parallel skeleton getparentb shows a downwards communication on a binary tree.

For each node except the root node the value of the node is given by its parent’s value,

and the value of the root node is given by the argument of the getparentb skeleton. The

getparentb skeleton can be expressed with the dAccb skeleton as follows.

getparentb c = dAccb 〈id , id , ψu, ψd〉d c
where ψu − m = m

ψd − n = n

One important advantage of the communication skeletons is that they can be imple-

mented more efficiently than composing basic binary-tree skeletons. We can implement the

communication skeletons in O(N/P ) parallel time for binary trees of N nodes on EREW

PRAMs with P processor, while the uAccb and dAccb skeletons require O(N/P + logP )

parallel time on the same parallel computation model. This improvement comes from

less dependency in the communication, i.e., in the specialized skeletons the dependency is

local.
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Chapter 3

Tree Associativity and
Ternary-Tree Representation

Associativity is one of the most important properties in parallel programming. In par-

allel programs for lists, the associativity of list concatenation enables us to divide a list

into arbitrary smaller sublists, so that the divide-and-conquer approach can be naturally

applied. Many studies have addressed themselves on formalization of parallel algorithms

based on the associativity of list concatenation [34, 60, 108, 117], and on derivation of

parallel programs by finding associative operators from sequentially defined programs for

lists [32,43].

In spite of the success of the associativity on lists, few studies have discussed the asso-

ciativity in the context of parallel programming for trees. Though tree contraction algo-

rithms, well-known parallel algorithms for efficient tree manipulations, have been studied

by many researchers, the previous studies did not clarify the basic theory of the parallelism

in tree contraction algorithms.

In this chapter we study a basic property of the parallel programming for binary trees.

The main idea in formalizing the parallelism is that the parallelism is provided by flexible

divisions of data structures. As we can see easily, a divide-and-conquer program, which

divides a binary tree at the root node into two subtrees, may be inefficient if the tree is

ill-balanced. We explain this inefficiency by the inflexible division of binary trees at the

root node.

We start by observing a flexible division of binary trees in which a tree is divided

at an arbitrary node (not only the root node), and then introduce a new ternary-tree

representation of binary trees. Based on the ternary-tree representation, we formalize a

novel property named tree associativity as relationship among ternary-tree representations.

Tree associativity provides a balanced ternary-tree structure for any ill-balanced binary

tree. It is an analogy to the associativity for parallel list computation, and provides

sufficient flexibility for arranging local manipulations in parallel.

Preliminary work of this chapter is presented in [81,82].
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We can implement each tree skeleton as a simple recursive computation on this ternary-

tree representation. Therefore, we can compute tree manipulations efficiently in parallel

on balanced ternary-tree representation of a binary tree. We furthermore develop a deter-

ministic algorithm for generating a balanced ternary tree from a given binary tree.

This chapter is organized as follows. We first review how associativity works for parallel

manipulations of lists in Section 3.1. In Section 3.2, we then examine flexible division

of binary trees that is formalized as ternary-tree representation, and formalize a new

property named tree associativity on the ternary-tree representation. In Section 3.3, we

show that tree homomorphisms can be implemented on this ternary-tree representation,

where the parallelization condition for tree skeletons is given based on tree associativity.
We develop a sequential algorithm for transforming a binary tree into a balanced ternary-

tree representation in Section 3.4. Section 3.5 discusses relations with the previous studies,

and Section 3.6 summarize this chapter.

3.1 Associativity in Parallel Programming for Lists

Associativity is one of the most important algebraic properties in parallel programming.

In particular for lists, associativity of the list concatenation, ++, enables us to divide a list

into smaller sublists, which are manipulated with associative operators in parallel. In this

section, we review how the associativity of the list concatenation works in the context of

parallel programming for lists.

One approach to implementing parallel programs is the divide-and-conquer, in which a

list is divided recursively into two smaller lists. For simplicity, let the number of elements

of the input list be a power of two, and under this condition we can divide a list into

two halves recursively. We can formalize the division of lists as a binary-tree structure

generated by function list2bt defined as follows. The resulting binary tree is a leaf-labeled

tree.

list2bt [a] = BLeaf a
list2bt (l ++ r) = BNode (list2bt l) − (list2bt r)

Function bt2list that restores the list structure from the binary-tree representation is

defined as follows.

bt2list (BLeaf a) = [a]
bt2list (BNode l − r) = bt2list l ++ bt2list r

Here equation bt2list ◦ list2bt = id holds. Figure 3.1 shows an example of the division of

a list.
Computation of divide-and-conquer parallel programs for lists can be performed along

the binary-tree representation of lists. For example, let k be a given function and ⊕ be an

associative operator, a list homomorphism

hom k (⊕) [a] = k a
hom k (⊕) (l ++ r) = (hom k (⊕) l) ⊕ (hom k (⊕) r)
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1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

=⇒

Figure 3.1. Binary-tree representation of dividing a list.

can be implemented as a tree homomorphism on the binary-tree representation as follows.

hom k (⊕) = ([kl, kn])b ◦ list2bt
where kl a = k a

kn l − r = l ⊕ r

Since the computations for two subtrees of a node are independent of each other, this
naive divide-and-conquer program on the binary-tree representation computes the list
homomorphism efficiently in parallel.

In the following, we see a parallel implementation of more involved computation for
lists called scans or prefix sums. A well-known parallel implementation of the scan was
developed by Kogge and Stone [74], and it consists of two steps. With the binary-tree
representation of lists, we can formalize the implementation of the scan as two sweeps on
the representation: the first is a bottom-up sweep, and the second is a top-down sweep.

scan (⊕) = bt2list ◦ scand ι⊕ ◦ fst ◦ scanu ◦ list2bt
where scanu (BLeaf a) = (BLeaf −, a)

scanu (BNode l − r) = let (l′, lv ) = scanu l
(r′, rv) = scanu r

in (BNode lv l′ r′, lv ⊕ rv)
scand c (BLeaf −) = c
scand c (BNode lv l r) = BNode (scand c l) − (scand (c⊕ lv) r)

The upwards function scanu returns two values: an intermediate binary tree and a value
passed to the parent. The intuitive definition of the functions scanu and scand are given
in Figure 3.2. Note that since both scanu and scand are applied to the two subtrees
independently, we can implement a parallel program of the scan in a naive divide-and-
conquer style for the binary-tree representation. The parallel algorithm computes the scan
operation in logarithmic time to the number of elements of the list because the height of
binary-tree structure is logarithmic to the number of elements.

3.2 Tree Associativity on Ternary-Tree Representation

One naive way to divide a binary tree is to divide it at the root node into two subtrees,
and based on this division we can compute tree homomorphisms in parallel in a divide-
and-conquer way. Ill-balanced tree structures, however, may spoil the parallelism, and in
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scanu a =⇒
a

lv rv
=⇒ lv

lv ⊕ rv

scand
c

=⇒ c lv

c

=⇒
c c⊕ lv

Figure 3.2. Intuitive explanation of functions scanu and scand.

the worst case the naive divide-and-conquer programs may run as slow as sequential ones.

The problem is due to insufficient freedom in dividing a tree into subtrees.

In this section we discuss another more flexible division of binary trees and formalize

the parallelism in parallel tree manipulations. We first propose to represent the division

of binary trees as a ternary-tree structure, and then formalize a novel property called tree

associativity on this ternary-tree representation.

3.2.1 Division of Binary Trees and Ternary-Tree Representation

Consider dividing a binary tree at any node instead of just the root. Let x be a node in a

binary tree, we can divide the tree at node x into the following three parts: the left subtree

of x, the right subtree of x, and the other nodes including x, as shown in Figure 3.3. We

first define two keywords terminal node and segment to discuss the division of binary trees.

Definition 3.1 (Terminal Node) We call the node at which a binary tree is divided

(e.g., x in Figure 3.3) as terminal node. �

Definition 3.2 (Segment) We call a set of consecutive nodes that appear in dividing

a binary tree as a segment. Different from a subtree, a segment may not have all the

descendants in the original binary tree. �

Note that all the segments in this thesis form binary trees.

x

Figure 3.3. Dividing a binary tree into three segments at a terminal node x.
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x y

S1

S2 S3 S4 S5

S1

S2 S3 S4 S5

=⇒

Figure 3.4. When segment S1 has two terminal nodes x and y, it has four child segments.

a

b c

d e

f g

=⇒

N

N L e

f d g b a c

Figure 3.5. Example of ternary-tree representation of a binary tree.

In principle we may divide a binary tree at any internal node, but in practice we should

impose some conditions due to the non-linear structure of the tree. As seen in Figure 3.4,

when a segment has k terminal nodes it has 2k child segments. Such a segment with more

than two children makes the handling of the global structure of segments complicated. For

the consistent handling of the global structure of segments, the global structure should

be kept to be binary through divisions, and therefore we restrict each segment to have

at most one terminal node. Under this restriction each segment has zero or two child
segments and the global structure of the segments forms a binary tree. Note that we can

obtain at least one division satisfying this restriction because dividing a tree at the root

node always satisfies the restriction.

We divide a binary tree recursively until each segment consists of one node only. Since

division of a binary tree yields three segments, we represent the recursive division of a

binary tree as a ternary tree. For each division of a segment, we insert a ternary internal

node and put the left-child segment to its left child, the parent segment to its center child,

and the right-child segment to its right child, respectively. Figure 3.5 illustrates a ternary-

tree representation of a binary tree. A leaf in the ternary-tree representation corresponds

to a node in the original binary tree, and a subtree in the ternary-tree representation
corresponds to a segment that appears during the recursive division.

The ternary-tree representation must restore the original binary-tree structure. One

naive way to achieve this is to store the information of the terminal node for each division,

for example, by embedding a pointer to the terminal node in each internal node. This

formalization, however, makes it hard to discuss the characteristics of the ternary-tree

representation due to the pointers. In this thesis, we examine another specification without
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NL R

=⇒ =⇒ =⇒

Figure 3.6. Illustrating the labels of the ternary-tree representation. A white circle
denotes the terminal node of the current division, and a dark circle denotes
the terminal node of the previous division.

pointers where we embed a label into the internal node. We embed one of the following
three labels for each internal node. Intuitive meaning of these three labels is given in
Figure 3.6.

• TNodeN (in figures, simply N): The subtree whose root node is labeled TNodeN

represents a segment with no terminal node of the previous division.

• TNodeL (in figures, simply L): The subtree whose root node is labeled TNodeL

represents a segment with a terminal node x of the previous division, and x is
included in the left child segment after dividing the segment.

• TNodeR (in figures, simply R): The subtree whose root node is labeled TNodeR

represents a segment with a terminal node x of the previous division, and x is
included in the right child segment after dividing the segment.

A terminal node corresponding to a previous division must not be included in the parent
segment after dividing the segment, since the parent segment always has a terminal node
at which the segment is divided. Because of the restriction that a segment has at most
one terminal node, the three labels cover all the cases of the ternary-tree representation.
We can find the terminal node on the ternary-tree representation by using these labels.
For a given internal node, traversing the ternary tree from its center child to the leaves by
selecting recursively left/right child at node TNodeL/TNodeR. For example, in Figure 3.5
the global binary tree is divided at node b, which is given on the ternary-tree representation
by traversing from the center child of the root node to the left.

The flexible division of binary trees yields a lot of ternary-tree representations for a
given binary tree. For example, for the binary tree with seven nodes in Figures 3.3 and
3.5, there are five possible ternary-tree representations as shown in Figure 3.7.
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Figure 3.7. All possible ternary-tree representations for a binary tree.
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TNodeN

TNodeN

TLeafL

TNodeL

TNodeR

TLeafN

TNodeN

TLeafL

TNodeL

TNodeL

TNodeR

TLeafN

TNodeL

TNodeR

TLeafN

TNodeN

TLeafL

TNodeR

TNodeN

TLeafL

TNodeL

TNodeR

TLeafN

TNodeL

TNodeR

TLeafN

Figure 3.8. The possible structures in ternary-tree representation. One of the construc-
tors is selected for each child.

We define the type of ternary-tree representation for a binary tree of type BTree α β

as follows.

data TTree α β = TLeafL α
| TLeafN β
| TNodeN (TTree α β) (TTree α β) (TTree α β)
| TNodeL (TTree α β) (TTree α β) (TTree α β)
| TNodeR (TTree α β) (TTree α β) (TTree α β)

The first two constructors denote leaves of the ternary-tree representation: TLeafL denotes

a leaf that corresponds to a leaf in the original binary tree; TLeafN denotes a leaf that

corresponds to an internal node in the original binary tree. The other three constructors

correspond to three labels of the internal nodes of the ternary-tree representation.

Not all the ternary trees of the type above represent binary trees. Since the original

binary tree has no terminal node before division, the root of a ternary tree should be

TNodeN or TLeafL . Since a new terminal node is included in the parent segment for each

division, and thus the center child of each internal node should be either TNodeL , TNodeR

or TLeafN. For an internal node labeled TNodeN, its left child segment and its right child

segment do not have any terminal node, and thus both the left child and the right child

should be either TNodeN or TLeafL . For an internal node labeled TNodeL , its left child

segment has a terminal node and thus the left child should be either TNodeL , TNodeR

or TLeafN, while the right child should be labeled TNodeN or TLeafL . A node labeled

TNodeR is symmetric to the node labeled TNodeL . In summary, the possible structures

of the ternary trees are given as shown in Figure 3.8.

For a given correct ternary-tree representation, we can restore the original binary tree

using the following function tt2bt .

tt2bt :: TTree α β → BTree α β
tt2bt t = tt2bt ′ t − −

tt2bt ′ (TLeafL a) − − = BLeaf a
tt2bt ′ (TLeafN b) x y = BNode b x y
tt2bt ′ (TNodeN l n r) − − = tt2bt ′ n (tt2bt ′ l − −) (tt2bt ′ r − −)
tt2bt ′ (TNodeL l n r) x y = tt2bt ′ n (tt2bt ′ l x y) (tt2bt ′ r − −)
tt2bt ′ (TNodeR l n r) x y = tt2bt ′ n (tt2bt ′ l − −) (tt2bt ′ r x y)
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In the definition above, the second and the third arguments of function tt2bt ′ are for the

left and the right subtrees of the terminal node. The arguments are don’t-care values for

the nodes TLeafL and TNodeN since the corresponding segments have no terminal node

by definition. Since the root node of the ternary-tree representation is either TLeafL or

TNodeN, the initial values are also don’t-care values.

We will discuss how to obtain balanced ternary-tree representations from given binary

trees in Section 3.4.

3.2.2 Tree Associativity

In parallel programming, we change the order of local computations based on the asso-

ciativity of operators to perform them in parallel. As seen in Section 3.1, associativity

of the list concatenation, ++, plays an important role in parallel programming on lists by

providing flexible division of lists. We have introduced the ternary-tree representation for

the flexible division of binary trees, and now we formalize the tree-version associativity

based on the ternary-tree representation.

On the ternary-tree representation, changing the order of local computation corre-

sponds to swapping an internal node with one of its children. As the running example,

consider a ternary tree whose root node is TNodeN and its left child is also TNodeN (Fig-

ure 3.9, left). Let a, b, c, d, and e denote subtrees, then we can denote such a tree as

follows.

TNodeN (TNodeN a b c) d e

Note that two segments corresponding to b and d have a terminal node. This ternary tree

represents a binary tree in which the root segment d has two child segments b on the left

and e on the right, and the segment b has two child segments a on the left and c on the

right (Figure 3.9, center). The ternary tree above can be obtained by the division at the

terminal node in d followed by the division at the terminal node in b. In fact, we can swap

the order of divisions for this binary tree, that is, we divide the tree at the terminal node

in b and then divide the parent segment at the terminal node in d. This division yields

the following ternary tree (Figure 3.9, right).

TNodeN a (TNodeL b d e) c

Since the two ternary trees represent the same binary tree, the following equation should

hold. We denote a ≡tt2bt b if two ternary trees a and b represent the same binary tree.

TNodeN (TNodeN a b c) d e ≡tt2bt TNodeN a (TNodeL b d e) c
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N d e
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Figure 3.9. Illustration of the equation between two ternary tree representations:
TNodeN (TNodeN a b c) d e ≡tt2bt TNodeN a (TNodeL b d e) c.

By examining the possible structures shown in Figure 3.8 in the same way, we obtain

the following five equations.

TNodeN a b (TNodeN c d e) ≡tt2bt TNodeN c (TNodeR a b d) e
TNodeL (TNodeL a b c) d e ≡tt2bt TNodeL a (TNodeL b d e) c
TNodeR a b (TNodeL c d e) ≡tt2bt TNodeL c (TNodeR a b d) e
TNodeL (TNodeR a b c) d e ≡tt2bt TNodeR a (TNodeL b d e) c
TNodeR a b (TNodeR c d e) ≡tt2bt TNodeR c (TNodeR a b d) e

We have in total six equations, which are illustrated in Figure 3.10. Note that, we do not

have equations for two forms TNodeL a b (TNodeN c d e) and TNodeR (TNodeN a b c) d e

due to the restriction that a segment must not have more than one terminal node.

The six equations represent local transformations of ternary trees. We confirm that the

local transformations have enough expressiveness by showing that for given two ternary

trees representing the same binary tree we can transform one to another using the six

equations above. Before discussing the local transformations in more details, we define a

special form of the ternary-tree representation.

Definition 3.3 (Plain Ternary-Tree Representation) A ternary tree is said to be

plain if it consists only of the constructors TLeafL , TLeafN, and TNodeN. �

In other words, a plain ternary tree is a ternary tree without constructors TNodeL and

TNodeR.

Firstly, we show the one-to-one correspondence between binary trees and plain ternary

trees.

Lemma 3.1 For a given binary tree, there is exactly one plain ternary tree that represents

the binary tree.

Proof. As stated in Section 3.2.1, the center child of an internal node must be labeled as

either TNodeL , TNodeR, or TLeafN, since the corresponding segment must have a terminal

node. Therefore, the center child of a plain ternary tree is TLeafN, which represents the

division at the root node. Since the root node is unique in a tree, there is at most one

plain ternary tree representing a binary tree.
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Figure 3.10. Illustration of the six equations of local transformations. A dot in a subtree
represents the terminal node.
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Next, we show that for any binary tree there is a corresponding plain ternary tree.
We can define function bt2plain that derives the plain ternary-tree representation from a
binary tree. The function bt2plain recursively divides a binary tree at the root node.

bt2plain (BLeaf a) = TLeafL a
bt2plain (BNode l b r) = TNodeN (bt2plain l) (TLeafN b) (bt2plain r)

This function returns a plain ternary tree since there are only three constructors TLeafL ,
TNodeN, and TLeafN in the function body. �

Secondly, we prove that we can transform a valid ternary tree into the plain ternary
tree that represents the same binary tree by applying the local transformations.

Lemma 3.2 A valid ternary tree can be transformed into a plain ternary tree by the
following two equations.

TNodeN (TNodeN a b c) d e ≡tt2bt TNodeN a (TNodeL b d e) c

TNodeN a b (TNodeN c d e) ≡tt2bt TNodeN c (TNodeR a b d) e

Proof. A single top-down algorithm with the following operations achieves the transfor-
mation to the plain ternary trees.

(a) If the root node is a leaf, do nothing.

(b) If the center child of the root node is a leaf, apply the operations to the left and the
right children of the root node.

(c) If the center child of the root node is labeled as TNodeL , apply the first equation
from right to left, and then apply the operations to the new root node again.

(d) If the center child of the root node is labeled as TNodeR, apply the second equation
from right to left, and then apply the operations to the new root node again.

Termination of the algorithm can be proved by decrease of the numbers of TNodeL and
TNodeR, and the size of the ternary tree. By the operations (c) and (d), the numbers of
TNodeL and TNodeR decrease by one, respectively. The operation (b) does not reduce
the numbers of TNodeL and TNodeR, but it reduces the size of the ternary tree. The
correctness of the algorithm follows from the correctness of the two equations. �

Given two ternary trees representing the same binary tree, we can transform one to
the other as the following lemma states.

Lemma 3.3 Given two ternary trees representing the same binary tree, one tree can be
transformed into the other by the two equations in Lemma 3.2.
Proof. By Lemma 3.1 the corresponding binary tree has a unique plain ternary tree.
By Lemma 3.2, two ternary trees can be transformed into the plain ternary tree by the
two equations. Note that the local transformations of the two equations are reversible. It
follows from these fact that the lemma holds. �
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The Lemmas 3.2 and 3.3 also point out that the first two equations suffice for transform-

ing ternary trees. In fact, among the six equations on the ternary-tree representation, the

latter four equations can be derived from the former two equations. Generalizing TNodeN,

TNodeL , and TNodeR to three functions gn, gl, gr, we obtain the following lemma.

Lemma 3.4 Let gn be a function satisfying the following proposition,

∀x, z : gn x y z = gn x y
′ z =⇒ y = y′

and gl and gr be functions satisfying the following two equations for any values a, b, c, d,

and e.

gn (gn a b c) d e = gn a (gl b d e) c
gn a b (gn c d e) = gn c (gr a b d) e

Then, the following four equations hold.

gl (gl a b c) d e = gl a (gl b d e) c
gr a b (gl c d e)= gl c (gr a b d) e
gl (gr a b c) d e= gr a (gl b d e) c
gr a b (gr c d e)= gr c (gr a b d) e

Proof. We only show the proof for the first equation of interest. We prove the equation

by transforming expression gn x (gl (gl a b c) d e) y, in which x and y are arbitrary values,

and the second argument of the function gn is the left-hand side of the equation.

gn x (gl (gl a b c) d e) y
= {first equation in assumption from right to left}
gn (gn x (gl a b c) y) d e

= {first equation in assumption from right to left applied to the second call of gn}
gn (gn (gn x a y) b c) d e

= {first equation in assumption from left to right applied to the first call of gn}
gn (gn x a y) (gl b d e) c

= {first equation in assumption from left to right}
gn x (gl a (gl b d e) c) y

The equation above holds for any values x and y, and thus the equation for the second

arguments

gl (gl a b c) d e = gl a (gl b d e) c

also holds. This is the first equation of interest.

The other three equations can be proved in the same manner. �

This lemma states that the former two equations in six equations are essential in the

transformation among ternary-tree representations. We therefore define the tree-version

associativity with the two equations as follows.
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Definition 3.4 (Tree Associativity) Three functions gn, gl, gr are called tree associa-

tive, if the following two equations hold for any a, b, c, d, and e.

gn (gn a b c) d e = gn a (gl b d e) c
gn a b (gn c d e) = gn c (gr a b d) e �

Lemma 3.5 The three constructors of the ternary-tree representation, TNodeN, TNodeL

and TNodeR, are tree associative modulo function tt2bt .

Proof. The constructors satisfy the following two equations by definition.

TNodeN (TNodeN a b c) d e ≡tt2bt TNodeN a (TNodeL b d e) c
TNodeN a b (TNodeN c d e) ≡tt2bt TNodeN c (TNodeR a b d) e

It follows from the equations above that the lemma holds.

3.3 Implementation of Tree Homomorphisms on Ternary-
Tree Representation

In this section we develop an implementation of tree homomorphisms on the ternary-tree

representation. First, we specify conditions for the implementation of tree reductions on

the ternary-tree representation, where the tree associativity plays an important role. We

then develop efficient implementations of tree accumulations. The implementations are

very similar to that of scan on the binary-tree representation of lists.

3.3.1 Conditions for Implementing Tree Homomorphisms

First, we define a natural computational pattern on the ternary-tree representation named

ternary-tree homomorphism.

Definition 3.5 (Ternary-Tree Homomorphism) Let k′l and k′n be given functions,

and g′n, g′l, g
′
r be tree associative functions. Function h′ is called ternary-tree homomor-

phism, if it is defined on ternary trees as follows.

h′ (TLeafL a) = k′l a
h′ (TLeafN b) = k′n b
h′ (TNodeN l n r) = g′n (h′ l) (h′ n) (h′ r)
h′ (TNodeL l n r) = g′l (h′ l) (h′ n) (h′ r)
h′ (TNodeR l n r) = g′r (h′ l) (h′ n) (h′ r)

We may denote a ternary-tree homomorphism as h′ = ([k′l, k
′
n, g

′
n, g

′
l, g

′
r])t. �

As we have seen in the previous section, the ternary-tree representation provides great

flexibility in terms of the order of local computations, and the flexibility supports parallel

computation on the ternary-tree representation. However, the flexibility of the ternary-tree

representation imposes some conditions on the implementation of tree homomorphisms.
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In the following, we specify the conditions for implementing tree homomorphism ([kl, kn])b
by ternary-tree homomorphism ([k′l, k

′
n, g

′
n, g

′
l, g

′
r])t.

First, the ternary-tree homomorphism simulates the tree homomorphism on the plain

ternary trees. We can formalize this condition by induction on the structure of binary

trees. For the base case, i.e., BLeaf a, the results of the tree homomorphism and the

ternary-tree homomorphism are given as follows.

([kl, kn])b (BLeaf a) = kl a

([k′l, k
′
n, g

′
n, g

′
l, g

′
r])t (bt2plain (BLeaf a)) = ([k′l, k

′
n, g

′
n, g

′
l, g

′
r])t (TLeafL a)

= k′l a

From these calculations, we have an equation kl a = k′l a. For inductive step, i.e.,

BNode l b r, the results are given as follows.

([kl, kn])b (BNode l b r) = kn (([kl, kn])b l) b (([kl, kn])b r)

([k′l, k
′
n, g

′
n, g

′
l, g

′
r])t (bt2plain (BNode l b r))

= ([k′l, k
′
n, g

′
n, g

′
l, g

′
r])t (TNodeN (bt2plain l) (TLeafN b) (bt2plain r))

= g′n (([k′l, k
′
n, g

′
n, g

′
l, g

′
r])t (bt2plain l)) (k′n b) (([k′l, k

′
n, g

′
n, g

′
l, g

′
r])t (bt2plain r))

With the induction hypothesis

([kl, kn])b x = ([k′l, k
′
n, g

′
n, g

′
l, g

′
r])t (bt2plain x)

for x = l and x = r, we obtain the following equation

kn l
′ b r′ = g′n l

′ (k′n b) r
′

where l′ and r′ denote the results of homomorphisms. Note that l′ and r′ may have any

value in the range of the tree homomorphism. The second condition is the tree associativity

on three functions g′n, g′l and g′r that is necessary by definition.

Note that these two conditions also form a sufficient condition for the implementation

of the tree homomorphism by the ternary-tree homomorphism. By Lemma 3.2, compu-

tation on any ternary-tree representation is equivalent to that on the plain ternary tree

representing the same binary-tree if the functions are tree associative. The induction above

guarantees the correctness of the ternary-tree homomorphism on the plain ternary trees.

We summarize the discussion as the following lemma.

Lemma 3.6 The necessary and sufficient condition for implementing tree homomorphism

([kl, kn])b by ternary-tree homomorphism ([k′l, k
′
n, g

′
n, g

′
l, g

′
r])t is that the functions satisfy the

following three conditions:

• for any a, k′l a = kl a holds;

• for any l and r in the range of the tree homomorphism, and for any b, g′n l (k′n b) r =

kn l b r holds;
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• g′n, g′l, and g′r are tree associative.

Proof. It follows from the discussion above that the lemma holds. �

Based on this lemma, we can specify the condition of the implementation of the reduceb

skeleton by ternary-tree homomorphisms. Note that the following condition is just what

we have given in Section 2.4.

Corollary 3.1 The reduceb skeleton called with parameter function k, reduceb k, can

be implemented by the ternary-tree homomorphism ([id , φ, ψn, ψl, ψr])t, if there exist four

functions φ, ψn, ψl and ψr satisfying the following equations.

ψn l (φ b) r = k l b r
ψn (ψn a b c) d e = ψn a (ψl b d e) c
ψn a b (ψn c d e) = ψn c (ψr a b d) e

Proof. We obtain this corollary from the fact that the reduceb skeleton is a homomor-

phism, reduceb k = ([id , k])b, and Lemma 3.6. �

It may be surprising that any given tree homomorphism can be written as a ternary-

tree homomorphism unless we care about the efficiency of the implementation. The idea

is to introduce functions as the results of local computation. Recall that a subtree of

a ternary tree represents a segment and a segment with a terminal node has two child

segments. For such a segment with two child segments, which is labeled as either TLeafN,

TNodeL , or TNodeR, we generate a binary function that takes two values from the child

segments. For readability, we denote functions as fx where subscript x may denote certain

parameter of the function.

Lemma 3.7 A tree homomorphism ([kl, kn])b can be implemented by a ternary-tree homo-

morphism ([k′l, k
′
n, g

′
n, g

′
l, g

′
r])t with the parameter functions defined as follows.

k′l a = kl a
k′n b = λx y.kn x b y
g′n l fn r = fn l r
g′l fl fn r = λx y.fn (fl x y) r
g′r l fn fr = λx y.fn l (fr x y)

Proof. We can prove this lemma by checking the equations in Lemma 3.6. The first equa-

tion holds by the definition of k′l. The second equation holds as the following calculation

shows.

g′n l (k′n b) r = {definition of k′n}
g′n l (λx y.kn x b y) r

= {definition of g′n}
(λx y.kn x b y) l r

= {reduction}
kn l b r
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Finally, tree associativity on functions g′n, g′l, and g′r can be proved by simple calcula-

tion. For example, the following calculations show that equation g′n (g′n a fb c) fd e =

g′n a (g′l fb fd e) c holds.

LHS = {definition of g′n}
g′n (fb a c) fd e

= {definition of g′n}
fd (fb a c) e

RHS = {definition of g′l}
g′n a (λx y.fd (fb x y) e) c

= {definition of g′n}
(λx y.fd (fb x y) e) a c

= {reduction}
fd (fb a c) e

We can prove the other equation, g′n a fb (g′n c fd e) = g′n c (g′r a fb fd) e, easily in the

same manner, where both sides are reduced into fb a (fd c e). �

In general new functions generated by g′l and g′r expand in terms of the size of the

function body and the computational cost. For efficient implementation of the ternary-

tree homomorphism, we attach some requirements on the size of generated functions. One

sufficient but a bit strict requirement is given as the closure property, which limits the

size of functions to a certain constant. We can find another relaxed requirement named

as uniform closure property in the discussion by Miller and Teng [101].

In the following, we demonstrate how to find a set of suitable functions of the ternary-

tree homomorphism. A systematic way to derive the set of functions is the generalization-

and-test approach, which has been studied for the derivation of parallel programs for

lists [31,43]. In this approach, we start at a functional form given by templatization of the

function for internal nodes. We then test whether it is closed under generating functions

or generalize the functional form until the form is closed.

We now show the derivation of an efficient ternary-tree homomorphism using the tree

homomorphism heightb in Section 2.2 as an example. The function heightb is a tree

homomorphism ([height l, heightn])b where the function heightn is defined as follows.

heightn l b r = 1 + (l ↑ r)

For the first step, we abstract the constant value in the function heightn to obtain the

following form

fx l r = x+ (l ↑ r)

where x denotes a value introduced by the templatization of the function heightn. Then,

we simulate the generation of functions by g′l and g′r using instances of the form. By
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substituting instances for the arguments of g′l, we obtain a new function as follows.

g′l fl fn r = {substituting instances}
λx y.(λx′ y′.l + (x′ ↑ y′)) ((λx′ y′.n+ (x′′ ↑ y′′)) x y) r

= {reduction}
λx y.(λx′ y′.l + (x′ ↑ y′)) (x ↑ y) r

= {reduction}
λx y.l + ((x ↑ y) ↑ r)

= {commutativity of ↑ and distributivity of + over ↑}
λx y.(l + r) ↑ (l + (x ↑ y))

Unfortunately, the function generated by g′l is not in the original form. Therefore,

we again abstract the function to the following form of functions. Note that the new

functional form is a generalized one of the original form.

f(a,b) = λx y.a ↑ (b+ (x ↑ y))

In this case, we can prove that the form is closed under generating functions by g′l and g′r,
as the following instantiations and calculations show.

g′l f(al,bl) f(an,bn) r

= {substituting instances}
λx y.f(an,bn) (f(al,bl) x y) r

= {unfolding two functions f(an,bn) and f(al,bl) with arithmetic rules}
λx y.an ↑ (bn + al) ↑ (bn + r) ↑ (bn + bl + (x ↑ y))

= {folding to the functional form}
λx y.f(an↑(bn+al)↑(bn+r),bn+bl) x y

g′r l f(an,bn) f(ar ,br)

= {substituting instances}
λx y.f(an,bn) l (f(ar ,br) x y)

= {unfolding two functions f(an,bn) and f(ar ,br) with arithmetic rules}
λx y.an ↑ (bn + l) ↑ (bn + ar) ↑ (bn + br + (x ↑ y))

= {folding to the functional form}
λx y.f(an↑(bn+l)↑(bn+ar),bn+br) x y

Based on these calculations, we can use the functions g′l and g′r for implementing

ternary-tree homomorphism. Noting that the functional form is preserved through the

computation of the ternary-tree homomorphism, we can simplify the definition a bit. By

substituting pair (a, b) for function f(a,b), and with Lemma 3.7, we have the following

ternary-tree homomorphism ([kl, kn, gn, gl, gr])t for the tree homomorphism heightb, where

the five functions are defined as follows.

k′l a = 1
k′n b = (−∞, 1)
g′n l (an, bn) r = an ↑ (bn + (l ↑ r))
g′l (al, bl) (an, bn) r = (an ↑ (bn + al) ↑ (bn + r), bn + bl)
g′r l (an, bn) (ar, br) = (an ↑ (bn + l) ↑ (bn + ar), bn + br)
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3.3.2 Implementation of Tree Accumulations

As seen in Section 3.1, the parallel implementation of scan consists of the bottom-up

and the top-down sweeps on the binary-tree representation of lists. In this section, we

develop implementations of the two tree accumulations in the same way on the ternary-

tree representation of binary trees.

We first extend the data structure of the ternary-tree representation to attach a value

to every internal node. We use this extended ternary tree for the intermediate data in the

implementation of the tree accumulations. Let the attached value have type γ, we define

the datatype of the extended ternary tree as follows.

data TTree′ α β γ = TLeafL′ α
| TLeafN′ β
| TNodeN′ γ (TTree′ α β γ) (TTree′ α β γ) (TTree′ α β γ)
| TNodeL′ γ (TTree′ α β γ) (TTree′ α β γ) (TTree′ α β γ)
| TNodeR′ γ (TTree′ α β γ) (TTree′ α β γ) (TTree′ α β γ)

Implementation of Upwards Accumulation

Since the uAccb skeleton applies the reduceb skeleton to each subtree, it requires the

argument function to satisfy the same condition as the reduceb skeleton for efficient parallel

implementations. Let k be a function satisfying the condition for the uAccb skeleton:

k = 〈φ,ψn, ψl, ψr〉u

with auxiliary functions φ, ψn, ψl, and ψr. Under this condition, we can implement the

uAccb skeleton by a bottom-up and a top-down sweeps on the ternary-tree representation.

The bottom-up sweep computes tree reduction and puts the intermediate result on

each internal node. Function uAccub that performs the bottom-up sweep is defined as

follows. In the definition, the return value is a pair of the intermediate tree and a value

passed to the parent. Figure 3.11 shows an intuitive illustration of the function uAccub.

uAccub 〈φ,ψn, ψl, ψr〉u (TLeafL a) = (TLeafL′ a, a)
uAccub 〈φ,ψn, ψl, ψr〉u (TLeafN b) = (TLeafN′ (φ b), φ b)
uAccub 〈φ,ψn, ψl, ψr〉u (TNodeN l n r) = let (l′, lv) = uAccub 〈φ,ψn, ψl, ψr〉u l

(n′,nv) = uAccub 〈φ,ψn, ψl, ψr〉u n
(r′, rv) = uAccub 〈φ,ψn, ψl, ψr〉u r

in (TNodeN′ (lv , rv) l′ n′ r′, ψn l n r)
uAccub 〈φ,ψn, ψl, ψr〉u (TNodeL l n r) = let (l′, lv) = uAccub 〈φ,ψn, ψl, ψr〉u l

(n′,nv) = uAccub 〈φ,ψn, ψl, ψr〉u n
(r′, rv) = uAccub 〈φ,ψn, ψl, ψr〉u r

in (TNodeL′ (lv , rv) l′ n′ r′, ψl l n r)
uAccub 〈φ,ψn, ψl, ψr〉u (TNodeR l n r) = let (l′, lv) = uAccub 〈φ,ψn, ψl, ψr〉u l

(n′,nv) = uAccub 〈φ,ψn, ψl, ψr〉u n
(r′, rv) = uAccub 〈φ,ψn, ψl, ψr〉u r

in (TNodeR′ (lv , rv) l′ n′ r′, ψr l n r)
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Figure 3.11. Illustration of the function uAccu
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Figure 3.12. Illustration of the function uAccd
b.
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After the bottom-up sweep, the top-down sweep computes the result for each node.

Function uAccdb that performs the top-down sweep is defined as follows. The accumulative

parameter is a pair of two values, which are the results of tree reductions of the two child

segments. Since the global structure has no terminal node, the accumulative parameter is

at the beginning a pair of don’t-care values. Figure 3.12 shows an intuitive illustration of

the function uAccdb.

uAccdb ψn (−,−) (TLeafL′ a) = TLeafL a

uAccdb ψn (cl, cr) (TLeafN′ b) = TLeafN (ψn cl b cr)

uAccdb ψn (−,−) (TNodeN′ (lv , rv ) l n r)
= TNodeN (uAccdb ψn (−,−) l) (uAccdb ψn (lv , rv ) n)

(uAccdb ψn (−,−) r)

uAccdb ψn (cl, cr) (TNodeL′ (lv , rv) l n r)
= TNodeL (uAccdb ψn (cl, cr) l) (uAccdb ψn (ψn cl lv cr, rv ) n)

(uAccdb ψn (−,−) r)
uAccdb ψn (cl, cr) (TNodeR′ (lv , rv) l n r)

= TNodeR (uAccdb ψn (−,−) l) (uAccdb ψn (lv , ψn cl rv cr) n)
(uAccdb ψn (cl, cr) r)

Using these two functions, we can implement the uAccb skeleton on the ternary-tree

representation.

uAccb 〈φ,ψn, ψl, ψr〉u = tt2bt ◦ uAccdb ψn (−,−) ◦ fst ◦ uAccub 〈φ,ψn, ψl, ψr〉u ◦ bt2tt

Since the computation of the uAccub and uAccdb functions is independent among the sub-

trees, the implementation can be easily parallelized by the divide-and-conquer approach.

Lemma 3.8 The upwards accumulation uAccb 〈φ,ψn, ψl, ψr〉u can be implemented in par-

allel on the ternary-tree representation.

Proof Sketch. An implementation of the upwards accumulation has been shown so far.

We therefore only need to prove the correctness of the implementation. The proof consists

of the following two parts: proving the correctness on the plain ternary trees, and verifying

the tree associativity.

First, we prove the correctness of the implementation on the plain ternary trees. We

prove the correctness by inductions on the structure of binary trees: (BLeaf a) for the

base case, and (BNode l b r) for the inductive step. Here, we need to prove the following

auxiliary proposition

rootb ◦ uAccb 〈φ,ψn, ψl, ψr〉u = snd ◦ uAccub 〈φ,ψn, ψl, ψr〉u ◦ bt2tt

in order to prove the main equation

uAccb 〈φ,ψn, ψl, ψr〉u = tt2bt ◦ uAccdb ψn ( , ) ◦ fst ◦ uAccub 〈φ,ψn, ψl, ψr〉u ◦ bt2tt .

For tree associativity, we prove the following two equations that represent the tree

associativity modulo function tt2bt . Here, the function uAcct is the core part of the
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implementation of the uAccb skeleton on ternary-tree representation, which is given as

uAcct = uAccdb ψn (−,−) ◦ fst ◦ uAccub 〈φ,ψn, ψl, ψr〉u

tt2bt (uAcct (TNodeN (TNodeN a b c) d e))
= tt2bt (uAcct (TNodeN a (TNodeL b d e) c))

tt2bt (uAcct (TNodeN a b (TNodeN c d e)))
= tt2bt (uAcct (TNodeN c (TNodeR a b d) e))

We can prove these two equations by substituting the definition of the functions tt2bt and

uAcct and unfolding the both sides of the equations. �

Implementation of Downwards Accumulation

The dAccb skeleton takes a pair of functions gl and gr. In Section 2.4, we gave the

condition for the existence of parallel implementation as (gl, gr) = 〈φl, φr, ψu, ψd〉d with

four auxiliary functions. Similar to the case of implementing tree homomorphism, we can

find such auxiliary functions for any given pair of functions if we do not care about the

efficiency.

Lemma 3.9 Let gl and gr be given functions. There exist a set of auxiliary functions φl,

φr, ψu and ψd such that the following three equations hold.

gl c n = ψd c (φl n)
gr c n = ψd c (φr n)
ψd (ψd c n) m = ψd c (ψu n m)

Proof. The following definition of the auxiliary functions satisfies the three equations

above.

φl n = λc.gl c n
φr n = λc.gr c n
ψd c fn = fn c
ψu fn fm = fm ◦ fn

We can verify the equations by simple calculations. �

Therefore, we can derive a set of auxiliary functions for efficient parallel implementations

from a form of unary functions closed under function composition.

In the following, assume (gl, gr) = 〈φl, φr, ψu, ψd〉d hold. Under this assumption, we

can implement the dAccb skeleton with a bottom-up sweep followed by a top-down sweep.

The bottom-up sweep computes the partial results from the root node to the two

children of the terminal node for each segment. Function dAccub that computes the bottom-

up sweep is defined as follows. In the computation of the function dAccub, two local results
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are put on the internal node and passed to the parent node. Figure 3.13 shows an intuitive

illustration of the function dAccub.

dAccub 〈φl, φr, ψu, ψd〉d (TLeafL a) = (TLeafL′ −, (−,−))
dAccub 〈φl, φr, ψu, ψd〉d (TLeafN b) = (TLeafN′ −, (φl b, φr b))
dAccub 〈φl, φr, ψu, ψd〉d (TNodeN l n r)

= let (l′, (−,−)) = dAccub 〈φl, φr, ψu, ψd〉d l
(n′, (nl, nr)) = dAccub 〈φl, φr, ψu, ψd〉d n
(r′, (−,−)) = dAccub 〈φl, φr, ψu, ψd〉d r

in (TNodeN′ (nl, nr) l′ n′ r′, (nl, nr))
dAccub 〈φl, φr, ψu, ψd〉d (TNodeL l n r)

= let (l′, (ll, lr)) = dAccub 〈φl, φr, ψu, ψd〉d l
(n′, (nl, nr)) = dAccub 〈φl, φr, ψu, ψd〉d n
(r′, (−,−)) = dAccub 〈φl, φr, ψu, ψd〉d r

in (TNodeL′ (nl, nr) l′ n′ r′, (ψu nl ll, ψu nl lr))
dAccub 〈φl, φr, ψu, ψd〉d (TNodeR l n r)

= let (l′, (−,−)) = dAccub 〈φl, φr, ψu, ψd〉d l
(n′, (nl, nr)) = dAccub 〈φl, φr, ψu, ψd〉d n
(r′, (rl, rr)) = dAccub 〈φl, φr, ψu, ψd〉d r

in (TNodeR′ (nl, nr) l′ n′ r′, (ψu nr rl, ψu nr rr))

After the bottom-up sweep, the top-down sweep computes the result for each node. The

following function dAccdb computes the top-down sweep. Two facts are worth noting: The

value of the accumulative parameter is the same as the value passed to the corresponding

segment, and the computations on TNodeN′, TNodeL′ , and TNodeR′ are the same except

for the constructors. Figure 3.14 shows an intuitive illustration of the function dAccdb.

dAccdb ψd c (TLeafL′ −) = TLeafL c

dAccdb ψd c (TLeafN′ −) = TLeafN c

dAccdb ψd c (TNodeN′ (nl, nr) l n r)
= TNodeN (dAccdb ψd (ψd c nl) l) (dAccdb ψd c n) (dAccdb ψd (ψd c nr) r)

dAccdb ψd c (TNodeL′ (nl, nr) l n r)
= TNodeL (dAccdb ψd (ψd c nl) l) (dAccdb ψd c n) (dAccdb ψd (ψd c nr) r)

dAccdb ψd c (TNodeR′ (nl, nr) l n r)
= TNodeR (dAccdb ψd (ψd c nl) l) (dAccdb ψd c n) (dAccdb ψd (ψd c nr) r)

Using these two functions, we can implement the dAccb skeleton on the ternary-tree

representation.

dAccb 〈φl, φr, ψu, ψd〉d c = tt2bt ◦ dAccdb ψd c ◦ fst ◦ dAccub 〈φl, φr, ψu, ψd〉d ◦ bt2tt

Since the computation of the dAccub and dAccdb functions is independent among the sub-

trees, we can easily implement the dAccb skeleton in parallel by the divide-and-conquer

approach.

Lemma 3.10 The downwards accumulation dAccb 〈φl, φr, ψu, ψd〉d can be implemented

in parallel on the ternary-tree representation.
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Proof Sketch. The implementation of the dAccb on the ternary-tree representation has

been shown so far. We therefore only need to prove the correctness of the implementation.

Similar to the proof in Lemma 3.8, the proof consists of two parts: proving the correctness

on the plain ternary trees, and verifying the tree associativity.

First, we show that the implementation is correct for the plain ternary tree, by proving

the equation

dAccb 〈φl, φr, ψu, ψd〉d c = tt2bt ◦ dAccdb ψd c ◦ fst ◦ dAccub 〈φl, φr, ψu, ψd〉d ◦ bt2tt

by induction on the structure of binary trees: (BLeaf a) for the base case, and (BNode l b r)

for the induction step. In the induction step, we use two equations gl c b = ψd c (φl n)

and gr c b = ψd c (φr n).

Then, we verify that the implementation is tree associative modulo function tt2bt . Let

dAcct be defined as

dAcct = dAccdb ψd c ◦ fst ◦ dAccub 〈φl, φr, ψu, ψd〉d ,

we prove the following two equations.

tt2bt (dAcct (TNodeN (TNodeN a b c) d e))
= tt2bt (uAcct (TNodeN a (TNodeL b d e) c))

tt2bt (dAcct (TNodeN a b (TNodeN c d e)))
= tt2bt (uAcct (TNodeN c (TNodeR a b d) e))

We use equation ψd (ψd c n) m = ψd c (ψu n m) in the calculations of the proof.

It is worth remarking that all the three equations of the condition for parallel imple-

mentations are essentially used in the proof of this lemma. �

3.4 Balanced Ternary-Tree Representation

In the previous sections we studies the basic property of tree associativity and ternary-tree

representation and developed parallel implementations of tree homomorphisms on ternary

trees. The parallel cost of the implementations developed in Section 3.3 is linear to the

height of ternary trees, and it is important to reduce the height of ternary trees for efficient

parallel implementations. In this section, we develop an algorithm for generating balanced

ternary trees. Generating balanced ternary trees can be considered as a preprocessing of

trees for efficient parallel computation.

We observed a recursive division of binary tree in Section 3.2. The recursive division

generates a ternary tree in a top-down manner since a division specifies the root of the

ternary tree. To obtain a well-balanced tree, we should find a node such that the three

segments have almost the same size. Finding such a node with small cost is, however, not

so easy.

We here develop another sequential algorithm that generates a balanced ternary-tree

in a bottom-up manner in the sense that the ternary tree is constructed from leaves. Our
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Figure 3.15. Three local merges and labels assigned.

algorithm uses the two contracting operations in the algorithm given by Abrahamson et
al. [2]. By simulating Abrahamson et al.’s algorithm, we can obtain a ternary tree with its
height at most 2 logN where N denotes the number of nodes of the input binary tree. To
study the balancing of ternary trees further, we develop a greedy algorithm and quantify
the height of generated ternary trees.

The algorithm mainly consists of two steps. First, we put label TLeafL for each leaf
node and label TLeafN for each internal node in a binary tree. Then, we iteratively merge
three adjacent nodes into one using the two contracting operation. To keep the global
shape to be binary, we merge a node and its two children if at least one child is a leaf. If
either of the children is an internal node, then the node remains to be an internal node
and will be merged again later. Therefore, this node can be considered as a terminal node
of the merged segment. Based on this observation, we assign labels in the following rules
when we merge three nodes. Figure 3.15 illustrates these local merges.

• TNodeN is assigned if both children are leaves.

• TNodeL is assigned if the left child is an internal node and the right child is a leaf.

• TNodeR is assigned if the right child is an internal node and the left child is a leaf.

We obtain a ternary tree by applying these merges repeatedly until the global binary tree
consists of one node. To make the ternary tree balanced, we apply merges disjointly as
much as possible in one step of the iteration, and a greedy algorithm for transforming a
binary tree into a balanced ternary tree is given as follows.

Algorithm 3.1 (Greedy Balanced Ternary-Tree Generation)

Input: A binary tree.
Output: A balanced ternary-tree representation of the input binary tree.
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1. Put label TLeafL to each leaf and label TLeafN to each internal node.

2. Iterate the following steps 2.1 and 2.2 until the global binary tree consists of only

one leaf node.

2.1 Do nothing for each leaf.

2.2 Perform a bottom-up computation by applying one of the following rules to

each internal node.

• If either of children of an internal node has already been merged in the

bottom-up computation, then do nothing for the node.

• If no children are merged and both children are internal nodes, then do

nothing for the node.

• If no children are merged and at least either of children is a leaf, then merge

the node with two children with the labels given in Figure 3.15.

3. The ternary-tree representation is given as the value of the remaining node. �

One implementation of the algorithm is given as follows. In the following program,

function bt2tt ′ performs the one iterative step of Step 2 in the algorithm above, and

function bt2tt ′′ merges three nodes if possible. To check whether we can merge three

nodes or not, we define function bt2tt ′ to return a boolean value that represents where the

node is merged or not.

bt2tt :: BTree a b→ TTree a b
bt2tt = rootb ◦ head ◦ dropWhile (λt.sizeb t > 1) ◦

iterate (fst ◦ bt2tt ′) ◦mapb (λa.(TLeafL a)) (λb.(TLeafN b))

bt2tt ′ (BLeaf n) = (BLeaf n,False)
bt2tt ′ (BNode n l r) = let (l′,flag l) = bt2tt ′ l

(r′,flagr) = bt2tt ′ r
in if flag l ∨ flagr then (BNode n l′ r′,False)

else bt2tt ′′ n l′ r′

bt2tt ′′ n (BLeaf l) (BLeaf r) = (BLeaf (TNodeN l n r),True)
bt2tt ′′ n (BLeaf l) (BNode rn rl rr) = (BNode (TNodeR l n rn) rl rr ,True)
bt2tt ′′ n (BNode ln ll lr) (BLeaf r) = (BNode (TNodeL ln n r) ll lr ,True)
bt2tt ′′ n l′ r′ = (BNode n l′ r′,False)

In the following, we analyze the height of resulting ternary trees and the computational

time of the algorithm. First we count the number of disjoint merges in one step of the

iteration.

Lemma 3.11 Let L be the number of leaves in a binary tree, then the number of disjoint

merges in one call of bt2tt ′ is more than or equal to L/3.
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Proof. When a leaf node cannot be merged, its sibling must be an internal node and

be already merged in the call of bt2tt ′. In one merge, at most two leaves are involved.

Therefore, for one merge at most two leaves are involved in the merge, and at most one

leaf cannot be merged due to the merge. That is, let d be the number of disjoint merge,

(2 + 1) × d ≥ L holds. The lemma directly follows from the inequality. �

Let N be the number of nodes in a binary tree, then the number of leaves is (N + 1)/2,

and thus we can apply at least �(N + 1)/6	 merges disjointly. A single merge reduces the

number of nodes by two. Therefore the number of nodes becomes less than or equal to

N − �(N + 1)/3	 after one iterative step of Step 2 in the algorithm.

The height of the ternary tree is the number of iterations in Step 2, and thus we can

estimate the height of the generated balanced ternary trees by the following theorem. Note

that a binary tree with three nodes is transformed into a tree with one node at the end of

iteration.

Theorem 3.1 Let N be the number of nodes and h be the height of ternary trees generated

by function bt2tt. Then the following equation holds.

h ≤ log2(N + 1) − 2
log2 3 − 1

+ 2

Proof. Let ai be the number of node after ith iteration of function bt2tt ′. By definition,

a0 = N . The height of the generated ternary tree is given by the number of iteration of

function bt2tt ′, and thus ah−1 = 1. As stated above, at the last iteration, the number of

nodes decreases from 3 to 1, that is, ah−2 = 3 holds. At other iterations of function bt2tt ′,
the following inequality holds.

ai ≤ ai−1 −
⌈
ai−1 + 1

3

⌉
≤ 2

3
ai−1 − 1

3

By solving this recurrence inequality, we obtain

ai + 1 ≤
(

2
3

)i
(a0 + 1) ,

and substituting h − 2 for i we obtain the following inequality between the number of

nodes N and the height of ternary tree h.

3 + 1 ≤
(

2
3

)h−2

(N + 1)

Now we can solve this inequality and obtain the height of ternary tree as follows.

3 + 1 ≤
(

2
3

)h−2

(N + 1)

2 ≤ (h− 2)(1 − log2 3) + log2(N + 1)

h ≤ log2(N + 1) − 2
log2 3 − 1

+ 2
�
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Approximating log2 3 ≈ 1.585, we can estimate the height of ternary tree as 1.71 log2(N +

1) − 1.42. Compared with a simple simulation of Abrahamson et al.’s tree contraction

algorithm that generates a ternary tree of height 2 log2N , our algorithm generates better-

balanced ternary trees.

We then analyze the computational cost of the greedy balanced ternary-tree generation.

The main part of the algorithm is Step 2, which consists of iteration of function bt2tt ′.
From Lemma 3.11 the number of nodes decreases to less than two thirds of the original

number of nodes. Therefore, the computational cost of the algorithm is given as the

following lemma says.

Lemma 3.12 Let N be the number of nodes in an input binary tree. The computational

cost of the function bt2tt is O(N).

Proof. We can compute Step 1 by traversing the input binary tree once, which takes

linear time to the size of the binary tree. The function bt2tt ′ also traverses a binary tree

once. After one application of function bt2tt ′ reduces the number of nodes into less than

two thirds of the original number of nodes. Therefore, we can estimate the number of

nodes traversed in Step 2 as

N +
2
3
N +

(
2
3

)2

N + · · · + 1 < N

(
1 +

2
3

+
(

2
3

)2

+ · · ·
)

= 3N .

The cost of Step 3 is obviously constant.

In summary, the computational cost of the algorithm is linear to the number of nodes

of the input binary trees. �

The balanced ternary trees guarantee the efficiency of the tree homomorphisms and

the tree accumulations implemented by a simple divide-and-conquer on ternary trees as

shown in Section 3.3. We conclude this section with the following theorem that states the

cost of parallel programs implemented based on this ternary-tree representation.

Theorem 3.2 Let N be the number of nodes of a binary tree. The tree homomorphisms

and the tree accumulations can be executed in parallel in O(logN) parallel time, after

preprocessing of O(N) sequential time.

Proof. It follows from Theorem 3.1 and Lemma 3.12. �

3.5 Discussion

The basic idea to represent a (binary) tree with a balanced tree structure has been studied

so far. One of such representations is a balanced decomposition tree, where a decompo-

sition tree is generated by recursive removal of an edge from a tree. There are many

applications on this decomposition tree, especially in computational geometry [27]. There

are also studies for deriving such a decomposition tree in parallel [130, 131]. The decom-

position tree is binary tree and therefore is easy to manipulate, but due to the loss of
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structural information the computation applicable on the decomposition trees is limited.

Balanced ternary-tree representation in this chapter keeps structural information of binary

trees and thus any computation can be mapped onto it if we do not matter efficiency.

In Section 3.3.2, we have shown an implementation of tree accumulations on the

ternary-tree representation. There were some studies on the parallel implementation of

the tree accumulations based on the parallel tree contraction algorithms.

Leiserson and Maggs [78] studied the parallel implementation of tree accumulations

on a model of parallel computers named distributed random access machines. Their algo-

rithms for tree accumulations are based on Miller and Reif’s tree contraction algorithm,

and they consist of the contraction phase and the expansion phase. We construct a con-

traction tree by merging two nodes recursively in the contraction phase, and then in the

expansion phase we expand the contraction tree in the reversed order to the contractions.

The contraction and expansion phase correspond to our bottom-up and top-down sweeps,

respectively.

Gibbons et al. [50] developed a parallel implementation of tree accumulations based

on Abrahamson et al’s tree contraction algorithms. The implementation also consists of

two phases where the contraction is extended with stacks. The stacks in Gibbons et al.’s

implementation correspond to the paths from leaves labeled as TLeafN to the root node.

3.6 Short Summary

In this chapter, we have defined the ternary-tree representation of binary trees and for-

malized a new property named tree-associativity on this ternary-tree representation. We

can implement tree homomorphisms and tree accumulations on the ternary-tree represen-

tation, where the implementation given in this chapter can be considered as a reformal-

ization of the existing tree-contraction based parallel algorithms. We have also developed

an algorithm that derives a balanced ternary tree from a given binary tree.

On the formalization of the ternary-tree representation, it would be interesting to study

more complicated parallel algorithms, for example, generalized tree contraction algorithms

proposed by Diks and Hagerup [41]. Developing a dynamic balancing algorithm that

guarantees the balance after insertion or deletion of nodes is an open problem.
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Chapter 4

Rose-Tree Skeletons

In many applications, we use not only binary trees but also general trees whose internal

nodes may have more than two children. We can solve the two-dimensional N -body

problem using quad-trees given by the recursive division of the field. An internal node of

XML trees may have an arbitrary number of children. In this chapter, we consider the

rose trees [96], a class of general trees of uniform elements, as the target data structure.

There have been many studies addressed on the parallel computation for binary trees.

However, there have been only a few studies for rose trees. It is not clear how we can

implement manipulations on rose trees efficiently in parallel or how we can map manipu-

lations on general trees onto the manipulations on binary trees for which we have efficient

implementations.

In this chapter we study parallel skeletons for rose trees. We formalize seven parallel

rose-tree skeletons. Five rose-tree skeletons are straightforward extensions of those on the

binary trees, and thus we can develop skeletal programs for rose trees in a similar way to

those for binary trees. Additional two rose-tree skeletons are for manipulations among the

siblings, which are essential in several algorithms for rose trees.

We implement rose-tree skeletons in parallel by using the parallel binary-tree skele-

tons. We first introduce a binary-tree representation of rose-trees, and then develop an

implementation of rose-tree skeletons one by one. We formalize a new property on a pair

of operators named extended-distributivity for the condition of parallel implementation of

rose-tree skeletons.

The organization of this chapter is as follows. In Section 4.1, we formalize a new

property held on a pair of operators by extending distributivity. In Section 4.2, we define

seven parallel skeletons for rose trees and illustrate how we can solve problems with these

rose-tree skeletons. These rose-tree skeletons can be implemented efficiently in parallel,

and we show an implementation in Section 4.3. We summarize this chapter in Section 4.4.

The contents of this chapter is based on [90], and a preliminary version appeared in [85,86,89].
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4.1 Extension of Distributive Law

In developing parallel programs, algebraic properties and rules on operators often play

important roles. Associativity is one of the most important properties in discussing parallel

computing, and many studies have clarified how we can derive and implement parallel

programs based on the associativity of one operator used in the programs. In programs

manipulating rose trees, two operators are essentially used; one among siblings and the

other between a node and its children. In this section we formalize a new property on two

operators as an extension of distributivity.

Distributivity is a well-known and important property on two operators. The distribu-

tive law together with the associative law enables us to simplify a complex expression

defined with two operators. For example, expression 6 + 7× (8 + 4× x) can be simplified

into 62 + 28 × x. It has been widely-known that first-order recurrences can be evaluated

in parallel if two operators used satisfy the associative and the distributive laws [77,112].

However, distributivity is a so strict property that there are many pairs of operators

for which distributivity does not hold. A necessary condition of distributivity is that the

two operators are defined on the same domain, but many operators in programs do not

satisfy even this condition. We propose another property on pairs of operators to discuss

derivation of parallel programs for rose trees in a general way.

In developing parallel programs we use the distributive law to simplify the given ex-

pressions as we have seen in the above. We introduce a generalized rule of distributivity

by focusing on the closure property.

Definition 4.1 (Extended Distributivity [86]) Let ⊗ be an associative operator. Op-

erator ⊗ is said to be extended-distributive over operator ⊕, if there exist functions p1, p2,

and p3 such that for any a, b, c, a′, b′, and c′, the following equation holds.

(λx.a⊕ (b⊗ x⊗ c)) ◦ (λx.a′ ⊕ (b′ ⊗ x⊗ c′)) = λx.A⊕ (B ⊗ x⊗ C)
where A = p1 (a, b, c, a′, b′, c′)

B = p2 (a, b, c, a′, b′, c′)
C = p3 (a, b, c, a′, b′, c′)

We call the functions p1, p2, and p3 characteristic functions. �

We may simplify this definition if the operator ⊗ is not only associative but also commu-

tative.

Lemma 4.1 Let ⊗ be an associative and commutative operator with its unit ι⊗. If there

exist functions p1 and p2 such that the following equation holds for any a, b, a′, and b′,
then the operator ⊗ is extended-distributive over operator ⊕.

(λx.a⊕ (b⊗ x)) ◦ (λx.a′ ⊕ (b′ ⊗ x)) = λx.A⊕ (B ⊗ x)
where A = p1 (a, b, a′, b′)

B = p2 (a, b, a′, b′)
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Proof. We can derive the characteristic functions of extended-distributivity, p′1, p
′
2, and

p′3, as follows.

p′1 (a, b, c, a′, b′, c′) = p1 (a, b⊗ c, a′, b′ ⊗ c′)
p′2 (a, b, c, a′, b′, c′) = p2 (a, b⊗ c, a′, b′ ⊗ c′)
p′3 (a, b, c, a′, b′, c′) = ι⊗ �

Although the definition of extended-distributivity is a little complicated, it has the

advantage of many applications in discussing derivation of parallel programs. In fact,

many pairs of operators satisfy extended distributivity.
Firstly, extended-distributivity can replace associativity. Consider the case where two

operators ⊕ and ⊗ are the same associative operator.

Lemma 4.2 Associative operator ⊗ with its unit ι⊗ is extended-distributive over ⊗ itself.

Proof. The characteristic functions are given as follows.

p1 (a1, b1, c1, a2, b2, c2) = a1 ⊗ b1 ⊗ a2 ⊗ b2
p2 (a1, b1, c1, a2, b2, c2) = ι⊗
p3 (a1, b1, c1, a2, b2, c2) = c2 ⊗ c1 �

Secondly, extended-distributivity is an generalization of distributivity. If a pair of

operators forms an algebraic semiring then extended-distributivity holds as well.

Lemma 4.3 Let ⊕ be an associative operator, and ⊗ be an associative operator that also

distributes over ⊕. Then, the operator ⊗ is extended distributive over ⊕.
Proof. The characteristic functions are given as follows.

p1 (a1, b1, c1, a2, b2, c2) = a1 ⊕ (b1 ⊗ a2 ⊗ c1)
p2 (a1, b1, c1, a2, b2, c2) = b1 ⊗ b2
p3 (a1, b1, c1, a2, b2, c2) = c2 ⊗ c1 �

There are many pairs of operators that satisfy the extended distributivity but not the

distributivity. One example is in serializing an XML tree to its string representation with
open and close tags [86]. Let operator ⊕ be defined as follows where s denotes a start tag,

e denotes a end tag, and t denotes serialized text of children.

(s, e) ⊕ t = s++ t++ e

We can easily see that the distributivity does not hold between ⊕ and ++ since the domains

of two arguments of ⊕ are different, i.e., a pair of string for the left and string for the
right. The extended-distributivity holds as shown in the following calculations.

(λx.(s, e) ⊕ (t1 ++ x++ t2)) ◦ (λx.(s′, e′) ⊕ (t′1 ++ x++ t′2)
= {definition of ⊕}

(λx.s++ t1 ++ x++ t2 ++ e) ◦ (λx.s′ ++ t′1 ++ x++ t′2 ++ e′)
= {unfolding}
λx.s++ t1 ++ s′ ++ t′1 ++ x++ t′2 ++ e′ ++ t2 ++ e

= {extracting s and e for the left argument of ⊕}
λx.(s, e) ⊕ ((t1 ++ s′ ++ t′1) ++ x++ (t′2 ++ e′ ++ t2))
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From the calculations above, we obtain the characteristic functions p1, p2, and p3 for the

operators ⊕ and ++ as follows.

p1 ((s, e), t1, t2, (s′, e′), t′1, t′2) = (s, e)
p2 ((s, e), t1, t2, (s′, e′), t′1, t′2) = t1 ++ s′ ++ t′1
p3 ((s, e), t1, t2, (s′, e′), t′1, t′2) = t′2 ++ e′ ++ t2

It is worth remarking that the definition of characteristic functions is not unique. Another

definition of characteristic functions is given as follows, which was shown in our previous

paper [86].

p1 ((s, e), t1, t2, (s′, e′), t′1, t′2) = (s++ t1 ++ s′ ++ t′1, t′2 ++ e′ ++ t2 ++ e)
p2 ((s, e), t1, t2, (s′, e′), t′1, t′2) = [ ]
p3 ((s, e), t1, t2, (s′, e′), t′1, t′2) = [ ]

4.2 Rose-Tree Skeletons

In this section, we formalize basic computational patterns on rose trees called rose-tree

skeletons based on the idea of constructive algorithmics [15,18,67]. The rose-tree skeletons

are given as extensions of the parallel binary-tree skeletons in Chapter 2 and the parallel

list skeletons [19,117,118].

4.2.1 Specification of Rose-Tree Skeletons

The key idea of constructive algorithmics is that the computational structure of algorithms

should be derivable from the data structures the algorithms manipulate. We have defined

rose trees in Section 2.1 in such a way that an internal node has a list of children. Therefore,

we specify computational patterns on rose trees as extensions of binary-tree skeletons with

manipulations of lists. We formalize seven skeletons on rose trees, which are categorized

into the following four groups. We denote rose-tree skeletons in the sans-serif font with a

subscript r.

• Two Node-wise computations: mapr and zipwithr

• Two Bottom-up computations: reducer and uAccr (upwards accumulate)

• One Top-down computation: dAccr (downwards accumulate)

• Two Intra-siblings computations: rAccr (rightwards accumulate) and lAccr (leftwards

accumulate)

Figure 4.1 summarizes the specification of the rose-tree skeletons defined intuitively by list

comprehension. See our technical report [89] for another specification of rose-tree skeletons

given as mutual recursive functions.
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mapr :: (α→ β) → RTree α→ RTree β
mapr k (RNode a ts) = RNode (k a) [mapr k ti | i ∈ [1..#ts ]]

zipwithr :: (α→ α′ → β) → RTree α→ RTree α′ → RTree β
zipwithr k (RNode a ts) (RNode a′ ts ′)

= RNode (k a a′) [zipwithr k ti t ′i | i ∈ [1..#ts ]]

reducer :: (α→ β → β) → (β → β → β) → RTree α→ β
reducer (⊕) (⊗) (RNode a ts) = a⊕∑⊗[reducer (⊕) (⊗) ti | i ∈ [1..#ts ]]

reduce′r :: (α→ α→ α) → (α→ α→ α) → RTree α→ α
reduce′r (⊕) (⊗) (RNode a [ ]) = a
reduce′r (⊕) (⊗) (RNode a (t : ts)) = let ts ′ = (t : ts)

in a⊕∑⊗[reduce′r (⊕) (⊗) t′i | i ∈ [1..#ts ′]]

uAccr :: (α→ β → β) → (β → β → β) → RTree α→ RTree β
uAccr (⊕) (⊗) (RNode a ts) = let a′ = reducer (⊕) (⊗) (RNode a ts)

in RNode a′ [uAccr (⊕) (⊗) ti | i ∈ [1..#ts ]]

uAcc′r :: (α→ α→ α) → (α→ α→ α) → RTree α→ RTree α
uAcc′r (⊕) (⊗) (RNode a ts) = let a′ = reduce′r (⊕) (⊗) (RNode a ts)

in RNode a′ [uAcc′r (⊕) (⊗) ti | i ∈ [1..#ts ]]

dAccr :: (β → α→ β) → β → RTree α→ RTree β
dAccr g c (RNode a ts) = RNode c [dAccr g (g c a) ti | i ∈ [1..#ts ]]

rAccr :: (α→ α→ α) → RTree α→ RTree α
rAccr (⊕) (RNode a ts) = let rs = scan (⊕) [root r ti | i ∈ [1..#ts ]]

in RNode ι⊕ [setroot r (rAccr (⊕) ti) ri | i ∈ [1..#ts ]]

lAccr :: (α→ α→ α) → RTree α→ RTree α
lAccr (⊕) (RNode a ts) = let rs = scan ′ (⊕) [root r ti | i ∈ [1..#ts ]]

in RNode ι⊕ [setroot r (lAccr (⊕) ti) ri | i ∈ [1..#ts ]]

Figure 4.1. Definition of Rose-Tree Skeletons
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Node-wise computations: map and zipwith

We define two node-wise computations in a similar way to those on binary trees. Rose-tree
skeleton mapr takes a function k and a rose tree, and applies the function to each node.
An example of the mapr skeleton is shown in Figure 4.2.

mapr :: (α→ β) → RTree α→ RTree β
mapr k (RNode a ts) = RNode (k a) [mapr k ti | i ∈ [1..#ts ]]

Rose-tree skeleton zipwithr takes a function k and two rose trees of the same shape, and
zips them up by applying the function to each pair of corresponding nodes. An example
of the zipwithr skeleton is shown in Figure 4.3.

zipwithr :: (α→ α′ → β) → RTree α→ RTree α′ → RTree β
zipwithr k (RNode a ts) (RNode a′ ts ′)

= RNode (k a a′) [zipwithr k ti t ′i | i ∈ [1..#ts ]]

Bottom-up computations: reduce and upwards accumulate

Rose-tree skeleton reducer takes two operators ⊕ and ⊗ and a rose tree, and collapses the
tree into a value in a bottom-up manner. We specify rose-tree skeleton reducer with two
operators: one for folding the list of children, and the other for merging the results of the
children into the parent. By definition, the operator ⊗ that folds the siblings must be
associative.

reducer :: (α→ β → β) → (β → β → β) → RTree α→ β
reducer (⊕) (⊗) (RNode a ts) = a⊕∑⊗[reducer (⊕) (⊗) ti | i ∈ [1..#ts ]]

To guarantee the existence of efficient parallel implementations, we impose some conditions
on the two operators. A sufficient condition is: The operator ⊗ is associative and extended
distributive over the operator ⊕.

In the definition above, we may assume that a⊕ ι⊗ = a holds for any a. However, the
equation does not hold in some cases. For example, if two operators are given as ⊕ = ×
and ⊗ = + then a× 0 = 0. For such operators, we define another rose-tree skeleton.

reduce′r :: (α→ α→ α) → (α→ α→ α) → RTree α→ α
reduce′r (⊕) (⊗) (RNode a [ ]) = a
reduce′r (⊕) (⊗) (RNode a (t : ts)) = let ts ′ = (t : ts)

in a⊕∑⊗[reduce′r (⊕) (⊗) t′i | i ∈ [1..#ts ′]]

In the definition, the reduce′r skeleton returns the value of the node for each leaf. A
sufficient condition for parallel implementation is: The operator ⊗ is associative, and the
operator ⊕ is associative and distributive over the operator ⊗. An example of the reduce′r
skeleton is shown in Figure 4.4.

We then define another bottom-up computational pattern that returns a rose tree
instead of a value. Rose-tree skeleton uAccr (upwards accumulate) takes two operators
and a rose tree, and applies the reducer skeletons for each subtree.

uAccr :: (α→ β → β) → (β → β → β) → RTree α→ RTree β
uAccr (⊕) (⊗) (RNode a ts) = let a′ = reducer (⊕) (⊗) (RNode a ts)

in RNode a′ [uAccr (⊕) (⊗) ti | i ∈ [1..#ts ]]
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Rose-tree skeleton uAcc′r is a variant that applies the reduce′r skeleton for each subtree.

uAcc′r :: (α→ α→ α) → (α→ α→ α) → RTree α→ RTree α
uAcc′r (⊕) (⊗) (RNode a ts) = let a′ = reduce′r (⊕) (⊗) (RNode a ts)

in RNode a′ [uAcc′r (⊕) (⊗) ti | i ∈ [1..#ts ]]

An example of the uAccr skeleton is shown in Figure 4.5.

These skeletons return a rose-tree of the same shape as the input. For efficient parallel

implementations the uAccr and uAcc′r skeletons require the same conditions as the reducer

and reduce′r skeletons do, respectively.

Top-down computations: downwards accumulate

Rose-tree skeleton dAccr (downwards accumulate) is a top-down computational pattern.

With an analogy to the dAccb skeleton, the dAccr skeleton takes an accumulative parameter

c and proceeds the computation in a top-down manner by updating the accumulative

parameter on each node. Since an internal node of a rose tree may have an arbitrary

number of children, it is not realistic to prepare functions for updating the accumulative

parameter individually for each children. Therefore, in our definition the dAccr skeleton

takes only one function that is uniformly used in updating accumulative parameter for all

the children. An example of the dAccr skeleton is shown in Figure 4.6.

dAccr :: (β → α→ β) → β → RTree α→ RTree β
dAccr g c (RNode a ts) = RNode c [dAccr g (g c a) ti | i ∈ [1..#ts ]]

The condition for efficient parallel implementations is the existence of auxiliary functions

φ, ψu and ψd satisfying the following two equations.

g c n = ψd c (φ n)
ψd (ψd c n) m = ψd c (ψu n m)

This definition is rather simple, but we show that we can obtain enough expressiveness

for top-down computations with the following intra-sibling computations.

Intra-siblings computations: rightwards accumulate and leftwards accumulate

The five rose-tree skeletons above are extensions of the five binary-tree skeletons. We add

two skeletons that are specific to rose trees.

Rose-tree skeleton rAccr (rightwards accumulate) takes an associative operator ⊕ and

a rose tree, and applies the scan operation to each list of siblings. An example of the rAccr

skeleton is shown in Figure 4.7.

rAccr :: (α→ α→ α) → RTree α→ RTree α
rAccr (⊕) (RNode a ts) = let rs = scan (⊕) [root r ti | i ∈ [1..#ts ]]

in RNode ι⊕ [setroot r (rAccr (⊕) ti) ri | i ∈ [1..#ts ]]

Here, ri denotes the ith element of the list rs .
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5

4 6 3

1 7 2

10

8 12 6

2 14 4

=⇒
mapr (2×)

Figure 4.2. An example of the mapr skeleton. This example computes the doubled value
for each node.
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4 6 3

1 7 2

1

4 3 7

2 5 6

4

0 3 −4

−1 2 −4

=⇒
zipwithr (−)

Figure 4.3. An example of the zipwithr skeleton. This example computes the difference
for each pair of corresponding nodes.

5

4 6 3

1 7 2

16=⇒
reduce′r (+) (↑)

Figure 4.4. An example of the reduce′r skeleton. This example computes the maximum
among sums of values on paths from the root.

5

4 6 3

1 7 2

16

11 6 5

1 7 2

=⇒
uAcc′r (+) (↑)

Figure 4.5. An example of the uAcc′r skeleton. This example uses the same operators as
the example of the reduce′r skeleton.
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5

4 6 3

1 7 2

0

5 5 5

9 9 8

=⇒
dAccr (+) 0

Figure 4.6. An example of the dAccr skeleton. This example computes for each node
the sum from the root node to the parent node.

5

4 6 3

1 7 2

0

0 4 10

0 1 0

=⇒
rAccr (+)

Figure 4.7. An example of the lAccr skeleton. This example computes accumulated sums
from left to right for each set of siblings.

5

4 6 3

1 7 2

0

9 3 0

7 0 0

=⇒
lAccr (+)

Figure 4.8. An example of the rAccr skeleton. This example computes accumulated
sums from left to right for each set of siblings.
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Rose-tree skeleton lAccr (leftwards accumulate) is symmetric to the rAccr skeleton.

This skeleton applies the reversed scan operation to each list of siblings. An example of

the lAccr skeleton is shown in Figure 4.8.

lAccr :: (α→ α→ α) → RTree α→ RTree α
lAccr (⊕) (RNode a ts) = let rs = scan ′ (⊕) [root r ti | i ∈ [1..#ts ]]

in RNode ι⊕ [setroot r (lAccr (⊕) ti) ri | i ∈ [1..#ts ]]

4.2.2 Example: Prefix Numbering Problem on Rose Trees

To see how we can use these rose-tree skeletons for manipulating general trees, we develop

a skeletal program that solves the prefix numbering problem on rose trees. In this problem,

given a rose tree we want to assign for each node a number starting at zero in the order

of the prefix traversal.

We can give a recursive algorithm prer for the prefix numbering as follows. The

recursive algorithm is based on two facts of the prefix numbering. The value of a leftmost

child is larger by one than that of its parent. The value of one child is larger than its left

sibling by the size of the left-sibling’s subtree. Auxiliary function sizer counts the number

of nodes in the given rose tree.

prer t = pre ′
r 0 t

pre ′
r c (RNode a ts) = RNode c [pre ′

r (c+ 1 + li) ti | i ∈ [1..#ts ]]
where li =

∑
+[sizer tj | j ∈ [1..i − 1]]

sizer (RNode a ts) = 1 +
∑

+[sizer ti | i ∈ [1..#ts ]]

The recursive program is very similar to the recursive program for the prefix numbering

of binary trees. A difference is that the accumulative parameter c is updated by a value

li, which is computed from the values of left siblings. Note that we can compute the value

for each node by the rAccr skeleton.

From the recursive program above, we can give the following skeletal program that

consists of three steps. We first compute the result of the sizer function for each node

using the mapr and uAccr skeletons. We then apply the rAccr skeleton to accumulate

the results from left to right among each list of siblings. Finally, we compute the prefix

numbering by a top-down computation with the mapr, dAccr, and zipwithr skeletons.

prer t = let st = uAccr (+) (+) (mapr (λx.1) t)
lt = rAccr (+) st

in zipwithr (+) (dAccr (+) 0 (mapr (1+) lt)) lt

Since the operator used in the program is +, we can easily verify that the conditions for

efficient parallel implementations are satisfied.

In section 5.1 we will give a systematic method of deriving skeletal programs from

recursive functions.
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4.3 Parallelizing Rose-Tree Skeletons with Binary-Tree

Skeletons

In this section, we develop a parallel implementation of the rose-tree skeletons. The main

idea is that we implement the rose-tree skeletons with the parallel binary-tree skeletons

on a binary-tree representation of rose-trees. Since we can implement the binary-tree

skeletons efficiently in parallel, our implementation of the rose-tree skeletons also run

efficiently in parallel.

4.3.1 Binary-Tree Representation of Rose Trees

Many researchers have studied parallel manipulations of binary trees based on tree con-

traction algorithms [2, 8, 95, 98], and we have shown a novel implementation of tree ma-

nipulations on ternary-tree representation in Chapter 3. We can utilize these parallel

implementations, if we represent rose trees in the form of binary trees.

Here, we adopt a binary-tree representation of rose trees shown in Figure 4.9. This

binary-tree representation is a widely-used one in sequential programming [36] especially

for manipulating XML trees, but it has been rarely used for parallel programming. There

are other binary-tree representations of rose trees [2,35,89,119]. In this binary-tree repre-

sentation, every internal node comes from a node in the original rose tree, and all leaves

are dummy nodes. The left child of a node in the binary-tree representation indicates the

leftmost child in the rose tree; the right child of a node in the binary-tree representation

indicates the next right sibling in the rose tree.

To formalize the binary-tree representation, we define function rt2bt to transform a

rose tree into its binary-tree representation. This function uses auxiliary functions that

transform a forest (a list of rose trees) into a binary tree. Note that the dummy value on

a leaf is given by a don’t-care value − in the following function.

rt2bt :: RTree α→ BTree − α
rt2bt t = rt2bt ′ t [ ]

rt2bt ′ (RNode a ts) ss = BNode (rt2bt ′′ ts) a (rt2bt ′′ ss)

rt2bt ′′ [ ] = BLeaf −
rt2bt ′′ (t : ts) = rt2bt ′ t ts

The inverse function bt2rt , which restores a rose tree from its binary-tree representation,

is defined as follows. The auxiliary function bt2rt transforms a binary tree to a forest, and

we pick the resulting rose tree out by function head . The value of a leaf is omitted.

bt2rt :: BTree − α→ RTree α
bt2rt t = head (bt2rt ′ t)

bt2rt ′ (BNode l b r) = (RNode b (bt2rt ′ l)) : bt2rt ′ r
bt2rt ′ (BLeaf −) = [ ]
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1 7 2

5

4

6

3

1

7

2

=⇒
rt2bt

⇐=
bt2rt

Figure 4.9. Binary-tree representation of rose trees.

Here, bt2rt ◦ rt2bt = id always holds, but rt2bt ◦ bt2rt may change the values of dummy
nodes. It is worth noting that if we ignore the values of dummy nodes then we can treat
the composition rt2bt ◦ bt2rt as the identity function.

We remark on the size of the binary-tree representation.

Lemma 4.4 Let N be the number of nodes of the original rose tree, then the number of
nodes in the binary-tree representation is 2N + 1.
Proof. All the internal nodes in the binary-tree representation correspond to the nodes
in the rose tree. In general, the number of leaves is given by the number of internal nodes
plus one. It follows from these facts that the lemma holds. �

This lemma guarantees the asymptotic cost with respect to the size of rose trees when we
utilize parallel binary-tree skeletons on the binary-tree representation.

In the following sections, we implement the rose-tree skeletons on the binary-tree rep-
resentation using parallel binary-tree skeletons. Generally speaking, our implementation
of a rose-tree skeleton consists of three steps: firstly function rt2bt transforms a rose tree
to its binary-tree representation; then we apply binary-tree skeletons to the binary-tree
representation; and finally function bt2rt restores the rose-tree structure if necessary. Note
that if two rose-tree skeletons are called successively we can remove the transformations
from and to the binary-tree representation.

4.3.2 Parallelizing Node-wise Computations

Since every node in a rose tree is an internal node in the binary-tree representation and
there are no dependencies in the computation of the mapr skeleton, we implement the
mapr skeleton by simply using the mapb skeleton to apply the function to each internal
node. Here, we do not care about the parameter function for leaves.

mapr k = bt2rt ◦ (mapb − k) ◦ rt2bt

Similarly, we implement the zipwithr skeleton using the zipwithb skeleton.

zipwithr k t t
′ = bt2rt (zipwithb − k (rt2bt t) (rt2bt t′))
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4.3.3 Parallelizing Bottom-up Computations

The bottom-up computation on a rose tree can be mapped to a bottom-up computation

on the binary-tree representation. We implement the reducer skeleton using the mapb and

reduceb skeletons as follows.

reducer (⊕) (⊗) = (reduceb k) ◦ (mapb (λx.ι⊗) id) ◦ rt2bt
where k l b r = (b⊕ l)⊗ r

Note that we do not apply the bt2rt function since the reducer skeleton returns a value

that is not a tree.

For the parallel implementation, the function k above should satisfy the condition of

the reduceb skeleton. As stated in Lemma 3.7, we can always derive functions for parallel

implementation of the reduceb skeleton if we do not care about the cost. In the following

we show that we can implement the reducer skeleton efficiently in parallel.

Sufficient conditions for an efficient implementation are the following two: the operator

⊗ is associative and extended-distributive over ⊕ with its unit ι⊗, and the operator ⊕ has

the left unit ι⊕. Let p1, p2, and p3 be the characteristic functions of the extended-extended

distributivity. For the function k of the reduceb skeleton, we choose the following form of

functions defined with four parameters.

f(a,b,c,d) = λx y.a⊕ (b⊗ (c⊕ x) ⊗ y ⊗ d)

We can confirm that this functional form is closed through tree contractions as the

following calculations show.

φ n = λx y.(n⊕ x) ⊗ y
= {introducing units ι⊕ and ι⊗}
λx y.ι⊕ ⊕ (ι⊗ ⊗ (n⊕ x) ⊗ y ⊗ ι⊗)

= {folding to the functional form}
f(ι⊕,ι⊗,n,ι⊕)

ψl f(al,bl,cl,dl) f(an,bn,cn,dn) r

= {unfolding functions}
λx y.an ⊕ (bn ⊗ (cn ⊕ (al ⊕ (bl ⊗ (cl ⊕ x) ⊗ y ⊗ dl))) ⊗ r ⊗ d)

= {folding to the form of extended distributivity}
λx y.((λz.an ⊕ (bn ⊗ z ⊗ (r ⊗ d))) ◦ (λz.cn ⊕ (ι⊗ ⊗ z ⊗ ι⊗))

◦ (λz.al ⊕ (bl ⊗ z ⊗ dl))) ((cl ⊕ x) ⊗ y)
= {extended distributivity}
λx y.(λz.a′ ⊕ (b′ ⊗ z ⊗ c′)) ((cl ⊕ x) ⊗ y)
where (a′, b′, c′) = (p1 � p2 � p3) (an, bn, (r ⊗ d), a′′, b′′, c′′)

(a′′, b′′, c′′) = (p1 � p2 � p3) (cn, ι⊗, ι⊗, al, bl, dl)
= {unfolding and folding to the functional form}
λx y.f(a′,b′,cl,c′) x y
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ψr l f(an,bn,cn,dn) f(ar ,br ,cr,dr)

= {unfolding functions}
λx y.an ⊕ (bn ⊗ (cn ⊕ l) ⊗ (ar ⊕ (br ⊗ (cr ⊕ x) ⊗ y ⊗ dr)) ⊗ dn)

= {folding to the form of extended distributivity}
λx y.((λz.an ⊕ ((bn ⊗ (cn ⊕ l)) ⊗ z ⊗ dn)) ◦ (λz.ar ⊕ (br ⊗ z ⊗ dr)))

((cr ⊗ x) ⊗ y)
= {extended distributivity}
λx y.(λz.a′ ⊕ (b′ ⊗ z ⊗ c′)) ((cr ⊗ x) ⊗ y)
where (a′, b′, c′) = (p1 � p2 � p3) (an, bn ⊗ (cn ⊕ l), dn, ar, br, dr)

= {unfolding and folding to the functional form}
λx y.f(a′,b′,cr,c′) x y

Based on the calculations above, we can derive the auxiliary functions for the reduceb

skeleton. Therefore, parallel implementation of the reducer skeleton is given as follows.

reducer (⊕) (⊗)
= (reduceb 〈φ,ψn, ψl, ψr〉u) ◦ (mapb (λx.ι⊗) id) ◦ rt2bt

where φ n = (ι⊕, ι⊗, n, ι⊕)
φn l (an, bn, cn, dn) r = an ⊕ (bn ⊗ (cn ⊕ l)⊗ r ⊗ d)
ψl (al, bl, cl, dl) (an, bn, cn, dn) r

= let (a′′, b′′, c′′) = (p1 � p2 � p3) (cn, ι⊗, ι⊗, al, bl, dl)
(a′, b′, c′) = (p1 � p2 � p3) (an, bn, (r ⊗ d), a′′, b′′, c′′)

in (a′, b′, cl, c′)
ψr l (an, bn, cn, dn) (ar, br, cr, dr)

= let (a′, b′, c′) = (p1 � p2 � p3) (an, bn ⊗ (cn ⊕ l), dn, ar, br, dr)
in (a′, b′, cr, c′)

The reduce′r skeleton deals with the leaves and the internal nodes in a different way.

Therefore, to implement the reduce′r skeleton, we mark the internal nodes whether or not

they are from leaves in the original rose tree, by using the mapb, getchlb and zipwithb

skeletons. We implement the reduce′r skeleton as follows.

reduce′r (⊕) (⊗) t = let bt = rt2bt t
mt = getchlb − (mapb (λx.True) (λx.False) t)

in reduceb k (zipwithb (λx y.ι⊗) (, ) mt bt)
where k l (True, n) r = n⊗ r

k l (False, n) r = (n⊕ l) ⊗ r

For the parallel implementation of the reduce′r skeleton, a sufficient condition is: the

operator ⊕ is associative with its unit ι⊕ and distributive over ⊗, and the operator ⊗ is

associative with its unit ι⊗. Under this condition, we have ι⊗⊕a = ι⊗ for any a. With this

fact, we design the functional form for a parallel implementation of the reduceb skeleton

as follows.

f(a,b,c,d) = λx y.a⊗ (b⊕ x)⊗ (c⊕ x)⊗ d
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We confirm that this form is closed through tree contractions by the following calcu-

lations.

φ (True, n) = λx y.n⊗ y
= {introducing units ι⊕ and ι⊗}
λx y.n⊗ (ι⊗ ⊕ x) ⊗ (ι⊕ ⊕ y) ⊗ ι⊗

= {folding to the functional form}
f(n,ι⊗,ι⊕,ι⊗)

φ (False, n) = λx y.(n⊕ x) ⊗ y
= {introducing units ι⊕ and ι⊗}
λx y.ι⊗ ⊗ (n ⊕ x) ⊗ (ι⊕ ⊕ y)⊗ ι⊗

= {folding to the functional form}
f(ι⊗,n,ι⊕,ι⊗)

ψl f(al,bl,cl,dl) f(an,bn,cn,dn) r

= {unfolding functions}
λx y.an ⊗ (bn ⊕ (al ⊗ (bl ⊕ x) ⊗ (cl ⊕ y)⊗ dl)) ⊗ (cn ⊕ r)⊗ dn

= {the associative law and the distributive law}
λx y.(an ⊗ (bn ⊕ al)) ⊗ ((bn ⊕ bl) ⊕ x)⊗ ((bn ⊕ cl)⊕ y)

⊗((bn ⊕ dl) ⊗ (cn ⊕ r)⊗ dn)
= {folding to the functional form}
f(an⊗(bn⊕al), bn⊕bl, bn⊕cl, (bn⊕dl)⊗(cn⊕r)⊗dn)

ψr l f(an,bn,cn,dn) f(ar ,br ,cr,dr)

= {unfolding functions}
λx y.an ⊗ (bn ⊕ l) ⊗ (cn ⊕ (ar ⊗ (br ⊕ x) ⊗ (cr ⊕ y)⊗ dr)) ⊗ dn

= {the associative law and the distributive law}
λx y.(an ⊗ (bn ⊕ l)⊗ (cn ⊕ ar)) ⊗ ((cn ⊕ br)⊕ x) ⊗ ((cn ⊕ cr) ⊕ y)

⊗((cn ⊕ dr)⊗ dn)
= {folding to the functional form}
f(an⊗(bn⊕l)⊗(cn⊕ar), cn⊕br , cn⊕cr, (cn⊕dr)⊗dn)

Based on the calculations above, we can implement the reduce′r skeleton efficiently in

parallel.

reduce′r (⊕) (⊗) t
= let bt = rt2bt t

mt = getchlb − (mapb (λx.True) (λx.False) t)
in reduceb 〈φ,ψn, ψl, ψr〉u (zipwithb (λx y.ι⊗) (, ) mt bt)
where φ (True, n) = (n, ι⊗, ι⊕, ι⊗)

φ (False, n) = (ι⊗, n, ι⊕, ι⊗)
ψn l (an, bn, cn, dn) r = an ⊗ (bn ⊕ l) ⊗ (cn ⊕ r)⊗ d
ψl (al, bl, cl, dl) (an, bn, cn, dn) r

= (an ⊗ (bn ⊕ al), bn ⊕ bl, bn ⊕ cl, (bn ⊕ dl) ⊗ (cn ⊕ r)⊗ dn)
ψr l (an, bn, cn, dn) (ar, br, cr, dr)

= (an ⊗ (bn ⊕ l) ⊗ (cn ⊕ ar), cn ⊕ br, cn ⊕ cr, (cn ⊕ dr) ⊗ dn)

Now we turn to develop parallel implementations of the uAccr and uAcc′r skeletons.

Since the uAccr skeleton is similar to the reducer skeleton, first let us consider applying
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5⊕((4⊕(1⊗7))⊗6⊗(3⊕2))

(4⊕(1⊗7))⊗6⊗(3⊕2) 6⊗(3⊕2) 3⊕2

1⊗7 7 2

5⊕((4⊕(1⊗7))⊗6⊗(3⊕2))

4⊕(1⊗7) 6 3⊕2

1 7 2

Figure 4.10. Left: the result of bt2rt◦(uAccb (λb l r.(b⊕l)⊗r))◦(mapb (λx.ι⊗) id)◦rt2bt .
Right: the desired result for uAccr (⊕) (⊗).

the uAccb skeleton instead of the reduceb skeleton. In the following program, let t be a

input rose tree, ⊕ and ⊗ be operators passed to the uAccr skeleton.

bt ′ = uAccb k (mapb (λx.ι⊗) id (rt2bt t))
where k l b r = (b⊕ l)⊗ r

Unfortunately, the result is not what we want for the uAccr skeleton as shown in

Figure 4.10. Since in the binary-tree representation an internal node has a right-child that

was the next right sibling in the original rose tree, the result value includes the siblings’

values. We need to compute again the desired result for each internal node from the

original value and the value of left child in bt ′. We can implement this computation using

the zipwithb and getchlb skeletons.

bt ′′ = zipwithb − (⊕) bt (getchlb − bt ′)

Therefore, an implementation of the uAccr skeleton on the binary-tree representation

is given as follows. Note that the condition and the four auxiliary functions for the uAccb

skeleton, φ, ψn, ψl, and ψr, are the same as those derived for implementing the reducer

skeleton.

uAccr (⊕) (⊗) t = let bt = rt2bt t
bt ′ = uAccb 〈φ,ψn, ψl, ψr〉u (mapb (λx.ι⊗) id bt)

in bt2rt (zipwithb − (⊕) bt (getchlb − bt ′))

Similarly, the uAcc′r can be implemented based on the implementation of the reduce′r
skeleton. An implementation of the uAcc′r skeleton is given as follows, where the auxiliary

functions φ, ψn, ψl and ψr are those derived for the implementation of the reduce′r skeleton.

uAcc′r (⊕) (⊗) t = let bt = rt2bt t
mt = getchlb − (mapb (λx.True) (λx.False) t)
bt ′ = uAccb 〈φ,ψn, ψl, ψr〉u (zipwithb (λx y.ι⊗) (, ) mt bt)

in bt2rt (zipwithb − (�) (zipwithb − (, ) mt bt) bt ′)
where (True, n) � l = n

(False, n) � l = n⊕ l
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4.3.4 Parallelizing Top-down Computations

The top-down computation on rose trees can be mapped to a top-down computation on

the binary-tree representation. We thus implement the dAccr skeleton using the dAccb

skeleton as follows.

dAccr g c = bt2rt ◦ dAccb gl gr c ◦ rt2bt
where gl c n = g c n

gr c n = c

The parameter functions gl and gr require some conditions for efficient parallel imple-

mentations. In the following, we show that we can define the auxiliary functions under

the sufficient condition introduced in the specification. Let φ, ψd, and ψu be functions

satisfying the following equations with g.

g c n = ψd c (φ n)
ψd (ψd c n) m = ψd c (ψu n m)

We consider the following form of functions defined with two parameters. The True

case corresponds to the function gl and the False case corresponds to the function gr.

f(True,n) = λc.ψd c n

f(False,−) = λc.c

We can confirm that the functional form is closed under function composition. In the

following calculations, function ψ′
u is one of the auxiliary functions for the dAccb skeleton.

ψ′
u f(True,n) f(True,m) = λc.ψd (ψd c n) m

= {the second equation of the condition from left to right}
λc.ψd c (ψu n m)

= {folding to the functional form}
f(True,ψu n m)

ψ′
u f(False,−) f(True,m) = λc.ψd c m = f(True,m)

ψ′
u f(True,n) f(False,−) = λc.ψd c n = f(True,n)

ψ′
u f(False,−) f(False,−) = λc.c = f(False,−)

Based on the calculations so far, we can derive the auxiliary functions for the dAccb

skeleton and obtain the following parallel implementation of the dAccr skeleton.

dAccr g c = bt2rt ◦ dAccb 〈φ′l, φ′r, ψ′
u, ψ

′
d〉d c ◦ rt2bt

where φ′l n = (True, φ n)
φ′r n = (False,−)
ψ′
d c (True, n) = ψd c n
ψ′
d c (False, n) = c
ψ′
u (True, n) (True,m) = (True, ψu n m)
ψ′
u (False,−) (True,m) = (True,m)
ψ′
u (True, n) (False,−) = (True, n)
ψ′
u (False,−) (False,−) = (False,−)
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4.3.5 Parallelizing Intra-Siblings Computations

The skeleton rAccr traverses each list of siblings from left to right on rose trees. This

traversal corresponds to a top-down one on the binary-tree representation. We can im-

plement the rAccr skeleton using the dAccb skeleton as follows. In the computation of the

dAccb skeleton, we update the accumulative parameter using the operator passed to the

rAccr skeleton for the right child, and reset the accumulative parameter to the unit for the

left child.

rAccr (⊕) = bt2rt ◦ (dAccb gl gr ι⊕) ◦ rt2bt
where gl c n = ι⊕

gr c n = c⊕ n

We derive the auxiliary functions for the parallel implementation of the dAccb skeleton

based on the associativity of the operator ⊕. We consider the following form of functions

defined with two parameters. The True case corresponds to the function gl, and the False

case corresponds to the function gr.

f(True,n) = λc.n

f(False,n) = λc.c⊕ n

We can confirm that the functional form is closed under function composition as the

following calculations show. Function ψu is one of the auxiliary functions for the dAccb

skeleton.

ψu f(True,n) f(True,m) = λc.m = f(True,m)

ψu f(True,n) f(False,m) = λc.n ⊕m = f(True,n⊕m)

ψu f(False,n) f(True,m) = λc.m = f(True,m)

ψu f(False,n) f(False,m) = λc.c⊕ n⊕m = f(False,n⊕m)

Based on this functional form, we obtain the following parallel implementation of the

rAccr skeleton.

rAccr (⊕) = bt2rt ◦ dAccb 〈φl, φr, ψu, ψd〉d ι⊕ ◦ rt2bt
where φl n = (True, n)

φr n = (False, n)
ψu (True, n) (True,m) = (True,m)
ψu (True, n) (False,m) = (True, n⊕m)
ψu (False, n) (True,m) = (True,m)
ψu (False, n) (False,m) = (False, n⊕m)
ψd c (True, n) = n
ψd c (False, n) = c⊕ n

The skeleton lAccr traverses each list of siblings from right to left. This traversal

corresponds to a bottom-up one on the binary-tree representation. Therefore, an imple-

mentation of the lAccr skeleton should be given with the uAccb skeleton. We first consider

the following definition with the uAccb and mapb skeletons.

bt2rt ◦ (uAccb k) ◦ (mapb (λx.ι⊕) id) ◦ rt2bt
where k l b r = b⊕ r
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5

4⊕6⊕3 6⊕3 3

1⊕7 7 2

ι⊕

6⊕3 3 ι⊕

7 ι⊕ ι⊕

Figure 4.11. Left: the result of bt2rt ◦ (uAccb (λb l r.b⊕ r)) ◦ (mapb (λx.ι⊗) id) ◦ rt2bt .
Right: the desired result for lAccr (⊕) (⊗).

The results of this computation are slightly different from what we want for the lAccr

skeleton: the results should be shifted to the left by one on the rose tree as shown in
Figure 4.11. We resolve this inconsistency by applying the getchrb skeleton to the result
before restoring the rose-tree structure, and we obtain an implementation of the lAccr

skeleton as follows.
lAccr (⊕) = bt2rt ◦ (getchrb −) ◦ (uAccb k) ◦ (mapb (λx.ι⊗) id) ◦ rt2bt

where k l b r = b⊕ r

Next, we derive the auxiliary functions for the parallel implementation of the uAccb

skeleton. We introduce the following form of functions defined with two parameters.

f(True,a) = λl r.a⊕ r

f(False,a) = λl r.a

We can confirm that the functional form is closed through the computation of tree con-
traction algorithms as the following calculations show.

ψl f(−,−) f(True,an) r = λx y.an ⊕ r = λx y.f(False,an⊕r)
ψl f(−,−) f(False,an) r = λx y.an = λx y.f(False,an)

ψr l f(True,an) f(True,ar) = λx y.an ⊕ ar ⊕ y = λx y.f(True,an⊕ar)

ψr l f(True,an) f(False,ar) = λx y.an ⊕ ar = λx y.f(False,an⊕ar)

ψr l f(False,an) f(−,−) = λx y.an = λx y.f(False,an)

Based on the functional form and the calculations above, we can derive the auxiliary
functions for the uAccb skeleton and obtain the following parallel implementation of the
lAccr skeleton.

lAccr (⊕)
= bt2rt ◦ (getchrb −) ◦ (uAccb 〈φ,ψn, ψl, ψr〉u) ◦ (mapb (λx.ι⊗) id) ◦ rt2bt

where φ n = (True, n)
ψn l (True, n) r = n⊕ r
ψn l (False, n) r = n
ψl (−,−) (True, an) r = (False, an ⊕ r)
ψl (−,−) (False, an) r = (False, an)
ψr l (True, an) (True, ar) = (True, an ⊕ ar)
ψr l (True, an) (False, ar) = (False, an ⊕ ar)
ψr l (False, an) (−,−) = (False, an)
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4.3.6 Parallel Cost of the Implementation

Now we briefly discuss the efficiency of our parallel implementation of the skeletons. We

used two functions rt2bt and bt2rt for specifying the computation on the binary-tree

representation, but we can remove these two functions away if two rose-tree skeletons are

called successively. Thus we give the parallel cost of the rose-tree skeletons without these

two functions.

Let N denote the number of nodes of the rose trees, and P the number of processors.

Here we assume the EREW PRAMs for the parallel computing model, for which we have

efficient implementation as discussed in Section 2.4. The parallel computation time of the

mapr and zipwithr skeletons are O(N/P ), and the parallel costs of the other five skeletons

are O(N/P + logP ). Note that the implementation of the rose-tree skeletons is cost

optimal, and it achieves linear speedups under the condition of P ≤ N/ logN .

We may develop more involved implementations of the rose-tree skeletons by removing

unnecessary intermediate structures and optimizing sequential parts. To develop such an

implementation is our future work, and we believe the fusion transformations [51,126] are

useful for this optimization.

We summarize this section with the following theorem.

Theorem 4.1 The seven parallel skeletons for rose trees defined in Figure 4.1 can be

implemented in parallel based on the binary-tree representation with the parallel binary-

tree skeletons.

Proof. The correctness of the implementation of the rose-tree skeletons is almost self-

evident from the derivation so far. �

4.4 Short Summary

In this chapter we have formalized a set of parallel skeletons for rose trees, and shown

their parallel implementation. The rose-tree skeletons are defined based on the idea of

constructive algorithmics. Five rose-tree skeletons are straightforward extensions of five

binary-tree skeletons in Chapter 2, and two new rose-tree skeletons are introduced to

represent rose-tree specific computational patterns. We have shown that the rose-tree

skeletons can be implemented efficiently in parallel based on a binary-tree representation

of rose trees.
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Chapter 5

Theorems for Deriving Skeletal
Parallel Programs

We have defined parallel tree skeletons for binary trees in Chapter 2, and for rose trees

in Chapter 4. Each parallel skeleton provides a simple computational pattern that can be

implemented efficiently in parallel, and we can build many parallel programs manipulating

trees by composing tree skeletons with appropriate functions.

However, there is still a gap between sequential programs and skeletal parallel pro-

grams. Two problems are as follows.

• Difference of programming style: We need to develop parallel programs with par-

allel skeletons in a compositional style, whereas we develop sequential programs by

recursive functions.

• Need of auxiliary functions: We require to derive auxiliary functions that are neces-

sary to guarantee the parallel implementation of the skeletons.

These two problems let sequential programmers hesitate to develop parallel programs using

tree skeletons.

In this chapter, we bridge the gap by proposing a systematic methodology of skele-

tal programming. Our methodology mainly consists of two sets of theorems: diffusion

theorems and theorems on three algebraic properties. We first decompose a sequential

program by diffusion theorems into composition of tree skeletons. We then apply theo-

rems on algebraic properties to each call of a skeleton and derive auxiliary functions.

In Section 5.1, we develop diffusion theorems gradually on binary trees and rose trees.

In Section 5.2, we show how we can derive auxiliary functions for binary skeletons by

focusing on three algebraic properties of the operators. In Section 5.3, we illustrate our

methodology of skeletal-program development by using the party planning problem in

Introduction as the running example. We summarize this chapter in Section 5.4.

This chapter composes several results of our papers together. Section 5.1 is based on [88–90]. Sec-
tion 5.2 is an extended version of [91].
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5.1 Diffusion Theorems

We often develop programs manipulating trees as recursive functions. Since each parallel

skeleton only provides a simple computational pattern, it is not easy to decide which

parallel skeletons we should use to develop parallel programs from the recursively defined

sequential algorithms. In this section, we develop diffusion theorems that decompose

a complex recursive function into simpler ones that can be represented by parallel tree

skeletons.

5.1.1 Diffusion Theorems for Binary Trees

We first develop diffusion theorems for binary trees. This section is an extended version

of our previous paper [88].

We start by decomposing the tree homomorphism into a composition of binary-tree

skeletons. It is worth noting that the following lemma is an extension of the first homo-

morphism theorem [15] proposed for lists.

Lemma 5.1 Tree homomorphism h = ([kl, kn])b can be implemented by the mapb and

reduceb skeletons.

h = (reduceb kn) ◦ (mapb kl id)

Proof. The lemma can be easily proved by induction on the structure of binary trees. �

Many computations on trees are specified with an accumulative parameter. As an

example of such recursive functions with an accumulative parameter, we first deal with

functions in the following form.

h c (BLeaf a) = kl (a, c)
h c (BNode l b r) = kn (h (gl c b) l) (b, c) (h (gr c b) r)

The main idea for decomposing a function with an accumulative parameter into skele-

tons is to compute in advance the accumulative parameter passed to each node using the

dAccb skeleton. After computing the accumulative parameter for each node, the function

becomes a simple tree homomorphism.

h c t = let ct = zipwithb (, ) (, ) t (dAccb (gl, gr) c t)
in ([kl, kn])b ct

Now we apply Lemma 5.1 and obtain the following diffusion theorem for the decomposition

of the recursive function defined with an accumulative parameter.

Theorem 5.1 (Binary-Tree Diffusion) Let function h be defined as follows with an

accumulative parameter.

h c (BLeaf a) = kl (a, c)
h c (BNode l b r) = kn (h (gl c b) l) (b, c) (h (gr c b) r)
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This function h can be written with the binary-tree skeletons.

Proof. The decomposed skeletal program for the function h is given as follows.

h c t = let ct = zipwithb (, ) (, ) t (dAccb (gl, gr) c t)
in reduceb kn (mapb kl id ct)

The correctness of this decomposed function can be proved by induction on the structure

of binary trees. �

We can extend this diffusion theorem into paramorphic ones that has another recursive

call of tree homomorphism. In the following we consider function h defined as follows with

auxiliary tree homomorphisms h′ = ([k′l, k
′
n])b and h′′ = ([k′′l , k

′′
n])b, where tree homomor-

phism h′ is used to compute sub-results and tree homomorphism h′′ is used to update the

accumulative parameter.

h c (BLeaf a) = kl (a, c, h′ (BLeaf a))
h c (BNode l b r) = let t = BNode l b r

in kn (h (gl c (b, h′′ t)) l) (b, c, h′ t) (h (gr c (b, h′′ t) r))

A naive implementation of the function above is inefficient since it may have O(N2)

calls of functions h′ and h′′ where N denotes the number of nodes in a tree. To obtain an

efficient implementation we first apply the auxiliary functions h′ and h′′ to each node by

a bottom-up computation of the uAccb skeleton. We then apply Theorem 5.1 after this

preprocessing. The following theorem summarize the discussion so far.

Theorem 5.2 Let function h be defined as follows with auxiliary tree homomorphisms

h′ = ([k′l, k
′
n])b and h′′ = ([k′′l , k

′′
n])b.

h c (BLeaf a) = kl (a, c, h′ (BLeaf a))
h c (BNode l b r) = let t = BNode l b r

in kn (h (gl c (b, h′′ t)) l) (b, c, h′ t) (h (gr c (b, h′′ t) r))

The function h can be implemented with the binary-tree skeletons.

Proof. The skeletal implementation of the function h is given as follows.

h c t = let t′ = uAccb k
′
n (mapb k

′
l id t)

t′′ = uAccb k
′′
n (mapb k

′′
l id t)

ct = dAccb (gl, gr) c (zipwithb − (, ) t t′′)
zt = zipwithb (λa (b, c).(a, b, c)) (λa (b, c).(a, b, c))

t (zipwithb (, ) (, ) ct t′)
in reduceb kn (mapb kl id zt)

We can prove the correctness by a simple induction on the structure of binary trees. �

We can develop several variations of this theorem. Firstly, we can consider a function in

which the last tree homomorphism returns a tree rather than a simple value. In this case,

we simply use the mapb skeleton instead of the last reduceb skeleton. Secondly, functions

sometimes require the partial results of left subtree or right subtree rather than the whole
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subtree. In this case, we add a call of getchlb or getchrb after the computation of the

corresponding uAccb skeleton. Considering a variation where the last tree homomorphism

returns a tree instead of a value and the accumulative parameter is updated with the left

subtree’s value, we have the following corollary of Theorem 5.2.

Corollary 5.1 Let kl, kn, gl and gr be given functions, h′ be a tree homomorphism h′ =

([k′l, k
′
n])b. The function h defined as:

h c (BLeaf a) = BLeaf (kl (a, c))
h c (BNode l b r) = BNode (h (gl c (b, h′ l) l)) (kn (b, c)) (h (gr c (b, h′ l) l))

can be decomposed into the binary-tree skeletons.

Proof. The skeletal implementation of the function h is given as follows.

h c t = let t′ = getchlb − (uAccb k
′
n (mapb k

′
l id t))

ct = dAccb (gl, gr) c (zipwithb − (, ) t t′)
in zipwithb (λa c.kl (a, c)) (λb c.kn (b, c)) t ct

Note that the last zipwithb skeleton is fused from the zipwithb skeleton followed by the

mapbskeleton. �

To illustrate how the diffusion theorems work, we develop a skeletal program for the

prefix numbering on binary trees. The definition of recursive function pre that computes

the prefix numbering is given as follows.

preb t = pre ′
b 0 t

pre ′
b c (BLeaf a) = BLeaf a

pre ′
b c (BNode l b r) = BNode (pre ′

b (c+ 1) l) c (pre ′
b (c+ 1 + sizeb l) r)

sizeb (BLeaf a) = 1
sizeb (BNode l b r) = 1 + sizeb l + sizeb r

The function sizeb is by definition a homomorphism sizeb = ([size l, sizen])b where two

functions are defined as size l a = 1 and sizen l b r = 1 + l + r.

The definition of pre ′
b for the BNode case can be transformed into the form of Corol-

lary 5.1 by the introduction of functions kn, gl and gr.

pre ′
b c (BNode b l r) = BNode (kn (b, c)) (pre ′

b (gl c (b, sizeb l)) l)
(pre ′

b (gr c (b, sizeb l)))
where kn (b, c) = c

gl c (b, s) = c+ 1
gr c (b, s) = c+ 1 + s

Therefore, we can apply Corollary 5.1 to obtain the following skeletal program, where we

derive the skeletal program just by substituting the parameter functions kn, gl, gr, size l,

and sizen for those in the corollary.

pre ′
b c t = let t′ = getchlb − (uAccb sizen (mapb size l id t))

ct= dAccb (λc (b, s).c+ 1, λc (b, s).c+ 1 + s) c (zipwithb − (, ) t t′)
in zipwithb (λa c.c) (λb c.c) t ct
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We can optimize the generated skeletal program by removing unnecessary computation.

Since the functions gl and gr do not use the first value of the second argument, we can

remove the first zipwithb skeleton with minor changes to the functions gl and gr. Since the

two functions (λa c.c) and (λb c.c) used in the last zipwithb skeleton do not use the first

argument either, the last zipwithb skeleton can be replaced with the mapb skeleton.

pre ′
b c t = let t′ = getchlb − (uAccb sizen (mapb size l id t))

ct = dAccb (λc s.c+ 1, λc s.c+ 1 + s) c t′

in mapb (λc.c) (λc.c) ct

The last mapb is in fact equal to the identity function, and therefore we can remove it.

pre ′
b c t = let t′ = getchlb − (uAccb sizen (mapb size l id t))

in dAccb (λc s.c+ 1, λc s.c+ 1 + s) c t′

Finally, we substitute the initial value 0 of the accumulative parameter c, and succeed in

deriving the following skeletal program.

preb t = let t′ = getchlb − (uAccb sizen (mapb size l id t))
in dAccb (λc s.c+ 1, λc s.c+ 1 + s) 0 t′

5.1.2 Generalized Top-Down Computation on Rose Trees

Before developing diffusion theorems for rose trees, we generalize the dAccr skeleton for

another top-down computational pattern.

The dAccr skeleton in Chapter 4 is a top-down computation on a rose tree where the

accumulative parameter is updated only with the value of the node, and the accumulative

parameters passed to the children are the same in the dAccr skeleton. In this section, we

consider another top-down computation f modeled as follows, in which we update the

accumulative parameter for each child with the child’s value in addition to the node’s

value.

f c (RNode a ts) = RNode c [f (g c (a, root r ti)) ti | i ∈ [1..#ts ]]

Let function g satisfy the condition of the dAccr skeleton, that is, the following equations

hold for some auxiliary functions φ, ψu, and ψd.

g c (a, b) = ψd c (φ (a, b)) , and
ψd (ψd c ab) ab ′ = ψd c (ψu ab ab ′) .

What makes this general top-down computation complicated is the existence of the

function root r in the update of the accumulative parameter. We first remove the function

root r by shifting computation of the accumulative parameter to the child. We can trans-

form the function f above into the following one, in which the value of a node is passed

to the children as a part of the accumulative parameter.

f c (RNode a ts) = RNode c [f ′ (c, a) ti | i ∈ [1..#ts ]]
f ′ (c, p) (RNode a ts) = RNode (g c (p, a)) [f ′ (g c (p, a), a) ti | i ∈ [1..#ts ]]
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In the newly defined computation, the function f is applied to the root node and the

function f ′ is applied to the other nodes.

To simplify the program we introduce two values ιc and ιp such that g ιc (ιp,−) = c.

If there are no values ιc and ιp satisfying this equation, we need to extend the definition

of function g. With these two values, the function f can be simplified into the following

definition.

f c t = f ′ (ιc, ιp) t
f ′ (c, p) (RNode a ts) = RNode (g c (p, a)) [f ′ (g c (p, a), a) ti | i ∈ [1..#ts ]]

Now we implement the function f ′ with the rose-tree skeletons dAccr and zipwithr.

First we compute the accumulative parameter passed to each node by the dAccr skeleton,

and then compute the result value using the original value and the computed accumulative

value by the zipwithr skeleton.

f ′ (c, p) t = zipwithr k t (dAccr g
′ (c, p) t)

where k a (c, p) = g c (p, a)
g′ (c, p) a = (g c (p, a), a)

To prove that the implementation can be executed in parallel, we confirm that the

function g′ satisfies the condition of the dAccr skeleton. We consider the following form of

functions defined with four parameters where the True case corresponds to the definition

of g′.

f(True,a,−,−) = λ(c, p).(ψd c (φ (p, a)), a)
f(False,a,b,d) = λ(c, p).(ψd c (ψu (φ (p, a)) b), d)

The functional form is closed under function composition as the following calculations

shows.

f(True,a′,−,−) ◦ f(True,a,−,−)

= λ(c, p).(ψd (ψd c (φ (p, a))) (φ (a, a′)), a′)
= λ(c, p).(ψd c (ψu (φ (p, a)) (φ (a, a′))), a′)
= f(False,a,φ (a,a′),a′)

f(True,a′,−,−) ◦ f(False,a,b,d)

= λ(c, p).(ψd (ψd c (ψu (φ (p, a)) b)) (φ (d, a′)), a′)
= λ(c, p).(ψd (ψd (ψd c (φ (p, a))) b) (φ (d, a′)), a′)
= λ(c, p).(ψd (ψd c (φ (p, a))) (ψu b (φ (d, a′))), a′)
= λ(c, p).(ψd c (ψu (φ (p, a)) (ψu b (φ (d, a′)))), a′)
= f(False,a,ψu b (φ (d,a′)),a′)

f(False,a′,b′,d′) ◦ f(True,a,−,−)

= λ(c, p).(ψd (ψd c (φ (p, a))) (ψu (φ (a, a′)) b′), d′)
= λ(c, p).(ψd c (ψu (φ (p, a)) (ψu (φ (a, a′)) b′)), d′)
= f(False,a,ψu (φ (a,a′)) b′,d′)
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f(False,a′,b′,d′) ◦ f(False,a,b,d)

= λ(c, p).(ψd (ψd c (ψu (φ (p, a)) b)) (ψu (φ (d, a′)) b′), d′)
= λ(c, p).(ψd (ψd (ψd c (φ (p, a))) b) (ψu (φ (d, a′)) b′), d′)
= λ(c, p).(ψd (ψd c (φ (p, a))) (ψu b (ψu (φ (d, a′)) b′)), d′)
= λ(c, p).(ψd c (ψu (φ (p, a)) (ψu b (ψu (φ (d, a′)) b′))), d′)
= f(False,a,(ψu b (ψu (φ (d,a′)) b′)),d′)

Based on the calculations for function composition, we can derive the auxiliary func-

tions for the parallel implementation of the dAccr skeleton. Therefore, the skeletal program

for the general downwards accumulation can be parallelized as stated by the following

lemma.

Lemma 5.2 Let g be a given function satisfying the following equations with some auxil-

iary functions φ, ψu, and ψd.

g c (a, b) = ψd c (φ (a, b))
ψd (ψd c ab) ab ′ = ψd c (ψu ab ab ′)

Under this condition, the function f defined as

f c (RNode a ts) = RNode c [f (g c (a, root r ti)) ti | i ∈ [1..#ts ]]

can be decomposed into the rose-tree skeletons.

Proof. Let ιc and ιp be two values satisfying g ιc (ιp,−) = c. Based on the discussion

above, the skeletal program for the function f is given as follows.

f c t = zipwithr k t (dAccr g
′ (ιc, ιp) t)

where k a (c, p) = g c (p, a)
g′ (c, p) a = (g c (p, a), a)

The auxiliary functions for the parallel implementation of dAccr are given as follows.

φ′ a = (True, a,−,−)
ψ′
u (True, a,−,−) (True, a′,−,−) = (False, a, φ (a, a′), a′)
ψ′
u (False, a, b, d) (True, a′,−,−) = (False, a, ψu b (φ (d, a′)), a′)
ψ′
u (True, a,−,−) (False, a′, b′, d′) = (False, a, ψu (φ (a, a′)) b′, d′)
ψ′
u (False, a, b, d) (False, a′, b′, d′) = (Falseu (φ (d, a′)) b′)), d′)
ψ′
d (c, p) (True, a,−,−) = (ψd c (φ (p, a)), a)
ψ′
d (c, p) (False, a, b, d) = (ψd c (ψu (φ (p, a)) b), d) �

5.1.3 Diffusion Theorems for Rose Trees

In this section we develop diffusion theorems for rose trees in a similar way as we have done

for binary trees. In the definition of rose-tree skeletons, we have defined two reductions

and two upwards accumulations. In the following discussion, we deal with computational

patterns in which we apply the same computation both for internal nodes and for leaves.

First, we define the rose-tree homomorphism as a general bottom-up computation for

rose trees. Since the data structure of rose trees is defined with lists, the homomorphism

on rose trees is defined with the list homomorphism.
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Definition 5.1 (List Homomorphism) Let k be a given function and ⊕ be an asso-

ciative operator. Function h is a list homomorphism if it is defined as follows.

h [ ] = ι⊕
h [a] = k a
h (x++ y) = h′ x⊕ h′ y �

By the list comprehension notation, we can denote the list homomorphism h above as

h as =
∑

⊕[k a | i ∈ [1..#as ]].

Definition 5.2 (Rose-Tree Homomorphism) Let h′ be a list homomorphism, and k

be a function. The following function h defined with h′ is called rose-tree homomorphism.

h (RNode a ts) = k a (h′ [h ti | i ∈ [1..#ts ]])
�

The rose-tree homomorphism expresses a wide class of bottom-up computations, but

in general it is hard or impossible to derive efficient parallel programs from any of them.

Therefore, we define a subclass of rose-tree homomorphisms that can be implemented in

parallel with the parallel skeletons.

Definition 5.3 (Parallelizable Homomorphism) Let ⊕ be an operator, ⊗ be an as-

sociative operator and be extended distributive over ⊕, and k be a function. A function

h is said to be a parallelizable homomorphism if it is defined as follows

h (RNode a ts) = k a⊕
∑
⊗

[h ti | i ∈ [1..#ts ]] .

We denote the parallelizable homomorphism h defined with function k and operators ⊕
and ⊗, as h = ([k,⊕,⊗])r. �

This parallelizable homomorphism is a computational pattern generalized from the

reducer skeleton at the point that the function k is applied to all the nodes. Therefore,

we can compute the parallelizable homomorphism by the mapr skeleton followed by the

reducer skeleton.

Lemma 5.3 A parallelizable homomorphism ([k,⊕,⊗])r can be implemented in parallel

with the rose-tree skeletons.

([k,⊕,⊗])r = (reducer (⊕) (⊗)) ◦ (mapr k)

Proof. We can prove this theorem by induction on the structure of rose trees. �

It is worth noting that the theorem is an extension of the first homomorphism theorem

for list [15] and Lemma 5.1 for binary trees.

To study the expressiveness of the rose-tree skeletons further, we next consider recursive

computational patterns where the value of a node depends on not only the values of
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the descendants but also those of the ancestors. We formalize such a computational

pattern by describing the top-down dependency with an accumulative parameter c updated

by a function g, and the bottom-up computation with a parallelizable homomorphism

([k,⊕,⊗])r.

f c (RNode a ts) = k (a, c) ⊕∑⊗[f ti (g c a) | i ∈ [1..#ts ]]

We compute this function using rose-tree skeletons. We first generate a pair of the

original value and the value of the accumulative parameter for each node using the dAccr

skeleton followed by the zipwithr skeleton. We then perform the over-all bottom-up com-

putation which is exactly a parallelizable homomorphism. According to Lemma 5.3, we

obtain the following skeletal program defined with the rose-tree skeletons.

f c t = let t′ = zipwithr (, ) t (dAccr g c t)
in reducer (⊕) (⊗) (mapr k t

′)

We may simplify the program above by fusing the mapr and zipwithr skeletons,

mapr k (zipwithr (, ) t t′) = zipwithr (λa b.k (a, b)) t t′

and in summary we obtain the following theorem.

Theorem 5.3 (Rose-Tree Diffusion) Let ([k,⊕,⊗])r be a parallelizable homomorphism,

and g be a function. Function f defined as

f c (RNode a ts) = k a c⊕∑⊗[f (g c a) ti | i ∈ [1..#ts ]]

can be implemented by rose-tree skeletons.

Proof. The skeletal program for the function f is given as follows.

f c t = let ct = dAccr g t
in reducer (⊕) (⊗) (zipwithr (λa b.k (a, b)) t ct)

The correctness can be proved by induction on the structure of rose trees. �

We then extend Theorem 5.3 into a paramorphic one. Consider another computational

pattern in which the accumulative parameter is updated not only the value of the node but

also the reduced value of the subtree. Let the reduction be computed by a parallelizable

homomorphism h′ = ([k′,⊕′,⊗′])r. We formalize such a computational pattern as the

following recursive function.

f c (RNode a ts) = k (a, c) ⊕∑⊗[f c′ ti | i ∈ [1..#ts ]]
where c′ = g c (a, h′ (RNode a ts))

This function is an instance of paramorphism [97] defined on rose trees.

As we decomposed the paramorphism on binary trees, we decompose this function

into a procedure with three steps. In the first step, we preprocess the parallelizable
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homomorphism h′ with the mapr and uAccr skeletons for the whole rose tree. In the

following, we denote the input tree as t.

t′ = uAccr (⊕′) (⊗′) (mapr k
′ t)

In the second step, we compute the accumulative parameter for each node in a top-down

manner. By Lemma 5.2, we can implement this computation using the zipwithr and dAccr

skeletons.

t′′ = dAccr g (zipwithr (, ) t t′)

In the last step, we compute globally the parallelizable homomorphism using the zipwithr

and reducer skeleton.

reducer (⊕) (⊗) (zipwithr (ab.k(a, b)) t t′′)

With these three steps, we can derive a skeletal parallel program for the computational

pattern above.

Theorem 5.4 Let h′ be a parallelizable homomorphism h′ = ([k′,⊕′,⊗′])r, and g and k be

functions. The function f defined as

f c (RNode a ts) = k (a, c) ⊕∑⊗[f c′ ti | i ∈ [1..#ts ]]
where c′ = g c (a, h′ (RNode a ts))

can be decomposed into the composition of the rose-tree skeletons.

Proof. The skeletal program for the function f is given as follows.

f c t = let t′ = uAccr (⊕′) (⊗′) (mapr k
′ t)

t′′ = dAccr g (zipwithr (, ) t t′)
in reducer (⊕) (⊗) (zipwithr (λa b.k (a, b)))

To prove the correctness of the skeletal program, we use the following equation. The

equation states the relation between the reduction and the upwards accumulation.

reducer (⊕) (⊗) = root r ◦ (uAccr (⊕) (⊗))

With this equation, we can prove the correctness by induction on the structure of rose

trees. �

We can also develop variations of this theorem. The following corollary is for the

functions that return a rose tree instead of a value.

Corollary 5.2 Let h′ be a parallelizable homomorphism h′ = ([k′,⊕′,⊗′])r, and g and k

be functions. The function f defined as

f c (RNode a ts) = RNode (k (a, c)) [f c′ ti | i ∈ [1..#ts ]]
where c′ = g c (a, h′ (RNode a ts))

can be decomposed into the composition of the rose-tree skeletons.
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Proof. We can give the decomposed skeletal program as follows

f c t = let t′ = uAccr (⊕′) (⊗′) (mapr k
′ t)

t′′ = dAccr g (zipwithr (, ) t t′)
in zipwithr (λa b.k (a, b)) t t′′

where the last reducer in Theorem 5.4 is omitted in the skeletal program above. �

Finally, we study a more general and complicated computational pattern defined as

a top-down computation with dependencies not only on the values of subtrees but also

among siblings. We formalize such a computational pattern as the following recursive

function: the overall top-down computation is specified by function k and accumulative

parameter c updated with function g; the bottom-up dependencies are specified with three

parallelizable homomorphisms f ′l = ([k′l,⊕′
l,⊗′

l])r, f
′ = ([k′,⊕′,⊗′])r, and f ′r = ([k′r,⊕′

r,⊗′
r])r;

and the inter-sibling dependencies are specified as summations of the values of its left

siblings or its right siblings with associative operators �l and �r. The accumulative

parameter is updated for the ith child with the value of the node (a), the i-th child’s

subtree (t′i), summation of left siblings’ values (li), and summation of right siblings’ values

(ri). It is worth noting that the values of the accumulative parameter passed to children

may differ in this specification.

f c (RNode a ts) = RNode (k a c) [f ci ti | i ∈ [1..#ts ]]
where ci = g c (a, (li, t′i, ri))

li =
∑

~l
[f ′l tj | j ∈ [1..i − 1]]

t′i = f ′ ti
ri =

∑
~r

[f ′r tj | j ∈ [i+ 1..#ts ]]

Since it is not efficient to compute the rose-tree homomorphisms for each node inde-

pendently, we should compute them for all node at a time and put them together by the

tupling technique [62]. We implement the bottom-up computations specified as paralleliz-

able homomorphisms using the uAccr skeleton. For inter-sibling dependencies, we use the

rAccr and lAccr skeletons. Therefore, we can compute the tuple (li, t′i, ri) for each node by

the following four steps.

1. Compute li for all the nodes at once using the rAccr skeleton after the mapr and

uAccr skeletons (line 1).

2. Compute t′i for all the nodes at once using the mapr, and uAccr skeletons (line 2).

3. Compute ri for all the nodes at once using the lAccr skeleton after the mapr and

uAccr skeletons (line 3).

4. Zip the results up by the zipwith3r skeleton (line 4). The zipwith3r skeleton is an

extension of zipwithr skeleton for zipping three rose trees of the same shape.
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t′′ = let lt = rAccr (�l) (uAccr (⊕′
l) (⊗′

l) (mapr k
′
l t))

t′ = uAccr (⊕′) (⊗′) (mapr k
′ t)

rt = lAccr (�r) (uAccr (⊕′
r) (⊗′

r) (mapr k
′
r t))

in zipwith3r (λl t′ r.(l, t′, r)) lt t′ rt

After this preprocessing, we can compute the general computational pattern by the

following function f ′ over the original rose tree and the rose tree of tuples generated by

the preprocess. In the following program, (RNode a ts) denotes the original tree and

(RNode a′′ ts ′′) denotes the generated tree.

f ′ c (RNode a ts) (RNode a′′ ts ′′) = RNode (k a c) [f ′ ci ti t′′i | i ∈ [1..#ts ]]
where ci = g c (a, (root t′′i ))

This function f ′ is a top-down computation where the accumulative parameter is up-

dated for each child using the child’s value in rose tree t′′. We derive a skeletal program

by applying the technique of Theorem 5.2. Let values ιc and ιp be values satisfying the

following equation for the value a of the root and the initial accumulative parameter c.

g ιc (ιp, a) = c

Using these values, we can implement the function f ′ using rose-tree skeletons as follows.

f ′ c t t′′ = let dt = dAccr g
′ (ιc, ιp) (zipwithr (, ) t t′′)

ct = zipwithr (λltr (c, p).g c (p, ltr )) t′′ dt
in zipwithr (λa c.k (a, c)) t ct
where g′ (c, p) (a, ltr ) = (g c (p, ltr ), a)

The auxiliary functions for the parallel implementation of dAccr can be derived from

the following form of functions defined with the auxiliary functions φ, ψu, and ψd of g.

We omit the derivation here since it is the same as the derivation in Section 5.1.2.

f(True,ltr ,−,a) = λ(c, p).(ψd c (φ (p, ltr )), a)
f(False,ltr ,b,a) = λ(c, p).(ψd c (ψu (φ (p, ltr ) b)), a)

Theorem 5.5 Let �l and �r be associative operators, f ′l , f
′, and f ′r be parallelizable

homomorphisms defined as f ′l = ([k′l,⊕′
l,⊗′

l])r, f
′ = ([k′,⊕′,⊗′])r, and f ′r = ([k′r,⊕′

r,⊗′
r])r, k

be a function, and g be a function satisfying the following equations:

g c (a, ltr ) = ψd c (φ (a, ltr ))
ψd (ψd c altr) altr ′ = ψd c (ψu altr altr ′)

with auxiliary functions φ, ψu, and ψd.

The function f defined as follows can be decomposed into the rose-tree skeletons.

f c (RNode a ts) = RNode (k a c) [f ci ti | i ∈ [1..#ts ]]
where ci = g c (a, (li, t′i, ri))

li =
∑

~l
[f ′l tj | j ∈ [1..i− 1]]

t′i = f ′ ti
ri =

∑
~r

[f ′r tj | j ∈ [i+ 1..#ts ]]
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Proof. Let ιc and ιp be values satisfying equation g ιc (ιp, (l, t′, r)) = c for the initial value

of associative operator c and the tupled value (l, t′, r) of the root of zt.

The skeletal program for the function f is given as follows.

f c t = let lt = rAccr (�l) (uAccr (⊕′
l) (⊗′

l) (mapr k
′
l t))

t′ = uAccr (⊕′) (⊗′) (mapr k
′ t)

rt = lAccr (�r) (uAccr (⊕′
r) (⊗′

r) (mapr k
′
r t))

zt = zipwith3r (λl t r.(l, t, r)) lt t′ rt
dt = dAccr g

′ (ιc, ιp) (zipwithr (, ) t t′′)
in zipwith3r (λa ltr (c, p).k (a, g c (p, ltr ))) t t′′ dt
where g′ (c, p) (a, ltr ) = (g c (a, ltr ), a)

The auxiliary functions φ′, ψ′
u and ψ′

d for the dAccr skeleton are given as follows using the

auxiliary functions for g.

φ′ (a, ltr ) = (True, ltr ,−, a)
ψ′
u (True, ltr ,−, a) (True, ltr ′,−, a′) = (False, ltr , φ (a, ltr ′), a′)
ψ′
u (False, ltr , b, a) (True, ltr ′,−, a′) = (False, ltr , ψu b (φ (a, ltr ′)), a′)
ψ′
u (True, ltr ,−, a) (False, ltr ′, b′, a′) = (False, ltr , ψu (φ (a, ltr ′)) b′, a′)
ψ′
u (False, ltr , b, a) (False, ltr ′, b′, a′) = (False, ltr , (ψu b (ψu (φ (a, ltr ′)) b′)), a′)
ψ′
d (c, p) (True, ltr ,−, a) = (ψd c (φ (p, ltr )), a)
ψ′
d (c, p) (False, ltr , b, a) = (ψd c (ψu (φ (p, ltr )) b), a)

We can prove the correctness of the skeletal program above by induction on the struc-

ture of rose trees. �

Now we illustrate how these diffusion theorems work by the prefix numbering problem

on rose trees. A sequential recursive program that solves the prefix numbering problem is

given as follows.

prer t = pre ′
r 0 t

pre ′
r c (RNode a ts) = RNode c [pre ′

r (c+ 1 + li) ti | i ∈ [1..#ts ]]
where li =

∑
+[sizer tj | j ∈ [1..i − 1]]

sizer (RNode a ts) = 1 +
∑

+[sizer ti | i ∈ [1..#ts ]]

By comparing the definition above with the recursive definition of f in Theorem 5.5,

we notice the following facts.

1. The values t′i and ri in Theorem 5.5 are not used in the specification of pre ′
r.

2. The value a is not used both in function k and g.

3. The parameter functions in Theorem 5.5 can be specified by comparing the definition

of h in the theorem and the recursive function prer.

k − c = c
g c (−, (li,−,−)) = c+ 1 + li
�l = +
f ′l = ([λx.1,+,+])r
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Now we derive the skeletal program for the function pre ′r by substituting the parameter

functions to those in the theorem. Here, from the first fact we remove the computation for

the t′i and ri, remove the zipwith3r skeleton, and simplify the definition of g′ in Theorem 5.5.

pre ′
r c t = let lt = rAccr (+) (uAccr (+) (+) (mapr (λx.1) t))

dt = dAccr g
′ (ιc, ιp) (zipwithr (, ) t lt)

ct= zipwithr (λl (c,−).c+ 1 + l) lt dt
in zipwithr (λ− c.c) t ct
where g′ (c, p) (a, l) = (g c (p, a), l)

From the second fact we can remove the second value of the accumulative parameter and

the last zipwithr skeleton, and we obtain the following simplified skeletal program.

pre ′
r c t = let lt = rAccr (+) (uAccr (+) (+) (mapr (λx.1) t))

dt= dAccr g
′′ ιc lt

in zipwithr (λl c.c+ 1 + l) lt dt
where g′′ c l = c+ 1 + l

Finally, we derive the suitable value ιc for the initial value of the downwards accumulation.

By definition, we can easily obtain the value.

g′′ ιc 0 = 0
ιc + 1 + 0 = 0

ιc = −1

Therefore, we obtain the following skeletal program for the prefix numbering problem.

The auxiliary functions can be easily derived for this case since the function g′′ is defined

with an associative operator +.

prer t = let lt = rAccr (+) (uAccr (+) (+) (mapr (λx.1) t))
dt= dAccr (λc l.c+ l + 1) −1 lt

in zipwithr (λl c.c+ 1 + l) lt dt

5.2 Properties for Deriving Parallelism

In this section we introduce three algebraic properties for parallel computing on trees.

These properties guarantee the existence of auxiliary functions for the parallel implemen-

tation of binary-tree skeleton skeletons.

5.2.1 Semi-Associativity for Parallel Implementation of Skeletons

We first show the central idea of deriving the auxiliary functions for the parallel imple-

mentation of tree skeletons. We define semi-associativity of operator as follows.

Definition 5.4 (Semi-Associativity) Let ⊕ be an associative operator. Operator � is

called semi-associative if it satisfies the following equation.

a� (b� c) = (a⊕ b) � c

Here, the associative operator ⊕ is called the associative complement of operator �. �



5.2 Properties for Deriving Parallelism 89

An example of the semi-associative operator is mirrored − operator defined as

a−′ b = b− a.

This operator −′ is semi-associative with its associative complement being operator +.

a−′ (b−′ c) = (c− b)− a = c− (b+ a) = (a+ b)−′ c

Semi-associativity is a generalization of associativity. An associative operator is also

semi-associative with its associative complement being itself. The unit of the associative

operator is also the unit of the semi-associative operator.

Lemma 5.4 Let � be a semi-associative operator with its associative complement being

an associative operator ⊕. The unit of the associative operator, ι⊕, is the left unit of the

operator �.

Proof. It follows from the following calculations for any a and b that the lemma holds.

ι⊕ � (a� b) = (ι⊕ ⊕ a)� b
= a� b �

Firstly let us consider derivation of auxiliary functions for the reduceb and uAccb skele-

tons. Let the parameter function k used for the skeletons satisfy the following equations

with semi-associative operator � and some functions kl and kr.

k b l r = kl n r � l
k b l r = kr n l � r

To derive auxiliary functions under this condition, we use the following form of functions

defined with two parameters a and b.

f(a,b) = λx y.a� k b x y

By definition, we can write the function k in the form. In the following, let operator ⊕ be

the associative complement of the operator �. By the following definition, the associative

operator ⊕ should have its unit ι⊕.

k l b r = (λx y.ι⊕ � k x b y) l r
= f(ι⊕,b) l r

We can confirm that the form of functions is preserved through contraction as the following

calculations show.

ψl f(al,bl) f(an,bn) r = λx y.an � k bn (al � k bl x y) r
= {assumption on function k}
λx y.an � (kl bn r � (al � k bl x y))

= {semi-associativity}
λx y.(an ⊕ kl bn r ⊕ al)� k bl x y

= {folding to the functional form}
f(an ⊕ kl bn r⊕ al, bl)
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ψr l f(an,bn) f(ar ,br) = λx y.an ⊕ k bn l (ar ⊕ k br x y)
= {assumption on function k}
λx y.an � (kr bn l � (ar � k br x y))

= {semi-associativity}
λx y.(an ⊕ kr bn r ⊕ ar) � k br x y

= {folding to the functional form}
f(an ⊕ kr bn r⊕ ar , br)

Based on these calculations, we can derive auxiliary functions φ, ψn, ψl, and ψr as follows.
In the following definition, we simply denote functional arguments as pairs.

Theorem 5.6 Let � be a semi-associative operator, ⊕ be a associative complement of �
with its unit ι⊕, kl and kr be some functions. If function k satisfy the following functions,

k l b r = kl b r � l , and
k l b r = kr b l � r ,

then there exist auxiliary functions φ, ψn, ψl and ψr such that k = 〈φ,ψn, ψl, ψr〉u holds.
Proof. We can define the auxiliary functions as follows based on the calculations above.

φ b = (ι⊕, b)
ψn l (an, bn) r = an � k bn l r
ψl (al, bl) (an, bn) r = (an ⊕ kl bn r ⊕ al, bl)
ψr l (an, bn) (ar, br) = (an ⊕ kr bn l ⊕ ar, br)

It can be easily shown that the auxiliary functions satisfy the condition of the reduceb and
uAccb skeletons. �

Secondly, let us consider the dAccb skeleton called with functions gl and gr, which can
be written with an associative operator � and some functions g′l and g′r as follows.

gl c b = g′l b� c
gr c b = g′r b� c

To derive auxiliary functions for the dAccb skeleton, we use the following form of functions.

fb = λc.b� c

By definition, we can embed functions gl and gr into the form of functions.

gl c b = (λc.g′l b� c) c = f(g′l b) c

gr c b= (λc.g′r b� c) c= f(g′r b) c

The preservation of the form through the contractions can be easily confirmed by the
following calculation.

ψu fb f
′
b = λc.b′ � (b� c)
= {semi-associativity}
λc.(b′ ⊕ b)� c)

= {folding to the functional form}
f(b′⊕b)

Therefore, we can derive auxiliary functions for the dAccb skeleton as stated by the
following theorem.
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Theorem 5.7 Let � be a semi-associative operator, ⊕ be the associative complement of

� with its unit ι⊕, g′l and g′r be some functions. For functions gl and gr that can be written

as

gl c b = g′l b� c , and
gr c b = g′r b� c ,

there exist auxiliary functions φl, φr, ψu and ψd such that (gl, gr) = 〈φl, φr, ψu, ψd〉d.
Proof. We can define the auxiliary functions as follows based on the calculations above.

φl b = g′l b
φr b = g′r b
ψu b b

′ = b′ ⊕ b
ψd c b = b� c �

So far, we have discussed the derivation of auxiliary functions for the parallel implemen-

tation under the existence of a semi-associative operator. If we can find a semi-associative

operator in the definition of the functions, then we can easily obtain the auxiliary functions

with the two theorems.

Now the question is how to find the semi-associative operator in the definition of

functions. We here adopt the context preservation technique [32] that derives an associative

operator by finding a function form closed under function composition. Since function

composition is associative, we map the closed functional form with identity function to an

isomorphic algebra with an associative operator with its unit.

In the following three sections, we show three algebraic properties under which we can

systematically derive semi-associative operators.

5.2.2 Finiteness Property

There have been several studies [35, 57, 68, 121] that derive parallel algorithms based on

the finiteness of the domain and range of functions. The common idea in these derivations

is to compute the results for all the values in the domain.

Let C be a finite set that consists of l values {c1, c2, . . . , cl}. We can derive a semi-

associative operator after finding a set of functions that are closed under function compo-

sition. We first specify such a set of functions defined on the finite set C.

Definition 5.5 (Tabled Function) Let C be a finite set C = {c1, c2, . . . , cl}. A function

g :: C → C is said to be a tabled function on domain C, if it is defined in the following form

g = λx. case x of c1 → c′1; c2 → c′2; · · · ; cl → c′l

where c′1, c′2, . . . c′l ∈ C. �
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An example of the tabled functions is a function not that reverses the boolean input.

not :: Bool → Bool
not = λx.case x of True → False;False → True

The following two lemmas prove that the identity function can be defined in the form

of tabled function (Lemma 5.5) and that the tabled functions are closed under function
composition (Lemma 5.6).

Lemma 5.5 Let C be a finite set C = {c1, c2, . . . , cl}. A set of tabled functions on domain

C includes the identity function.
Proof. The identity function id is given in the form of the tabled function as follows.

id = λx. case x of c1 → c1; c2 → c2; · · · ; cl → cl �

Lemma 5.6 Let C be a finite set C = {c1, c2, . . . , cl}. A set of tabled functions on domain

C is closed under function composition.
Proof. Let g1 and g2 be defined as:

g1 = λx. case x of c1 → c11; c2 → c12; · · · ; cl → c1l , and
g2 = λx. case x of c1 → c21; c2 → c22; · · · ; cl → c2l ,

where c1i , c
2
i ∈ C for any i ∈ {1, 2, . . . , l}. Let g be the composed function, g = g2 ◦ c1. By

definition, we have

g ci = g2 (g1 ci) = g2 c
1
i

for any i ∈ {1, 2, . . . , l}, and therefore we can define g as the following tabled function:

g = λx. case x of c1 → g2 c
1
1; c2 → g2 c

1
2; · · · ; cl → g2 c

1
l ,

where every g2 c1i can be partially evaluated and the result value is in C. �

Based on these two lemmas, we define operators for parallelization. We map tabled
function g :: C → C onto a tuple of l values. More concretely, tabled function g defined as

g = λx. case x of c1 → c′1; c2 → c′2; · · · ; cl → c′l

is mapped to a tuple of l elements (c′1, c
′
2, . . . , c

′
l). On this mapping, semi-associative

operator �, its associative complement ⊕, and the unit ι⊕ are given as shown in Figure 5.1.
We then consider the derivation of auxiliary functions for binary-tree skeletons.
Let k be a parameter function for the reduceb and uAccb skeletons, and consider the

case when the range of the function k is finite. In this case, we can denote the type of

function k as k :: C → α→ C → C, where α is a certain type.
By fixing the first and the second arguments of k and partially evaluating the function,

we can obtain a tabled function as follows. In the following function, term (k l b ci) can
be computed into a value in C.

λr.k l b r = λr.case r of c1 → k l b c1; c2 → k l b c2; · · · ; cl → k l b cl
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(c′1, c
′
2, . . . , c

′
k) � x = case x of c1 → c′1; c2 → c′2; · · · ; cl → c′l

(c21, c
2
2, . . . , c

2
l ) ⊕ (c11, c

1
2, . . . , c

1
l ) = (c′1, c

′
2, . . . , c

′
l)

where c′i = case c1i of c1 → c21; c2 → c22; · · · ; cl → c2l

ι⊕ = (c1, c2, . . . , cl)

Figure 5.1. The definition of the semi-associative operator �, its associative complement
⊕, and the unit ι⊕ derived from the mapping of tabled functions on domain
C = {c1, c2, . . . , cl}.

Based on this tabled function and the operator � defined above, we can derive the following

equation,

k l b r = (k l b c1, k l b c2, . . . , k l b cl) � r ,

which is the second equation in the assumption of Theorem 5.6 with substitution of

kr b l = (k l b c1, k l b c2, . . . , k l b cl) .

By fixing the second and the third arguments of k and partially evaluating the function,

we can derive the first equation in the assumption of Theorem 5.6. Based on the discussion

so far, we can derive auxiliary functions for the reduceb and uAccb skeletons if the range

of the parameter function is finite.

Theorem 5.8 (Finiteness Property for reduceb and uAccb) Let C = {c1, c2, . . . , cl}
be a finite set. If the range of function k is the set C, that is, the type of the function k

is k :: C → α → C → C with a certain type α, then there exist auxiliary functions for the

parallel implementation of reduceb k and uAccb k.

Proof. Based on the partial evaluation of k into the tabled functions and Theorem 5.6,

we can derive the auxiliary functions as follows. The operators � and ⊕ and the unit ι⊕
are those in Figure 5.1.

φ b = ((c1, c2, . . . , cl), b)
ψn l ((cn1, cn2, . . . , cnl), bn) r = case k l bn r of c1 → cn1; c2 → cn2; · · · ; cl → cnl
ψl ((cl1, cl2, . . . , cll), bl) ((cn1, cn2, . . . , cnl), bn) r = ((l1, l2, . . . , ll), bl)

where li = case k cli bn r of c1 → cn1; c2 → cn2; · · · ; cl → cnl
ψr l ((cn1, cn2, . . . , cnl), bn) ((cr1, cr2, . . . , crl), br) = ((r1, r2, . . . , rl), br)

where ri = case k l bn cri of c1 → cn1; c2 → cn2; · · · ; cl → cnl �

If the range of the two parameter functions gl and gr for the dAccb skeleton is finite,

we can derive auxiliary functions in a similar way.

Theorem 5.9 (Finiteness Property for dAccb) Let C = {c1, c2, . . . , cl} be a finite set.

If the range of function gl and gr is the set C, then there exist auxiliary functions for the

parallel implementation of dAccb (gl, gr).
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Proof. We can rewrite the functions gl and gr as tabled functions as follows.

gl c b = case c of c1 → gl c1 b; c2 → gl c2 b; · · · ; cl → gl cl b
gr c b = case c of c1 → gr c1 b; c2 → gr c2 b; · · · ; cl → gr cl b

Based on these tabled functions, we obtain the following two equations using the semi-

associative operator �.

gl c b = (gl c1 b, gl c2 b, . . . gl cl b) � c
gr c b = (gr c1 b, gr c2 b, . . . gr cl b) � c

By applying Theorem 5.7 to the equations above, we can derive the auxiliary functions as

follows. The operators � and ⊕ and the unit ι⊕ are those in Figure 5.1.

φl b = (gl c1 b, gl c2 b, . . . , gl cl b)
φr b = (gr c1 b, gr c2 b, . . . , gr cl b)
ψu (b11, b

1
2, . . . , b

1
l ) (b21, b

2
2, . . . , b

2
l )

= (b′1, b
′
2, . . . , b

′
l) where b′i = case b1i of c1 → b21; c2 → b22; · · · ; cl → b2l

ψd c (b1, b2, . . . , bl) = case c of c1 → b1; c2 → b2; · · · ; cl → bl �

The finiteness property is simple and powerful in deriving parallel programs, and sev-

eral development of parallel algorithms developed so far [57, 121] used this property. We

use this property later in parallelizing the party planning problem in Section 5.3 and the

maximum marking problem in Chapter 8.

5.2.3 Extended-Ring Property

Distributivity is one of important properties in deriving parallel programs. For example,

linear recurrence equations of the form xn+1 = a× xn + b can be computed efficiently in

parallel based on the distributivity of × over + in addition to the associativity of both

operators. Xu et al. [129] formalized an interesting property named extended ring, and

developed a parallelizing system for programs manipulating lists. We adopt their idea for

parallelization of tree programs.

First, we introduce algebraic property on two or more operators by extending the

algebraic ring.

Definition 5.6 (Extended Ring [129]) Let D is a set of elements. Algebra A =

{D,⊕1, · · · ,⊕k} is said to be an extended ring, if

• for each i ∈ {1, . . . , k}, operator ⊕i is associative with the unit ι⊕i ; and

• for any i and j such that 1 ≤ i < j ≤ k, ⊕j distributes over ⊕i. �

The definition of extended ring above is a bit different from that in [129]: each operator ⊕i

should be associative but not semi-associative. We strengthen the condition on operators

to allow the normal form below has some variables after the parameter x.

We then specify the form of functions that are closed under function composition.
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Definition 5.7 (NF-function on Extended Ring) A unary function g is said to be a

normal-form function (NF-function) on an extended ring, if it is defined in the following

form.

g = λx. al1 ⊕1 ( · · · (alk ⊕k x⊕k a
r
k) · · · )⊕1 a

r
1

Here, al1, a
l
2, . . . , a

l
k, a

r
k, . . . , a

r
1 are some values that do not include the parameter of func-

tion x. �

When an operator ⊕i is commutative, we can consider a function simplified by merging

terms ali and ari as the normal-form function.

The identity function can be defined as an NF-function, and NF-functions are closed

under function composition.

Lemma 5.7 The identity function is an NF-function on the given extended ring.

Proof. Let given extended ring be {D,⊕1, · · · ,⊕k}, the identity function id can be defined

as an NF-function as shown in the following.

id = λx. ι⊕1 ⊕1 (· · · (ι⊕k
⊕k x⊕k ι⊕k

) · · ·) ⊕1 ι⊕1 �

Lemma 5.8 A set of NF-functions on an extended ring is closed under function compo-

sition.

Proof. Let {D,⊕1, · · · ,⊕k} be an extended ring, and g1 and g2 be NF-functions on the

extended ring defined as follows.

g1 = λx. al1 ⊕1 (· · · (alk ⊕k x⊕k a
r
k) · · ·) ⊕1 a

r
1

g2 = λx. bl1 ⊕1 (· · · (blk ⊕k x⊕k b
r
k) · · ·) ⊕1 b

r
1

The function composition of g1 and g2 yields the following new NF-function on the ex-

tended ring.

g2 ◦ g1 = λx. cl1 ⊕1 (· · · (clk ⊕k x⊕k c
r
k) · · ·) ⊕1 c

r
1

where cl1 = bl1 ⊕1 (bl2 ⊕2 (· · · (blk ⊕k a
l
1) · · ·))

cl2 = bl2 ⊕2 (· · · (blk ⊕k a
l
2) · · ·)

...
clk = blk ⊕k a

l
k

crk = ark ⊕k b
r
k

...
c1k = ((· · · (ar1 ⊕k b

r
k) · · ·)⊕2 b

r
2) ⊕1 b

r
1

The function above is derived from the definition of the NF-function with the distributivity

and associativity of operators. �



96 Chapter 5 Theorems for Deriving Skeletal Parallel Programs

(al1, a
l
2, . . . a

l
k, a

r
k, . . . , a

r
1) � x = al1 ⊕1 (· · · (alk ⊕k x⊕k a

r
k) · · ·) ⊕1 a

r
1

(bl1, b
l
2, . . . b

l
k, b

r
k, . . . , b

r
1)⊗ (al1, a

l
2, . . . a

l
k, a

r
k, . . . , a

r
1) = (cl1, c

l
2, . . . c

l
k, c

r
k, . . . , c

r
1)

where cl1 = bl1 ⊕1 (bl2 ⊕2 (· · · (blk ⊕k a
l
1) · · ·))

cl2 = bl2 ⊕2 (· · · (blk ⊕k a
l
2) · · ·)

...
clk = blk ⊕k a

l
k

crk = ark ⊕k b
r
k

...
c1k = ((· · · (ar1 ⊕k b

r
k) · · ·)⊕2 b

r
2) ⊕1 b

r
1

ι⊕ = (ι⊕1 , ι⊕2 , . . . , ι⊕k
, ι⊕k

, . . . , ι⊕1)

Figure 5.2. The definition of the semi-associative operator �, its associative complement
⊕, and the unit ι⊕ derived from the mapping of NF-functions on extended
ring {D,⊕1, · · · ,⊕k}.

Based on these two lemmas, we can derive an associative operator for parallelizing

computation defined with operators on an extended ring. Let {D,⊕1, · · · ,⊕k} be a given

extended ring, we map an NF-function defined as

g = λx. al1 ⊕1 ( · · · (alk ⊕k x⊕k a
r
k) · · · )⊕1 a

r
1

to a tuple of 2 × k elements

(al1, . . . , a
l
k, a

r
k, . . . , a

r
1) .

On this mapping, we can define semi-associative operator �, its associative complement

⊕, and the unit ι⊕ as shown in Figure 5.2.

We then formalize classes of functions that can be systematically parallelized based on

the NF-functions on an extended ring.

Definition 5.8 A function f is said to be linear with respect to its argument x, if its

definition contains exactly one occurrence of x. �

For example, the following function k is linear with respect to the first argument l, but

not with respect to the third argument r.

k l b r = (l + b+ r) ↑ (b+ r)

We may transform the function definition so that it becomes linear. The example function

above can be transformed into the following function that is linear with respect to both

the first and the third argument.

k l b r = (l ↑ 0) + b+ r
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We can utilize several techniques to make the given function linear. Three of which

are tupling transformation [30, 58], conditional normalization [29], unfolding and folding

transformation.

If a function defined only with the operators on an extend ring is linear with respect to

its parameter x, then we can systematically transform the function into an NF-function.

The transformation consists of unfolding of expressions by distributivity between two

operators and folding of expressions by associativity. We insert the units if necessary. The

following is an example of the transformation: the function is defined on extended-ring

{Num,+,×}.
λx.a+ (b× (c+ (d× x)))
= λx.a+ (b× c) + (b× d× x)
= λx.(a+ (b× c)) + ((b× d) × x)
= λx.p+ (q × x)

where p = a+ (b× c)
q = b× d

Note that in the example above two right parameters are omitted since the two operators

are associative. If we do not omit them, the NF-function is defined as follows.

λx.p + (q × x× 1) + 0

Now we show a sufficient condition for the parallelization of binary-tree skeletons if

the parameter functions are defined on an extended ring.

Theorem 5.10 (Extended-Ring Property for reduceb and uAccb) Let

{D,⊕1, . . . ,⊕k} be an extended ring. If function g is defined only with the operators

⊕1, . . . ,⊕k, and g is linear with respect to each of the first and the third arguments, then

there exists efficient parallel implementation for reduceb g and uAccb g.

Proof. From the linearity, we can transform two functions λl.g l b r and λr.g l b r into

NF-functions on the extended ring. By mapping the NF-functions to tuples and applying

Theorem 5.6, we can derive the auxiliary functions for the reduceb and uAccb skeletons.

The semi-associative operator �, its associative complement ⊕, and the unit ι⊕ are given

in Figure 5.2. �

Theorem 5.11 (Extended-Ring Property for dAccb) Let {D,⊕1, . . . ,⊕k} be an ex-

tended ring. If functions gl and gr are defined only with the operators ⊕1, . . . ,⊕k, and

they are linear with respect to the first argument, then there exists efficient parallel imple-

mentation for dAccb (gl, gr).

Proof. From the linearity, we can transform two functions gl and gr into NF-functions on

the extended ring. By mapping the NF-functions to tuples and applying Theorem 5.7, we

can derive the auxiliary functions for the dAccb skeleton. The semi-associative operator

�, its associative complement ⊕, and the unit ι⊕ are given in Figure 5.2. �
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In the following, we illustrate how we can derive auxiliary functions by these theorems.

We use, as our running example, evaluation of computational tree whose internal node

has one of operators ↓, ↑, +, and ×. This problem was also dealt with by Miller and

Teng [101].

If the values on leaves are non-negative then we can derive an efficient parallel im-

plementation, since the algebra {R+ ∪ {0,+∞}, ↓, ↑,+,×} is an extended ring. We can

implement the evaluation by the reduceb skeleton called with parameter function g defined

as g l (�) r = l � r where � is an operator attached to internal nodes. The function g is

obviously linear with respect to each of the first and third arguments. By inserting units,

ι↓ = +∞, ι↑ = 0, ι+ = 0, and ι× = 1, we obtain the following NF-functions. Note that

the we omit the right parameters because every operator is commutative.

λl.kn l (↓) r = λl.r ↓ (0 ↑ (0 + (1 × l)))
λl.kn l (↑) r = λl.+∞ ↓ (l ↑ (0 + (1 × l)))
λl.kn l (+) r = λl.+∞ ↓ (0 ↑ (l + (1 × l)))
λl.kn l (×) r = λl.+∞ ↓ (0 ↑ (0 + (l × l)))

We can give the definition in the same way for the case that the value of r is missing.

The semi-associative operator �, its associative complement ⊕, and the unit ι⊕ are

given as follows for the extended ring.

(a1, a2, a3, a4) � x = a1 ↓ (a2 ↑ (a3 + (a4 × x)))

(b1, b2, b3, b4)⊕ (a1, a2, a3, a4) = (c1, c2, c3, c4)
where c1 = b1 ↓ (b2 ↑ (b3 + (b4 × a1)))

c2 = b2 ↑ (b3 + (b4 × a2))
c3 = (b3 + (b4 × a3)
c4 = b4 × a4

ι⊕ = (+∞, 0, 0, 1)

Now we can apply Theorem 5.10 and obtain the following auxiliary functions.

φ (�) = ((+∞, 0, 0, 1), (�))

ψn l ((a1n, a2n, a3n, a4n),�n) r = a1n ↓ (a2n ↑ (a3n + (a4n × (l �n r))))

ψl ((a1l, a2l, a3l, a4l), (�l)) ((a1n, a2n, a3n, a4n), (�n)) r
= ((a1n, a2n, a3n, a4n)⊕ (b1, b2, b3, b4) ⊕ (a1l, a2l, a3l, a4l),�l)

where b1 = if ((�n) == (↓)) then r else +∞
b2 = if ((�n) == (↑)) then r else 0
b3 = if ((�n) == (+)) then r else 0
b4 = if ((�n) == (×)) then r else 1

ψr l ((a1n, a2n, a3n, a4n), (�n)) ((a1r, a2r, a3r, a4r), (�r))
= ((a1n, a2n, a3n, a4n)⊕ (b1, b2, b3, b4) ⊕ (a1r, a2r, a3r, a4r),�r)

where b1 = if ((�n) == (↓)) then r else +∞
b2 = if ((�n) == (↑)) then r else 0
b3 = if ((�n) == (+)) then r else 0
b4 = if ((�n) == (×)) then r else 1
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With these auxiliary functions, we can implement the evaluation of the computational

trees as reduceb 〈φ,ψn, ψl, ψr〉u.

5.2.4 Tupled-Ring Property

Many algorithms developed by the dynamic programming technique compute multiple

values simultaneously along with data structures. There values often have complex de-

pendency among themselves and therefore it is difficult to develop parallel programs for

these algorithms. In this section, we give a condition for deriving auxiliary functions sys-

tematically from algorithms that compute multiple values simultaneously on trees. The

idea is to utilize the associativity of matrix multiplication defined on a commutative semir-

ing. The condition, tupled-ring property, is practical and captures a wide class of dynamic

programming algorithms on trees.

First we define commutative semirings.

Definition 5.9 An algebra A = {D,⊕,⊗} is said to be a commutative semiring, if the

following three hold.

• D is a set of elements.

• ⊕ is an associative and commutative operator with unit ι⊕.

• ⊗ is an associative and commutative operator with unit ι⊗, and distributes over ⊕.

�

Three examples of commutative semirings are {Num,+,×}, {Num, ↑,+}, and {Bool,∨,∧}.
It is worth noting that many dynamic programming algorithms are developed on the latter

two commutative semirings.

Next, we define a class of functions on these commutative semirings. In the following,

let k be a finite value, Dk denotes a set of finitely tupled values (v1, v2, . . . , vk) where

vi ∈ D.

Definition 5.10 Let {D,⊕,⊗} be a commutative semiring. Function g :: Dk → D is said

to be a linear polynomial function, if it is defined in the following form:

g (x1, x2, . . . , xk) = (a1 ⊗ x1) ⊕ (a2 ⊗ x2) ⊕ · · · ⊕ (ak ⊗ xk)⊕ ak+1

where a1, a2, . . . , ak and ak+1 are constants. �

Consider a tuple of k linear polynomial functions g1, g2, . . . , gk where each function

gi is defined as gi (x1, x2, . . . , xk) = (ai1 ⊗ x1) ⊕ (ai2 ⊗ x2) ⊕ · · · ⊕ (aik ⊗ xk) ⊕ ai(k+1).

We can specify the tuple of functions as follows. The operator ×⊗,⊕ denotes matrix

multiplication on commutative semiring {D,⊕,⊗}, where operators × and + in the ordinal

matrix multiplication are replaced with operators ⊗ and ⊕ respectively. Similarly, the
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⎛
⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1k a1(k+1)

a21 a22 · · · a2k a2(k+1)
...

...
. . .

...
...

ak1 ak2 · · · akk ak(k+1)

ι⊕ ι⊕ · · · ι⊕ ι⊗

⎞
⎟⎟⎟⎟⎟⎠�

⎛
⎜⎜⎜⎝

x1

x2
...
xk

⎞
⎟⎟⎟⎠ =

let

⎛
⎜⎜⎜⎜⎜⎝

y1

y2
...
yk
ι⊗

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1k a1(k+1)

a21 a22 · · · a2k a2(k+1)
...

...
. . .

...
...

ak1 ak2 · · · akk ak(k+1)

ι⊕ ι⊕ · · · ι⊕ ι⊗

⎞
⎟⎟⎟⎟⎟⎠×⊗,⊕

⎛
⎜⎜⎜⎜⎜⎝

x1

x2
...
xk
ι⊗

⎞
⎟⎟⎟⎟⎟⎠ in

⎛
⎜⎜⎜⎝

y1

y2
...
yk

⎞
⎟⎟⎟⎠

Figure 5.3. The definition of the semi-associative operator� for the tupled-ring property
on commutative semiring {D,⊕,⊗}.

operator +⊕ denotes matrix (vector) addition on commutative semiring {D,⊕,⊗}. We

may denote a tuple as a column vector for readability.⎛
⎜⎜⎜⎝

y1

y2
...
yk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk

⎞
⎟⎟⎟⎠×⊗,⊕

⎛
⎜⎜⎜⎝

x1

x2
...
xk

⎞
⎟⎟⎟⎠+⊕

⎛
⎜⎜⎜⎝

a1(k+1)

a2(k+1)
...

ak(k+1)

⎞
⎟⎟⎟⎠

By inserting another element for input and output, we obtain the following simpler defi-

nition with a matrix multiplication.⎛
⎜⎜⎜⎜⎜⎝

y1

y2
...
yk
ι⊗

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1k a1(k+1)

a21 a22 · · · a2k a2(k+1)
...

...
. . .

...
...

ak1 ak2 · · · akk ak(k+1)

ι⊕ ι⊕ · · · ι⊕ ι⊗

⎞
⎟⎟⎟⎟⎟⎠×⊗,⊕

⎛
⎜⎜⎜⎜⎜⎝

x1

x2
...
xk
ι⊗

⎞
⎟⎟⎟⎟⎟⎠

Now this matrix multiplication is an associative operator useful for deriving auxiliary

functions of parallel programs. Before discussing the derivation of auxiliary functions

for concrete functions, we introduce an operator � that bridges between a tuple with k

elements and a (k + 1) × (k + 1) matrix (Figure 5.3). This � operator is indeed a semi-

associative operator with its associative complement being matrix multiplication ×⊗,⊕.

Then we discuss the condition and derive auxiliary functions for the reduceb and uAccb

skeletons. First we define another class of functions in an analogy with the linear polyno-

mial functions.

Definition 5.11 (Bi-linear Polynomial Function) Let {D,⊕,⊗} be a commutative

semiring, and B be a set of elements. Function g :: (Dk,B,Dk) → D is said to be a

bi-linear polynomial function, if it can be defined in the following two forms:

g ((l1, l2, . . . , lk), b, (r1, r2, . . . , rk)) = (ar1 ⊗ l1)⊕ (ar2 ⊗ l2)⊕ · · · ⊕ (ark ⊗ lk) ⊕ ark+1
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and

g ((l1, l2, . . . , lk), b, (r1, r2, . . . , rk)) = (al1 ⊗ r1)⊕ (al2 ⊗ r2)⊕ · · · ⊕ (alk ⊗ rk) ⊕ alk+1

where values ar1, a
r
2, . . . , a

r
k and ark+1 are computed only from r1, r2, . . . , rk and b; values

al1, a
l
2, . . . , a

l
k and alk+1 are computed only from l1, l2, . . . , lk and b. �

Note that the class of the bi-linear polynomial functions is broader than that of the linear

functions with respect to all the arguments. For example, the following function g

g((l1), b, (r1)) = l1 ⊗ r1

is a bi-linear polynomial function but not a linear polynomial function with respect to l1
and r1.

Let function k for the reduceb and uAccb skeletons be defined with a tuple of bi-linear

polynomial functions. Then, we can denote such a function in the following two forms using

the operator � bridging to the matrix multiplication. In the following, we may denote

vectors and matrices in the bold font, for example we denote l and r for (l1, l2, . . . , lk)

and (r1, r2, . . . , rk) respectively. Let gl (b, r) be a (k + 1) × (k + 1) matrix that contains

coefficients {arij}, and gr (b, l) be a (k+1)× (k+1) matrix that contains coefficients {alij}.

k b l r = gl (b, r) � l
k b l r = gr (b, l)� r

Under this condition, we can derive auxiliary functions required in the reduceb and uAccr

skeleton by simply applying Theorem 5.6.

Theorem 5.12 (Tupled-Ring Property for reduceb and uAccb) Let {D,⊕,⊗} be a

commutative semiring, and function g be defined as a tuple of bi-linear functions as follows.

g (l1, l2, . . . , lk) b (r1, r2, . . . , rk) = (x1, x2, . . . , xk)
where xi = (ari1 ⊗ l1) ⊕ (ari2 ⊗ l2) ⊕ · · · ⊕ (arik ⊗ lk)⊕ ari(k+1)

g (l1, l2, . . . , lk) b (r1, r2, . . . , rk) = (y1, y2, . . . , yk)
where yi = (ali1 ⊗ r1)⊕ (ali2 ⊗ r2)⊕ · · · ⊕ (alik ⊗ rk) ⊕ ali(k+1)

Here, coefficients arij are computed only with r1, r2, . . . , rk, and b, and coefficients alij

are computed only with l1, l2, . . . , lk and b. Under this condition, the auxiliary functions

g = 〈φ,ψn, ψl, ψr〉u can be systematically derived.

Proof. Let function gl (b, r) return a (k+ 1)× (k+ 1) matrix that consists of coefficients

alij, and function gr (b, l) return a (k+ 1)× (k+ 1) matrix that consists of coefficients arij .

Then the auxiliary functions can be defined as follows.

φ b = (I, b)

ψn l (Mn, bn) r = Mn � k bn l r
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ψl (Ml, bl) (Mn, bn) r = (Mn ×⊗,⊕ gl (b, r)×⊗,⊕ Ml, bl)

ψr l (Mn, bn) (Mr, br) = (Mn ×⊗,⊕ gr (b, l) ×⊗,⊕ Mr, br)

Here matrix I is the identity matrix whose diagonal elements are ι⊗ and the other elements
are ι⊕, and the operator � is defined in Figure 5.3. �

Next, we discuss the derivation of auxiliary functions for the dAccb skeleton. Here,
we assume that the two parameter functions gl and gr are defined as a tuple of linear
polynomial functions. Under this condition, we can transform the functions and obtain
two equations in the assumption of the derivation theorem (Theorem 5.7) using the semi-
associative operator.

Theorem 5.13 (Tupled-Ring Property for dAccb) Let {D,⊕,⊗} be a commutative
semiring, and functions gl and gr be defined as a tuple of linear polynomial functions as
follows.

gl (c1, c2, . . . , ck) b = (l1, l2, . . . , lk)
where li = (ali1 ⊗ c1)⊕ (ali2 ⊗ c2)⊕ · · · ⊕ (alik ⊗ ck)⊕ ali(k+1)

gr (c1, c2, . . . , ck) b = (r1, r2, . . . , rk)
where ri = (ari1 ⊗ c1) ⊕ (ari2 ⊗ c2)⊕ · · · ⊕ (arik ⊗ ck)⊕ ari(k+1)

Here, coefficients alij and arij are computed only from b. Under this condition, the auxiliary
functions (gl, gr) = 〈φl, φr, ψu, ψd〉d can be systematically derived.
Proof. Let function g′l b return a (k+ 1)× (k+ 1) matrix that consists of coefficients alij ,
and function g′r return a (k+1)× (k+1) matrix that consists of coefficients arij . Then the
following two equations hold with the semi-associative operator � defined in Figure 5.3.

gl c b = g′l b� cgr c b = g′r b� c

Using these functions, we can define the auxiliary functions as follows.

φl b = g′l b
φr b = g′r b
ψu M M′ = M′ ×⊗,⊕ M
ψd c M = M� c

Here ×⊗,⊕ is matrix multiplication on algebra {D,⊕,⊗}. �

In the following section, we illustrate how the tupled-ring property works using the
example of the party planning problem. The tupled-ring property is also used in deriving
skeletal parallel programs for the maximum marking problem in Chapter 8 and for the
XPath queries in Chapter 9.

5.3 Deriving Parallel Program for Party Planning Problem

In this section, we illustrate how we can systematically derive skeletal programs based on
the diffusion theorems and the algebraic properties. We use the party planning problem
in Introduction as our running example.
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We show the problem statement of the party planning problem again.

The president of a company wants to have a company party. To make the party

fun for all attendees, the president does not want both an employee and his or

her direct supervisor to attend. The company has a hierarchical structure; that

is, the supervisory relations form a tree rooted at the president. The personnel

office has ranked each employee with a conviviality rating, which is a real

number. Given the structure of the company and the ratings of the employees,

the problem is to select the guests so that the sum of their conviviality ratings

is maximized.

The derivation of skeletal parallel program consists of the following four procedures.

1. Develop a sequential program.

2. Transform the sequential program into a form of diffusion theorems.

3. Apply diffusion theorems with some optimizations.

4. Derive auxiliary functions for each use of skeleton.

5.3.1 Deriving Skeletal Parallel Program for Party Planning Problem
on Binary Trees

First we illustrate the derivation of a skeletal parallel program for binary trees.

Develop Sequential Program

At the first step, we develop a sequential program as recursive functions on the structure

of binary trees. Here, the sequential program should not necessarily be efficient. We will

perform optimizations in later steps.

For our running example, a known sequential algorithm is given based on the dynamic

programming technique. The following recursive function pppb (named from party plan-

ning problem) defined with auxiliary functions ppp ′
b and misb (named from maximum

independent sum) solves the party planning problem. The function misb takes a binary

tree and computes a pair of values (ms , us):

• ms : the maximum sum of non adjacent nodes under the condition that the root

node of the tree is selected, and

• us: the maximum sum of non adjacent nodes under the condition the root node is

not selected.
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Based on the pair of values and the parent mark (p marked), the function ppp ′
b computes

whether a node should be marked or not.

pppb :: BTree Int → BTree Bool
pppb t = ppp ′

b False t

ppp ′
b p marked (BLeaf a)

= if p marked then BLeaf False
else let (ms , us) = misb (BLeaf a)

in BLeaf (ms > us)
ppp ′

b p marked (BNode l b r)
= if p marked then BNode (ppp ′

b False l) False (ppp ′
b False r)

else let (ms , us) = misb (BNode l b r)
marked = ms > us

in BNode (ppp ′
b mark l) mark (ppp ′

b mark r)

misb (BLeaf a) = (a, 0)
misb (BNode l b r) = let (ms l, us l) = misb l

(msr, usr)= misb r
in (b+ us l + usr, (ms l ↑ us l) + (msr ↑ usr))

Transform Sequential Program

We then transform the sequential program into a recursive form of diffusion theorems. We

can apply several techniques to the transformation of sequential programs. There have
been several techniques studied in the community of program transformation (or program
calculation), such as, fusion transformation [30,51,58,126], tupling transformation [30,58],
and condition normalization [29, 43]. It is worth noting that we need not be aware the

parallelism in the program in this step.
In our running example, result tree is constructed in the if -branches for both cases

(BLeaf a) and (BNode l b r), but this is off from the recursive forms of diffusion theorems.

Noting that the two branches generates the same tree structure except for the values of
the node and the accumulative parameter, we can bring the construction of trees out of
the if − branches by using the following program transformation.

if p then f a else f b =⇒ let x = if p then a else b in f x

With this transformation, we obtain the following recursive definition for the auxiliary
function ppp ′

b.

ppp ′
b p marked (BLeaf a)

= let (ms , us) = misb (BLeaf a)
marked = if p marked then False else ms > us

in BLeaf marked
ppp ′

b p marked (BNode l b r)
= let (ms , us) = misb (BNode l b r)

marked = if p marked then False else ms > us
in BNode (ppp ′

b marked l) marked (ppp ′
b marked r)
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Apply Diffusion Theorem with Optimization

Now we apply the diffusion theorem to derive a skeletal program. We first derive the

parameter functions by simply matching the program with the recursive definition, and

then apply a diffusion theorem by substituting the parameter functions. Since it is often

the case that the derived skeletal program has redundant calls of skeletons due to the

generic definition of diffusion theorems, we optimize the derived program by removing

them or replacing them with more specific ones.

To our running example, we apply Theorem 5.2 with substitution of the mapb skeleton

instead of the last reduceb skeleton. To apply the theorem, we need to derive the defini-

tion of the parameter functions. The tree homomorphisms h′ and h′′ are the same tree

homomorphism misb.

h′ = h′′ = misb = ([mis l,misn])b
mis l a = (a, 0)
misn (ms l, us l) b (msr, usr) = (b+ us l + usr, (ms l ↑ us l) + (msr ↑ usr))

The functions gl and gr have the same definition. Let mark be a function defined as

mark c (ms , us) = if c then False else (ms > us) ,

then the definition of the function gl and gr is given as follows.

gl = gr = g
g c (−, (ms , us)) = mark c (ms , us)

The parameter functions for generating the result tree by the mapb skeleton are also

defined in the same way.

kl (−, c, (ms , us)) = mark c (ms , us)
kn (−, c, (ms , us)) = mark c (ms , us)

Substituting the parameter functions above, we obtain the following skeletal program.

In the derivation we merged t′′ into t′, since the two tree homomorphisms h′ and h′′ are

the same.

ppp ′
b p marked t = let t′ = uAccb misn (mapb mis l id t)

ct = dAccb (g, g) p marked (zipwithb − (, ) t t′)
zt = zipwithb tup tup t (zipwithb (, ) (, ) ct t′)

in mapb kl kn zt
where tup a (b, c) = (a, b, c)

We further optimize the derived skeletal program by removing redundant skeletons.

Since the first element of second argument of the function g for the dAccb skeleton is not

used, we remove the zipwithb skeleton before the dAccb skeleton. Since the first element of

functions kl and kn for the mapb skeleton is not used either, we remove the last zipwithb

skeleton. Here, according to the changes we need to modify the parameter functions for

the mapb skeleton a bit.
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With these two optimizations we obtain the following skeletal program.

ppp ′
b p marked t = let t′ = uAccb misn (mapb mis l id t)

ct = dAccb (mark ,mark ) p marked t′

zt = zipwithb (, ) (, ) ct t′

in mapb mark ′ mark ′ zt
where mark ′ (c, (ms , us)) = mark c (ms , us)

The last mapb skeleton after the zipwithb skeleton can be fused into a single zipwithb

skeleton. We substitute the initial value of the accumulative parameter False. With these

optimization and transformation, we obtain the following simpler skeletal program for the

main function pppb.

pppb t = let t′ = uAccb misn (mapb mis l id t)
ct = dAccb (mark ,mark ) False t′

in zipwithb mark mark ct t′

Derive Auxiliary Functions for Skeletons

In the skeletal program, the reduceb, uAccb, and dAccb skeletons require auxiliary functions

for their efficient parallel implementation, and thus finally we derive auxiliary functions

for these skeletons. If the parameter functions used for skeletons satisfy one of the three

algebraic properties, then we can derive the auxiliary functions systematically. For rose-

tree skeletons reducer and uAccr, we adopt the generation-and-test approach.

In the case of our running example, the skeletal program has one uAccb skeleton and

one dAccb skeleton. The function misn used for the uAccb skeleton returns a pair of values

and is defined on a commutative ring {Int, ↑,+}. Therefore we derive auxiliary functions

based on the tupled-ring property (Theorem 5.12). First we transform the function misn
into the bi-linear polynomial forms.

misn (ms l, us l) b (msr, usr) = (x1, x2)
where x1 = (b+ usr) + us l

x2 = ((msr ↑ usr) + ms l) ↑ ((msr ↑ usr) + us l)

misn (ms l, us l) b (msr, usr) = (y1, y2)
where y1 = (b+ us l) + usr

y2 = ((ms l ↑ us l) + msr) ↑ ((ms l ↑ us l) + usr)

After we insert ((−∞ + msr ) ↑ ) to the head of the first element and ( ↑ (−∞)) to both

tails, the function misn is indeed a bi-linear polynomial function.

misn (ms l, us l) b (msr, usr) = (x1, x2)
where x1 = (−∞+ ms l) ↑ ((b+ usr) + us l) ↑ (−∞)

x2 = ((msr ↑ usr) + ms l) ↑ ((msr ↑ usr) + us l) ↑ (−∞)

misn (ms l, us l) b (msr, usr) = (y1, y2)
where y1 = (−∞+ msr) ↑ ((b+ us l) + usr) ↑ (−∞)

y2 = ((ms l ↑ us l) + msr) ↑ ((ms l ↑ us l) + usr) ↑ (−∞)
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Now we obtain the functions gl and gr in Theorem 5.12 by extracting the coefficients.

gl

(
b,

(
ms l
us l

))
=

⎛
⎝ −∞ b+ us l −∞

ms l ↑ us l ms l ↑ us l −∞
−∞ −∞ 0

⎞
⎠

gr

(
b,

(
msr
usr

))
=

⎛
⎝ −∞ b+ usr −∞

msr ↑ usr msr ↑ usr −∞
−∞ −∞ 0

⎞
⎠

The operator � takes 3 × 3 matrix and a pair, and returns a pair as follows.⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠�

(
x1

x2

)
=
(

(a11 + x1) ↑ (a12 + x2) ↑ a13

(a21 + x1) ↑ (a22 + x2) ↑ a23

)

Finally, we apply Theorem 5.12 and obtain the auxiliary functions successfully. The

derived auxiliary functions φu, ψun, ψul , and ψur are as follows.

φu b =

⎛
⎝
⎛
⎝ 0 −∞ −∞

−∞ 0 −∞
−∞ −∞ 0

⎞
⎠ , b

⎞
⎠

ψun

(
l1
l2

) ⎛
⎝
⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ , b

⎞
⎠ (

r1
r2

)

= let
(
x1

x2

)
=
(

b+ l2 + r2
(l1 ↑ l2) + (r1 ↑ r2)

)

in
(

(a11 + x1) ↑ (a12 + x2) ↑ a13

(a21 + x1) ↑ (a22 + x2) ↑ a23

)

ψul
(
Al, bl

)
(An, bn)

(
r1
r2

)

=

⎛
⎝An ×+,↑

⎛
⎝ −∞ bn + r2 −∞

r1 ↑ r2 r1 ↑ r2 −∞
−∞ −∞ 0

⎞
⎠×+,↑ Al, bl

⎞
⎠

ψur

(
l1
l2

)
(An, bn) (Ar, br)

=

⎛
⎝An ×+,↑

⎛
⎝ −∞ bn + l2 −∞

l1 ↑ l2 l1 ↑ l2 −∞
−∞ −∞ 0

⎞
⎠×+,↑ Ar, br

⎞
⎠

We can simplify the auxiliary functions by finding the constant through the computation of

the uAccb skeleton. For this case, only the upper-left 2× 2 values may change. Therefore,

we can remove the third column and the third row from the matrices. The definition of

the optimized auxiliary functions are given in Figure 5.4. We will study how we can find

these unnecessary values in Section 7.3.

Next, we derive auxiliary functions for the function g used in the dAccb skeleton. The

range of the function g is finite, i.e., Bool consisting of two values True and False. Thus,

we apply the theorem of finiteness property to derive auxiliary functions.
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We first rewrite the function mark using the case-statement.

mark c (ms , us) = case c of True → False;False → (ms > us)

Using this definition, we can derive the auxiliary functions φd, ψdu and ψdd by substituting

the function mark above. The auxiliary function φd is derived by extracting the results of

two cases.

φd (b1, b2) = (False, (b1 > b2))

The auxiliary function ψdu is defined as follows.

ψdu (b11, b
1
2) (b21, b

2
2) = (b′1, b′2)

where b′1 = case b11 of True → b21;False → b22
b′2 = case b12 of True → b21;False → b22

The auxiliary function ψdd is the mark function.

ψdd c (b1, b2) = if c then b1 else b2

Substituting the auxiliary functions for the skeletons, we can derive a skeletal parallel

program. Figure 5.4 shows the derived skeletal parallel program for the party planning

problem on binary trees.

5.3.2 Deriving Skeletal Parallel Program for Party Planning Problem
on Rose Trees

We then derive a skeletal parallel program for the party planning problem on rose trees.

The outline of the derivation is almost the same except that the characteristic functions

for the extended distributivity is derived by the generalization-and-test technique.

Develop Sequential Program

The sequential program that solves the party planning problem for rose trees is almost the

same as that for binary trees. Let misr be a function that takes a rose tree and computes

the following two values (m,u).

• m: The maximum sum of non adjacent nodes under the condition that the root node

is selected, and

• u: The maximum sum of non adjacent nodes under the condition that the root node

is not selected.

With this function misr, we can define a sequential program pppr as follows. The accu-

mulative parameter for the auxiliary function ppp ′
r represents whether the parent node is

selected or not.

pppr :: RTree Int → RTree Bool
pppr t = ppp ′

r False t
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pppb t = let t′ = uAccb 〈φu, ψun, ψul , ψur 〉u (mapb (λa.(a, 0)) id t)
ct = dAccb 〈φd, φd, ψdu, ψdd〉d False t′

in zipwithb mark mark ct t′

mark c (ms , us) = if c then False else ms > us

φu b =
((

0 −∞
−∞ 0

)
, b

)

ψun

(
l1
l2

) ((
a11 a12

a21 a22

)
, b

) (
r1
r2

)

= let
(
x1

x2

)
=
(

b+ l2 + r2
(l1 ↑ l2) + (r1 ↑ r2)

)

in
(

(a11 + x1) ↑ (a12 + x2)
(a21 + x1) ↑ (a22 + x2)

)

ψul

((
al11 al12
al21 al22

)
, bl
) ((

an11 an12
an21 an22

)
, bn

) (
r1
r2

)

=
((

an11 an12
an21 an22

)
×+,↑

( −∞ bn + r2
r1 ↑ r2 r1 ↑ r2

)
×+,↑

(
al11 al12
al21 al22

)
, bl
)

ψur

(
l1
l2

) ((
an11 an12
an21 an22

)
, bn

) ((
ar11 ar12
ar21 ar22

)
, br
)

=
((

an11 an12
an21 an22

)
×+,↑

( −∞ bn + l2
l1 ↑ l2 l1 ↑ l2

)
×+,↑

(
ar11 ar12
ar21 ar22

)
, br
)

φd (ms , us) = (False, (ms > us))

ψdd c (b1, b2) = case c of True → b1;False → b2;

ψdu (b11, b
1
2) (b21, b

2
2) = (b′1, b

′
2)

where b′1 = case b11 of True → b21;False → b22
b′2 = case b12 of True → b21;False → b22

Figure 5.4. The derived parallel skeletal program for the party planning problem on
binary trees.
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ppp ′
r p marked (RNode a ts)

= if p marked then RNode False [ppp ′
r False ti | i ∈ [1..#ts ]]

else let (m,u) = misr (RNode a ts)
marked = m > u

in RNode marked [ppp ′
r marked ti | i ∈ [1..#ts ]]

The function misr is defined as follows by using the list-comprehension notation.

misr (RNode a ts) = let u′ =
∑

+[ui | (−, ui) = misr ti, i ∈ [1..#ts ]]
w′ =

∑
+[mi ↑ ui | (mi, ui) = misr ti, i ∈ [1..#ts ]]

in (a+ u′, w′ ↑ 0)

In the following of this section, we derive a skeletal parallel program from this sequential

program.

Transform Sequential Program

We first transform the sequential program into a form of diffusion theorems.

In the function ppp ′
r, a result tree is constructed in the if -branches. By applying the

transformation rule in the previous section, we can bring the tree construction out of the

if -branches as shown in the following program.

ppp ′
r p marked (RNode a ts)

= let (m,u) = misr (RNode a ts)
marked = if p marked then False else m > u

in RNode marked [ppp ′
r marked ti | i ∈ [1..#ts ]]

In the function misr, the list of children is traversed twice for computing values u′ and

w′. We merge these two traversals into one by introducing the following function p and

operator ⊗.

p (m,u) = (u,m ↑ u)
(u,w) ⊗ (u′, w′) = (u+ u′, w + w′)

The operator ⊗ is associative and commutative due to the associativity and commutativity

of +. Using them, we can obtain the following definition of the function misr.

misr (RNode a ts)
= let (u′, w′) =

∑
⊗[g (misr ti) | i ∈ [1..#ts ]]

in (a+ u′, w′ ↑ 0)

Unfortunately, this definition of misr is not in the form of parallelizable homomor-

phism, because the function g is applied between the function misr and reduction by ⊗.

To transform the function into a parallelizable homomorphism, we fuse the functions p

and misr. Let mis ′r be the fused function, mis ′r = p ◦misr. To fuse the functions, we need

to find a function p′ that computes the necessary value in the ppp ′
r function.

p′ (p (m,u)) = m > u
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After unfolding the function p, we can successfully find a definition of the function p′ as

follows.

p′ (u,w) = u �= w

Therefore, we can fuse the functions p and misr and obtain the following sequential pro-

gram.

ppp ′
r p marked (RNode a ts)

= let if p marked then False else p′ (mis ′r (RNode a ts))
in RNode marked [ppp ′

r marked ti | i ∈ [1..#ts ]]
where p′ (u,w) = u �= w

mis ′r (RNode a ts)
= let (u′, w′) =

∑
⊗[mis ′r ti | i ∈ [1..#ts ]]

in (w′ ↑ 0, (a + u′) ↑ w′ ↑ 0)
where (u,w) ⊗ (u′, w′) = (u+ u′, w + w′)

The function mis ′r may be a parallelizable homomorphism, if the exist function k and

operator ⊕ such that

• k a⊕ (u′, w′) = (w′ ↑ 0, (a + u′) ↑ w′ ↑ 0) holds, and

• operator ⊗ is extended distributive over operator ⊕.

Apply Diffusion Theorems with Optimization

We then apply diffusion theorems and derive a skeletal program. By comparing the se-

quential definition with diffusion theorems, we can find that the sequential definition is

almost the same as the form of Corollary 5.2. The difference is that the result value of a

node is given not from the original value but the result of bottom-up computation. There-

fore, we apply Corollary 5.2 with minor modifications and obtain the following skeleton

program.

pppr t = let t′ = uAccr (⊕) (⊗) (mapr k t)
t′′ = dAccr g (zipwithr (, ) t t′)

in zipwithr h t
′ t′′

where g p marked (−, (u,w)) = if p marked then False else u �= w
h (u,w) p marked = if p marked then False else u �= w

In the derived skeletal program, the first value of the second argument of g is not

used. Therefore, we can simplify the definition by removing the first zipwithr skeleton and

modifying the function g.

pppr t = let t′ = uAccr (⊕) (⊗) (mapr k t)
in zipwithr h t

′ (dAccr g t
′)

where g p marked (u,w) = if p marked then False else u �= w
h (u,w) p marked = if p marked then False else u �= w
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Derive Auxiliary Functions for Skeletons

Finally, we derive auxiliary functions and characteristic functions for rose-tree skeletons.

For the dAccr skeleton, we need to find auxiliary functions φ, ψu, and ψd such that the

following two equations hold.

g c n = ψd c (φ n)
ψd (ψd c n) m = ψd c (ψu n m)

This condition is a subset of the condition for the dAccb skeleton and thus we can use the

finiteness property to derive the auxiliary functions for the dAccr skeleton.

We consider a tabled function of the following form

λc.case c of True → c′1;False → c′2 ,

where the two values c′1 and c′2 are boolean values. Then we can derive auxiliary functions

as follows.

φ (u,w) = (False, u �= w)

ψu (a, b) (a′, b′) = (a′′, b′′)
where a′′ = case a of True → a′;False → b′

b′′ = case b of True → a′;False → b′

ψd c (a, b) = if c then a else b

We then find characteristic functions of extended distributivity of the operator ⊗ over

operator ⊕. The condition on the function k and ⊕ is to satisfy the following equation.

k a⊕ (u,w) = (w ↑ 0, (a + u) ↑ w ↑ 0)

Let us consider the most simplest definition of k, i.e., k a = a. Then, the operator ⊕ can

be defined as

a⊕ (u,w) = (w ↑ 0, (a+ u) ↑ w ↑ 0) .

Under this definition, we check whether the operators have closure property or not. Since

the operator ⊗ is commutative, we calculate the both sides of equation in Lemma 4.1.

(λ(xu, xw).a⊕ ((u,w) ⊗ (xu, xw))) ◦ (λ(xu, xw).a′ ⊕ ((u′, w′) ⊗ (xu, xw)))
= λ(xu, xw).a⊕ ((u,w) ⊗ (a′ ⊕ ((u′, w′)⊗ (xu, xw))))
= λ(xu, xw).a⊕ ((u,w) ⊗ (a′ ⊕ (u′ + xu, w

′ + xw)))
= λ(xu, xw).a⊕ ((u,w) ⊗ ((w′ + xw) ↑ 0, (a + u′ + xu) ↑ (w′ + xw) ↑ 0))
= λ(xu, xw).a⊕ (((u+ w′ + xw) ↑ u, (w + a+ u′ + xu) ↑ (w + w′ + xw) ↑ w))
= λ(xu, xw).((w + a+ u′ + xu) ↑ (w + w′ + xw) ↑ w ↑ 0,

(a+ u+ w′ + xw) ↑ (a+ u) ↑ (w + a+ u′ + xu) ↑ (w + w′ + xw) ↑ w ↑ 0)
= λ(xu, xw).(((w + a+ u′) + xu) ↑ ((w + w′) + xw) ↑ (w ↑ 0),

((w + a+ u′) + xu) ↑ (((a+ u+ w′) ↑ (w + w′)) + xw) ↑ ((a+ u) ↑ w ↑ 0))
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λ(xu, xw).A⊕ ((U,W ) ⊗ (xu, xw))
= λ(xu, xw).A′ ⊕ ((U ′,W ′) ⊗ (xu, xw))
= λ(xu, xw).A′ ⊕ (U ′ + xu,W

′ + xw)
= λ(xu, xw).((W ′ + xw) ↑ 0, (A + U ′ + xu) ↑ (W ′ + xw) ↑ 0)

As we can see by comparing the two sides, the two sides are different in the following

two points.

• For the first value of the pair, the term xu appears on the left side but it does not

on the right side.

• The constant values on the right side corresponds to terms including variables.

To absorb these difference, we give another definition for function k and operator ⊕. For

reasons of readability, we denote the tuples as matrices.

k a =
( −∞ 0 0

a 0 −∞
)

(
a1 a2 a3

a4 a5 a6

)
⊕
(
u
w

)
=
(

(a1 + u) ↑ (a2 + w) ↑ a3

(a4 + u) ↑ (a5 + w) ↑ a6

)

Now we can prove the extended distributivity of ⊗ over ⊕ by the calculations below.

(
λ

(
xu
xw

)
.

(
a1 a2 a3

a4 a5 a6

)
⊕
((

u
w

)
⊗
(
xu
xw

)))

◦
(
λ

(
xu
xw

)
.

(
a′1 a′2 a′3
a′4 a′5 a′6

)
⊕
((

u′

w′

)
⊗
(
xu
xw

)))

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(((a1 + u+ a′1 + u′) ↑ (a2 + w + a′4 + u′)) + xu)
↑ (((a1 + u+ a′2 + w′) ↑ (a2 + w + a′5 + w′)) + xw)

↑ ((a1 + u+ a′3) ↑ (a2 + w + a′6) ↑ a3)

(((a4 + u+ a′1 + u′) ↑ (a5 + w + a′4 + u′)) + xu)
↑ (((a4 + u+ a′2 + w′) ↑ (a5 + w + a′5 + w′)) + xw)

↑ ((a4 + u+ a′3) ↑ (a5 + w + a′6) ↑ a6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

λ

(
xu
xw

)
.

(
A1 A2 A3

A4 A5 A6

)
⊕
((

U
W

)
⊗
(
xu
xw

))

=
(

(A1 + U + xu) ↑ (A2 +W + xw) ↑ A3

(A4 + U + xu) ↑ (A5 +W + xw) ↑ A6

)

Based on these calculations, we can derive characteristic functions of the extended dis-

tributivity easily by substituting zeros for U and W .

Therefore, we have succeeded in deriving a skeletal parallel program for the party

planning problem on rose trees. Figure 5.5 summarize the derived program.
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pppr t = let t′ = uAccr (⊕) (⊗) (mapr k t)
in zipwithr h t

′ (dAccr g t
′)

g p marked (u,w) = if p marked then False else u �= w

h (u,w) p marked = if p marked then False else u �= w

k a = (−∞, 0, 0, a, 0,−∞)

(a1, a2, a3, a4, a5, a6) ⊕ (u,w) = ((a1 + u) ↑ (a2 + w) ↑ a3, (a4 + u) ↑ (a5 + w) ↑ a6)

(u,w) ⊗ (u′, w′) = (u+ u′, w + w′)

p1 ((a1, a2, a3, a4, a5, a6), (u1, w1), (u2, w2), (a′1, a′2, a′3, a′4, a′5, a′6), (u′1, w′
1), (u

′
2, w

′
2))

=

⎛
⎜⎜⎜⎜⎜⎜⎝

((a1 + u1 + u2 + a′1 + u′1 + u′2) ↑ (a2 + w1 + w2 + a′4 + u′1 + u′2))
((a1 + u1 + u2 + a′2 + w′

1 + w′
2) ↑ (a2 + w1 + w2 + a′5 + w′

1 + w′
2))

(a1 + u1 + u2 + a′3) ↑ (a2 + w1 + w2 + a′6) ↑ a3

((a4 + u1 + u2 + a′1 + u′1 + u′2) ↑ (a5 + w1 + w2 + a′4 + u′1 + u′2))
((a4 + u1 + u2 + a′2 + w′

1 + w′
2) ↑ (a5 + w1 + w2 + a′5 + w′

1 + w′
2))

(a4 + u1 + u2 + a′3) ↑ (a5 + w1 + w2 + a′6) ↑ a6

⎞
⎟⎟⎟⎟⎟⎟⎠

p2 ((a1, a2, a3, a4, a5, a6), (u1, w1), (u2, w2), (a′1, a
′
2, a

′
3, a

′
4, a

′
5, a

′
6), (u

′
1, w

′
1), (u

′
2, w

′
2))

= (0, 0)
p3 ((a1, a2, a3, a4, a5, a6), (u1, w1), (u2, w2), (a′1, a′2, a′3, a′4, a′5, a′6), (u′1, w′

1), (u
′
2, w

′
2))

= (0, 0)

φ (u,w) = (False, u �= w)

ψu (a, b) (a′, b′) = (a′′, b′′)
where a′′ = case a of True → a′;False → b′

b′′ = case b of True → a′;False → b′

ψd c (a, b) = if c then a else b

Figure 5.5. The derived parallel program for the party planning problem on rose trees.
The functions p1, p2 and p3 are characteristic functions of the extended dis-
tributivity of ⊗ over ⊕. The functions φ, ψu, and ψd are auxiliary functions
for the parallel implementation of the dAccr skeleton.
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5.4 Short Summary

In this chapter, we have developed theorems for deriving skeletal parallel programs from

sequential programs. Sequential programs are often developed recursively along the input

data structures and the diffusion theorems show many recursive functions can be decom-

posed into combinations of tree skeletons. After the decomposition into skeletal programs,

we apply theorems on three algebraic properties, finiteness property, extended-ring prop-

erty, and tupled-ring property to the parameter functions to derive auxiliary functions.

If the parameter functions satisfy one of the properties, then we can derive auxiliary

functions systematically.

To illustrate our methodology for deriving skeletal parallel programs, we have derived

skeletal parallel programs for the party planning problems on binary trees and on rose trees.

Though the derived parallel programs are not trivial, we can derive them systematically

from sequential recursive programs.

We have formalized algebraic properties for the derivation of auxiliary functions for

binary-tree skeletons. Whether we can extend the theorems to the cases of rose-trees

remains as an open problem.
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Chapter 6

Implementation of Binary-Tree
Skeletons

Though there have been many studies on tree contraction algorithms, they have not been

used so often in the development of parallel applications so far. There are mainly two prob-

lems. Firstly, many tree contraction algorithms have been developed on shared-memory

parallel models such as PRAMs [2, 8, 35, 98], and only a few algorithms have been devel-

oped on the distributed-memory parallel models [94, 95]. Distributing data is important

for efficient parallel programs, but distributing tree structures is a non trivial problem.

Secondly, for tree contraction algorithms only a few implementations are provided as li-

braries. As far as we are aware, an implementation of tree contraction algorithms is

developed on multithreaded parallel language cilk [111, 123], and a parallel graph library

CGM graph/CGM lib [38] also has an implementation of tree contraction algorithms.

However, these two implementations are based on shared-memory algorithms and there-

fore for the distributed-memory environments we need another implementation of tree

contraction algorithms.

We have implemented the parallel binary-tree skeletons so that the implementation

suits especially for the distributed-memory parallel computers. Compared with the imple-

mentations so far mainly for shared-memory parallel computers, our implementation has

the following three features.

• Less overheads of parallelism. Locality is one of the most important properties in

developing efficient parallel programs especially for distributed-memory computers.

We borrow the idea of m-bridges [45,112] in the basic graph-theory to divide binary

trees with high locality. Furthermore, we call the auxiliary functions as few as

possible, to minimize the overhead of the parallel implementation.

• High sequential performance. The performance of the sequential computation parts

is as important as that of the communication parts for efficient parallel programs. We

Part of this chapter was presented in [83], and the full discussion of this chapter is given as a technical
report [84].
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represent a local segment as a serialized array and implemented local computations

of tree skeletons with loops rather than recursive functions. This implementation

choice provides quite high performance in the sequential computation parts.

• Cost model. One advantage of skeletal parallel programming is the predictability of

the performance of skeletal programs, where the cost of skeletal programs is given

based on cost models of skeletons. Not only we have implemented the tree skeletons

efficiently, but also we have formalized a cost model of our parallel implementation.

The cost model also helps us to divide binary trees with good load balance.

In this chapter, we give an implementation of the binary-tree skeletons for distributed-

memory parallel computers. In Section 6.1, we explain how to represent distributed binary-

trees with high locality after reviewing basic graph-theoretic results. In Section 6.2, we

develop an efficient implementation and a cost model of the binary-tree skeletons. We

discuss the division of binary trees in more details based on the cost model in Section 6.3.

Finally we report experimental results in Section 6.4, and summarize this chapter in

Section 6.5.

6.1 Division of Binary Trees with High Locality

To develop efficient parallel programs on distributed-memory parallel computers, we need

to divide data structures into smaller parts to distribute them to the processors. Here,

the division of data structures should have the following two properties for efficiency of

parallel programs.

• Locality. The data distributed to each processor should be adjacent. If two elements,

which are adjacent in the original data, are distributed to different processors, then

we often need communications between the processors.

• Load balance. The number of nodes distributed to each processor should be nearly

equal since the cost of local computation is often proportional to the number of

nodes.

It is easy to divide a list with these two properties, that is, for a given list of N

elements we simply divide the list into P sublists with N/P elements for each sublist.

It is, however, difficult to divide a tree satisfying both of the two properties. The non

linear and ill-balanced structure of binary trees makes it difficult to divide the tree into

connected components with good load balance.

In this section, we introduce a division of binary trees based on the basic graph theory,

and show how to represent the distributed tree structures for efficient implementation of

tree skeletons.
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Figure 6.1. An example of m-critical nodes and m-bridges. Left: In this binary tree,
there are three 4-critical nodes denoted by the doubly-lined circles. The
number in each node denotes the number of nodes in the subtree. Right:
For the same tree there are seven 4-bridges, (a)–(g), each of which is a set
of connected nodes.

6.1.1 Graph-Theoretic Results for Division of Binary Trees

We start the discussion by introducing some graph-theoretic results [45,112]. Let sizeb(v)

denote the number of nodes in the subtree rooted at node v.

Definition 6.1 (m-Critical Node [45, 112]) Let m be an integer such that 1 < m ≤ N

where N is the number of nodes in a binary tree. A node v is called m-critical, if

• v is an internal node, and

• for each child v′ of v inequality �sizeb(v)/m	 > �sizeb(v′)/m	 holds. �

The m-critical nodes divide a tree into sets of adjacent nodes (m-bridges) as shown in

Figure 6.1. Note that the global structure given by m-bridges also forms a binary tree.

Definition 6.2 (m-Bridge [45, 112]) Let m be an integer such that 1 < m ≤ N where

N is the number of nodes in a binary tree. An m-bridge is a set of adjacent nodes divided

by m-critical nodes, that is, a largest set of adjacent nodes in which m-critical nodes are

only at the root or bottom. �

Them-critical nodes and them-brides have several important properties in dividing binary

trees.

The following two lemmas show properties of the m-critical nodes and the m-bridges

in terms of the global shape of them.

Lemma 6.1 ([45, 112]) If v1 and v2 are m-critical nodes then their least common ances-

tor is also an m-critical node. �

Lemma 6.2 ([45, 112]) If B is an m-bridge of a tree then B has at most one m-critical

node among the leaves of it. �
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The root node in each m-bridge, except for the root m-bridge that includes the global
root node, is an m-critical node. If we remove the root m-critical node if it exists, from
Lemma 6.2 and the definition of the m-bridge, the m-bridge has at most one m-critical
node. From Lemma 6.1, an m-critical node is an segment appearing in dividing a binary
tree and the leaf m-critical node corresponds to the terminal node.

The following three lemmas are related to the number of nodes in an m-bridge and
the number of m-bridges in a tree. Note that the first two lemmas hold on general trees
while the last lemma only holds on binary trees.

Lemma 6.3 ([45, 112]) The number of nodes in an m-bridge is at most m+ 1. �

Lemma 6.4 ([45, 112]) Let N be the number of nodes in a tree then the number of m-
critical nodes in the tree is at most 2N/m − 1. �

Lemma 6.5 Let N be the number of nodes in a binary tree then the number of m-critical
nodes in the binary tree is at least (N/m − 1)/2.
Proof. Let nk be the number of nodes in binary trees that have k m-critical nodes. We
prove this lemma by proving the following inequality by induction on k.

nk ≤ (2k + 1)m (6.1)

1. Base case:
By definition of m-critical nodes, for the root node v we have �size(v)/m	 = 1. There-

fore, we obtain 0 < size(v) ≤ m, which satisfies the inequality (6.1) for the case k = 0.
2. Inductive step:

Assume that for all i less that k inequality ni ≤ (2i+1)m holds. Let v be the m-critical
node nearest to the root node. Since the least common ancestor of two m-critical nodes is
also m-critical node as Lemma 6.1 says, we can find such an m-critical node for any binary
tree. Now we consider the following three parts of a tree: the left subtree of the node v,
which has k1 terminal nodes, the right subtree of the node v, which has k2 terminal nodes,
and the other parts, which has no terminal node. By definition 1 + k1 + k2 = k holds.

Let x1, x2, and x3 be the numbers of nodes of the first, second, and third parts,
respectively. Then, by hypothesis we obtain x1 ≤ (2k1 + 1)m and x2 ≤ (2k2 + 1)m.
The number of nodes in the third part is at most m, i.e., x3 ≤ m, where the equality
holds if for the node v and the root r of the binary tree, equations size(v) = am+ 1 and
size(r) = (a+ 1)m holds for some value a.

With these inequalities, we can prove the inequality (6.1) by the following calculation.

nk = x1 + x2 + x3

≤ (2k1 + 1)m+ (2k2 + 1)m+m

= (2(k1 + k2 + 1) + 1)m

= (2k + 1)m

It follows from the transformation of inequality (6.1) that the lemma holds. �
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Let N be the number of nodes and P be the number of processors. In the previous

studies [45, 87, 112], we divided a tree into m-bridges using the parameter m given by

m = 2N/P . Under this division we obtain at most (2P − 1) m-bridges and thus each

processor deals with at most two m-bridges. Of course this division enjoys high locality,

but it has poor load balance since the maximum number of nodes passed to a processor

may be 2N/P , which is twice of the number of nodes for the best lead-balancing case.

In Section 6.3, we adjust the value m for better division of binary trees based on the

cost model of the skeletons. The idea is to divide a binary tree into more m-bridges using

smaller m so that we obtain enough load balance while keeping the overheads caused by

loss of locality rather small.

6.1.2 Data Structure for Distributed Segments

The performance of the sequential computation parts is as important as that of the com-

munication parts for efficient parallel programs. This means that the data structure of

local segments is important.

Generally speaking, tree structures are often implemented using pointers or references.

There are, however, two problems in this implementation for large-scale tree applications.

First, a lot of memory is required. Considering trees of integers or trees of real numbers,

for example, the pointers use as many memory as the value for each node. Furthermore, if

we allocate nodes one by one, more memory are consumed for the information for freeing

the nodes. Second, locality is often lost. Recent computers have a cache hierarchy to

bridge the gap between the CPU speed and the memory speed, and cache misses greatly

decrease the performance especially in data-intensive applications. If we allocate nodes

from here and there then the probability of cache misses increases.

To resolve these problems, we represent a binary tree as an array serialized in the order

of the prefix traversal. We represent a tree divided by the m-bridges using one array gt

for the global structure and one array of arrays segs for the local segments. Note that the

arrays in segs are distributed among processors and only one processor has the array for

each local segment. Figure 6.2 illustrates the array representation of the distributed tree.

Since adjoining elements are aligned one next to another in this representation, we can

reduce cache misses.

We introduce some notations for the discussion of implementation algorithms in the

next section. Some values may be attached to the global structure, and we write gt [i] to

access to the value attached on ith element of global structure. If ith segment in segs

is distributed on pth processor, we denote pr (i) = p. For a given serialized array for a

segment seg , we denote seg [i] for the ith value in the serialized array, and use functions

isLeaf(seg [i]), isNode(seg [i]) and isTerminal(seg [i]) to check whether the ith node is a leaf,

an internal node, and a terminal node, respectively.
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1

2
3

4 5

6 7 8 9

gt = [�N,�N,�L,�L,�L]

seg = [ [ 1C ],
[ 2C],
[ 4N, 6L, 7L ],
[ 5N, 8L, 9L ],
[ 3L ] ]

Figure 6.2. Array representation of divided binary trees. Each local segment of segs
is distributed to one of processors and is not shared. Labels L, N and T
denote a leaf, a normal internal node, and a terminal node, respectively.
Each m-critical node is included in the parent segment.

6.2 Implementation and Cost Model of Tree Skeletons

In this section, we show the implementation and the cost model of the tree skeletons
on distributed-memory parallel computers. We implement the local computations in tree
skeletons using loops and stacks on the serialized arrays to reduce the cache misses. This is
the most significant technique, with which the parallel programs achieve high performance
in the sequential computation parts of the algorithm.

We introduce several parameters for discussion of the cost model (Table 6.1). The
computational time of function f executed with p processors is denoted by tp(f). In
particular, t1(f) denotes the cost of sequential computation of f . Parameter N denotes
the number of nodes, and P denotes the number of processors. Parameter m is used
for m-critical nodes and m-bridges, and M denotes the number of segments after the
division. For the ith segment, in addition to the parameter of the number of nodes Li, we
introduce parameter Di indicating the depth of the critical node. Parameter cα denotes
the communication time for a value of type α.

The cost model for tree accumulations can be uniformly given as the sum of the
maximum cost of local computations and the cost of global computations as follows.

max
p

∑
pr(i)=p

(Li × tl +Di × td) +M × tm

Table 6.1. Parameters for the cost model.

tp(f) computational time of function f using p processors
N the number of nodes in the input tree
P the number of processors
m the parameter for m-critical nodes and m-bridges
M the number of segments given by division of trees
Li the number of nodes in the ith segment
Di the depth of the terminal node in the ith segment
cα the time needed for communicating one data of type α
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In the expression of the cost model,
∑

pr(i)=p denotes the summation of cost for m-bridges

associated to processor p, and tl, td, tm are given with the cost of functions and the cost of

communications. The term (Li×tl) indicates the computational time required in sequential

computation and the term (Di × td) indicates the overhead caused by parallelism. The

last term (M × tm) indicates the overhead in terms of global structure.

6.2.1 Map and Zipwith Skeleton

Since there are no dependencies among nodes in the computation of the mapb skeleton, we

can implement the mapb skeleton by applying the following function map local to each

local segment. The map local function applies function kl to each leaf and function kn

to each internal node and the terminal node in a local segment seg .

map local(kl, kn, seg)
for i← 0 to seg .size − 1

if (isLeaf(seg [i])) seg ′[i] ← kl(seg [i]);
if (isNode(seg [i])) seg ′[i] ← kn(seg [i]);
if (isTerminal(seg [i])) seg ′[i] ← kn(seg [i]);

return seg ′;

Using this function, we can implement the mapb skeleton as follows.

mapb(kl, kn, (gt , segs))
for i← 0 to gt .size − 1

if (pr (i) == p) segs ′[i] = map local(kl, kn, segs [i])
return (gt , segs ′)

In a local segment with Li nodes, the number of leaves is at most Li/2 + 1 and

the number of internal nodes including the terminal node is at most Li/2 + 1. Therefore,

ignoring small constants we can specify the computational cost of the map local function

as follows.

t1(map local) =
Li
2
× t1(kl) +

Li
2
× t1(kn)

Therefore, the cost model for the mapb skeleton is as follows.

tP (mapb kl kn) = max
p

∑
pr(i)=p

Li × t1(kl) + t1(kn)
2

Since the zipwithb skeleton performs the similar computation as the mapb skeleton, we

can give the implementation algorithm and the cost model for the zipwithb skeleton in the

same manner.



124 Chapter 6 Implementation of Binary-Tree Skeletons

6.2.2 Reduce Skeleton

We then show an implementation and the cost model of the reduceb skeleton called with
function k and auxiliary functions k = 〈φ,ψn, ψl, ψr〉u. Let the type of reduceb skeleton
be reduceb :: (β → α→ α→ α) → BTree α β → α and the type of the intermediate value
be γ (i.e., the function φ has type φ :: β → γ).

The implementation of the reduceb skeleton consists of the following three steps:

1. local reduction for each segment,

2. gathering local results to the root processor, and

3. global reduction on the root processor.

Step 1. Local Reduction

The bottom-up computation of the reduceb skeleton can be computed by reversed traversal
on the array using a stack for the intermediate results. Firstly we apply reduce local

function to each local segment to reduce it to a value. In the the reduce local function,

• we apply functions φ and either ψl or ψr to the terminal node and its ancestors, and

• we apply function k to the other internal nodes.

Here, applying the function k is cheaper than applying function φ and ψn, even though
k l n r = ψn l (φ n) r holds with respect to the results of functions. To specify where the
terminal node or its ancestor is in the stack, we use a variable d that indicates the position.
Note that in the computation of the reduce local function, at most one element in the
stack has the value of the terminal node or its ancestors.

reduce local(k, φ, ψl, ψr, seg)
stack ← ∅; d← −∞;
for i← seg .size − 1 to 0

if (isLeaf(seg[i]))
stack ← seg[i]; d ← d+ 1;

if (isNode(seg[i]))
lv ← stack ; rv ← stack ;
if (d == 0) stack ← ψl(lv , φ(seg[i]), rv );
else if (d == 1) stack ← ψr(lv , φ(seg[i]), rv ); d← 0;
else stack ← k(lv , seg[i], rv ); d← d− 1;

if (isTerminal(seg[i]))
stack ← φ(seg[i]); d ← 0;

top ← stack ; return top;

In this step, functions φ and either ψl or ψr is applied to the terminal node and its
ancestors (Di nodes) and function k is applied to the other internal nodes ((Mi/2 −Di)
nodes). Thus, the cost of reduce local is given as follows.

t1(reduce local) = Di × (t1(φ) + max(t1(ψl), t1(ψr))) +
(
Li
2
−Di

)
× t1(k)

=
Li
2
× t1(k) +Di × (t1(φ) + max(t1(ψl), t1(ψr)) − t1(k))
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Step 2. Gathering Local Results to Root Processor

In the second step, we gather all the local results to the root processor. The communication

cost is given by the number of leaf segments of type α and the number of internal segments

of type γ.

tP (Step 2) =
M

2
× cα +

M

2
× cγ

Let the gathered values be put in array gt after this step.

Step 3. Global Reduction on Root Processor

Finally, we compute the result of the reduceb skeleton by applying the reduce global

function below to the array of local results. This computation is performed on the root

processor. We compute the result by applying ψn for each internal node in a bottom-up

manner, which is implemented by a reversed traversal with a stack on the array for the

global structure.

reduce global(ψn, gt)
stack ← ∅;
for i← gt .size − 1 to 0

if (isLeaf(gt[i]))
stack ← gt[i];

if (isNode(gt[i]))
lv ← stack ; rv ← stack ; stack ← ψn(lv , gt [i], rv )

top ← stack ; return top;

In this step the function ψn is applied to each internal segment and thus the cost of

reduce global is given as follows.

t1(reduce global) =
M

2
× t1(ψn)

In summary, we obtain the following program for the reduceb skeleton.

reduceb(k, 〈φ,ψn, ψl, ψr〉u, (gt , segs))
for i← 0 to gt .size − 1

if (pr (i) == p) gt [i] = reduce local(k, φ, ψl, ψr, segs [i])
gather to root(gt)
if (p == 0) reduce global(ψn, gt)

The cost model of the reduceb skeleton is given as follows.

tP (reduceb k)
= max

p

∑
pr(i)=p

t1(reduce local) + tP (Step 2) + t1(reduce global)

= max
p

∑
pr(i)=p

(
Li × t1(k)

2
+Di × (−t1(k) + t1(φ) + max(t1(ψl), t1(ψr)))

)

+M × cα + cγ + t1(ψn)
2
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6.2.3 Upwards Accumulate Skeleton

Next, we develop an implementation of the uAccb skeleton called with function k and
auxiliary functions k = 〈φ,ψn, ψl, ψr〉u. Similar to the reduceb skeleton, let the type of the
uAccb skeleton be uAccb :: (β → α→ α→ α) → BTree α β → BTree α α, and the type of
intermediate value be γ.

The implementation of the uAccb skeleton on distributed trees consists of the following
five steps:

1. local upwards accumulation and reduction for each segment,

2. gathering results of local reductions to the root processor,

3. global upwards accumulation on the root processor,

4. distributing result of global upwards accumulation, and

5. local update for each internal segment.

Step 1. Local Upwards Accumulation

In the first step, we apply the following function uAcc local to each segment and com-
pute local upwards accumulation and reduction. This function puts the intermediate
results to array seg ′ if a node has no terminal node as descendants. This result value is
indeed the result of the uAcc skeleton. This function puts nothing to array seg ′ if a node
is either the terminal node or an ancestor of the terminal node. Returned values are the
result of local reduction and the array seg ′.

uAcc local(k, φ, ψl, ψr, seg)
stack ← ∅; d← −∞;
for i← seg .size − 1 to 0

if (isLeaf(seg [i]))
seg ′[i] ← seg [i]; stack ← seg ′[i]; d← d+ 1;

if (isNode(seg [i]))
lv ← stack ; rv ← stack ;
if (d == 0) stack ← ψl(lv, φ(seg [i]), rv); d← 0;
else if (d == 1) stack ← ψr(lv, φ(seg [i]), rv); d← 0;
else seg ′[i] ← k(lv, seg [i], rv); stack ← seg ′[i]; d← d− 1;

if (isTerminal(seg [i]))
stack ← φ(seg [i]); d← 0;

top ← stack ; return(top, seg ′);
In the computation of the uAcc local function, φ and either of ψl or ψr are applied

to each node of the terminal node and its ancestors (Di nodes), and k is applied to the
other internal nodes ((Li/2−Di) nodes). We therefore obtain the cost of the uAcc local

function as follows. Note that this cost is the same as that of reduce local function.

t1(uAcc local) = Di × (t1(φ) + max(t1(ψl), t1(ψr))) +
(
Li
2
−Di

)
× t1(k)

=
(
Li
2

)
× t1(k) +Di × (t1(φ) + max(t1(ψl), t1(ψr)) − t1(k))
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Step 2. Gathering Results of Local Reductions to Root Processor

In the second step, we gather the results of the local reductions on the global structure gt

of the root processor. From each leaf segment a value of type α is transferred, and from

each internal segment a value of type γ is transferred. Since the number of leaf segments

and the number of internal segments are almost M/2 respectively, the communication cost

of the second step is given as follows.

tP (Step 2) =
M

2
× cα +

M

2
× cγ

Step 3. Global Upward Accumulation on Root Processor

In the third step, we compute the upwards accumulation for the global structure gt on the

root processor. Function uAcc global performs sequential upwards accumulation using

function ψn.

uAcc global(ψn, gt)
stack ← ∅;
for i← gt .size − 1 to 0

if (isLeaf(gt [i]))
gt ′[i] ← gt [i];

if (isNode(gt [i]))
lv ← stack ; rv ← stack ; gt ′[i] ← ψn(lv, gt[i], rv);

stack ← gt ′[i];
return(gt ′);

In this function, we apply function ψn to each internal segment of gt , and thus the

cost of the third step is given as

t1(uAcc global) =
M

2
× t1(ψn) .

Step 4. Distributing Global Result

In the fourth step, we send the result of global upwards accumulation to processors,

where two values are sent to each internal segment and no values are sent to each leaf

segment. Since all the values have type α after the global upwards accumulation, and the

communication cost of the fourth step is given as follows.

tP (Step 4) = M × cα

Step 5. Local Updates for Each Internal Segment

In the last step, we apply function uAcc update to each internal segment. At the

beginning of the function, the two values pushed in the previous step are pushed to the

stack. These two values correspond to the results of children of the terminal node. Note
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that in the last step we only compute the missing values in the segment seg ′, which is

given in the local upwards accumulation (Step 1).

uAcc update(k, seg , seg ′, (lc, rc))
stack ← ∅; stack ← rc; stack ← lc;
d← −∞;
for i← seg .size − 1 to 0

if (isLeaf(seg [i]))
stack ← seg ′[i]; d← d+ 1;

if (isNode(seg [i]))
lv ← stack ; rv ← stack ;
if (d == 0) seg ′[i] ← k(lv, seg [i], rv); stack ← seg ′[i];
else if (d == 1) seg ′[i] ← k(lv, seg [i], rv); stack ← seg ′[i]; d← 0;
else stack ← seg ′[i]; d← d− 1;

if (isTerminal(seg [i]))
lv ← stack ; rv ← stack ;
seg ′[i] ← k(lv, seg [i], rv); stack ← seg ′[i]; d← 0;

return(seg ′);

In this step, function k is applied to the nodes on the path from the terminal node to

the root node for each internal segment. Noting that the depth of the terminal nodes is

Di, we can give the cost of uAcc update as follows.

t1(uAcc update) = Di × t1(k)

Using the functions defined so far, we can implement the uAccb skeleton as follows.

uAccb(k, 〈φ,ψn, ψl, ψr〉u, (gt , segs))
for i← 0 to gt .size − 1

if (pr (i) == p) (gt [i], segs ′[i]) = uAcc local(k, φ, ψl, ψr, segs [i])
gather to root(gt)
if (p == 0) gt ′ = uAcc global(ψn, gt)
distribute from root(gt ′)
for i← 0 to gt .size − 1

if (pr (i) == p ∧ isNode(gt ′[i]))
segs ′[i] = uAcc update(k, segs [i], segs ′[i], gt ′[i])

return (gt ′, segs ′)

The cost model of the uAccb skeleton is given as follows.

tP (uAccb)
= max

p

∑
pr(i)=p

t1(uAcc local) + tP (Step 2) + t1(uAcc global)

+ tP (Step 4) + max
p

∑
pr(i)=p

t1(uAcc update)

= max
p

∑
pr(i)=p

(
Li × t1(k)

2
+Di × (t1(φ) + max(t1(ψl), t1(ψr)))

)

+M × (3cα + cγ + t1(ψn))/2
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6.2.4 Downwards Accumulate Skeleton

Finally, we develop an implementation and the cost model for the dAccb skeleton called

with a pair of functions (gl, gr) and auxiliary functions (gl, gr) = 〈φl, φr, ψu, ψd〉d. Let the

type of the skeleton be dAccb :: (γ → β → γ, γ → β → γ) → γ → BTree α β → BTree γ γ

and the type of the intermediate value be δ (i.e., the function φl has type φl :: β → δ, for

example.).

The implementation of the dAccb skeleton also consists of the following five steps:

1. computing two intermediate values for each internal segment,

2. gathering local results to the root processor,

3. global downwards accumulation on the root processor,

4. distributing the result of global downwards accumulation, and

5. local downwards accumulation for each segment.

Step 1. Computing Local Intermediate Values

In the first step, we compute for each internal segment two local intermediate values,

which are used in updating the accumulative parameter from the root node to the both

children of the terminal node. To minimize the computation cost, we first find the terminal

node and then compute two values only on the path from the root node to the terminal

node. We implement this computation by the following function dAcc path, in which

the computation is done by a reversed traversal on the array with an integer d instead of

a stack. Two variables toL and toR are the intermediate values.

dAcc path(φl, φr, ψu, seg)
d← −∞;
for i← seg .size − 1 to 0

if (isLeaf(seg [i]))
d← d+ 1;

if (isNode(seg [i]))
if (d == 0)

toL = ψu(φl(seg [i]), toL); toR = ψu(φl(seg [i]), toR);
else if (d == 1)

toL = ψu(φr(seg [i]), toL); toR = ψu(φr(seg [i]), toR);
d← 0;

else
d← d− 1;

if (isTerminal(seg [i]))
toL ← φl(seg [i]); toR ← φr(seg [i]);
d← 0;

return (toL, toR);
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In this step we apply ψu twice and either φl or φr for each of the ancestors of the
terminal nodes (Di nodes). Therefore, omitting some small constants, the cost of the
dAcc path function is given as follows.

t1(dAcc path) = Di × (max(t1(φl), t1(φr)) + 2t1(ψu))

Step 2. Gathering Local Results to Root Processor

In the second step, we gather the local results of the internal segments to the root processor.
Since the two intermediate values have type δ and the number of internal segments is M/2,
the communication cost in the second step is given as follows.

tP (Step 2) = M × cδ

The pair of local results from each internal segment is put to the array of the global
tree structure gt .

Step 3. Global Downwards Accumulation

In the third step, we compute global downwards accumulation on the root processor. We
implement this global downwards accumulation with a forward traversal using a stack as
shown in the following function dAcc global. Firstly, the initial value of accumulative
parameter is pushed to the stack, and then the accumulative parameter in the stack is
updated with the pair of local results given in the previous step. The result of global
accumulation is the accumulative parameter passed to the root node for each segment.

dAcc global(ψd, c, gt)
stack ← ∅; stack ← c;
for i← 0 to gt .size − 1

if (isLeaf(gt [i]))
gt ′[i] ← stack ;

if (isNode(gt [i]))
gt ′[i] ← stack ; (toL, toR) ← gt[i];
stack ← ψd(gt ′[i], toR); stack ← ψd(gt ′[i], toL);

return gt ′;

The dAcc global function applies function ψd twice for each internal segment in
the global structure. Therefore, the computational cost of the dAcc global function is
given as follows.

t1(dAcc global) = M × t1(ψd)

Step 4. Distributing Global Result

In the fourth step, we distribute the result of global downwards accumulation to the
corresponding processor. Since each result of global downwards accumulation has type γ,
the communication cost of the fourth step is given as follows.

tP (step 4) = M × cγ
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Step 5. Local Downwards Accumulation

Finally, we compute local downwards accumulation for each segment. The initial value

c′ of the accumulative parameter is given in the previous step. Note that the definition

of the following dAcc local function is just the same as the sequential version of the

downwards accumulation on the serialized array if we assume the terminal node as a leaf.

dAcc local(gl, gr, c′, seg)
stack ← ∅; stack ← c′;
for i← 0 to seg .size − 1

if (isLeaf(seg [i]))
seg ′[i] ← stack ;

if (isNode(seg [i]))
seg ′[i] ← stack ; stack ← gr(seg ′[i], seg [i]); stack ← gl(seg ′[i], seg [i]);

if (isTerminal(seg [i]))
seg ′[i] ← stack ;

return seg ′;

The local downwards accumulation applies functions gl and gr for each internal node.

Since the number of the internal nodes is almost Li/2, the computational cost of the

dAcc local function is given as follows.

t1(dAcc local) =
Li
2
× (t1(gl) + t1(gr))

Summarizing the discussion so far, we obtain the following implementation of the dAccb

skeleton.

dAccb((gl, gr), 〈φl, φr, ψu, ψd〉d, c, (gt , segs))
for i← 0 to gt .size − 1

if (pr (i) == p ∧ isNode(gt [i]))
gt [i] = dAcc path(φl, φr, ψu, segs [i])

gather to root(gt)
if (p == 0) gt ′ = dAcc global(ψd, c, gt)
distribute from root(gt ′)
for i← 0 to gt .size − 1

if (pr (i) == p) segs ′[i] = dAcc local(gl, gr, gt ′[i], segs [i])
return (gt ′, segs ′)

The cost model of the dAccb skeleton is given as follows.

tP (dAccb)
= max

p

∑
pr(i)=p

t1(dAcc path) + tP (Step 2) + t1(dAcc global)

+ tP (Step 4) + max
p

∑
pr(i)=p

t1(dAcc local)

= max
p

∑
pr(i)=p

(
Li × t1(gl) + t1(gr)

2
+Di × (max(t1(φl), t1(φr)) + 2t1(ψu))

)

+M × (cδ + t1(ψd) + cγ)
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6.3 Optimal Division of Binary Trees Based on Cost Model

As we stated at the beginning of Section 6.1, locality and load balance are two important

properties in developing efficient parallel programs in particular on distributed-memory

parallel computers. When we divide and distribute a binary tree using the m-bridges,

we enjoy good locality with large m while we enjoy good load balance with small m.

Therefore, we need to find an appropriate value for m to achieve both good locality and

good load balance.

First, we show the relations among parameters of the cost model. From Lemma 6.3

and the representation of local segments in Figure 6.2, we have

Li ≤ m . (6.2)

Since the height of a tree is at least a half of the number of nodes, we obtain

Di ≤ Li/2 ≤ m/2 . (6.3)

From Lemmas 6.4 and 6.5, the number of local segments M is bound with the number N

of nodes and the parameter m as follows.

1
2

(
N

m
− 1
)
≤M ≤ 2N

m
− 1 (6.4)

By inequality (6.3), the general form of the cost model can be transformed into the fol-

lowing simpler form.

max
p

∑
pr(i)=p

(Li × tl +Di × td) +M × tm

≤ max
p

∑
pr(i)=p

(
Li × tl +

Li
2
× td

)
+M × tm

= (max
p

∑
pr(i)=p

Li)×
(
tl +

td
2

)
+M × tm

Next, we want to bound the maximum number of nodes distributed to a processor,

maxp
∑

pr(i)=p Li,. We distribute the local segment to processors so as to obtain good

load balance. One easy way to implement the load balancing is greedy distribution of

the local segments from the largest one. By this greedy distribution, the difference be-

tween the maximum number of nodes maxp
∑

pr(i)=p Li and the minimum number of nodes

minp
∑

pr(i)=p Li is less than or equal to the maximum number of nodes in a segment. Since

the maximum number of nodes in a local segment is m as stated in inequality (6.2) and

the total number of nodes in the original binary tree is N , we can bound the maximum

number of nodes distributed to a processor as follows:

max
p

∑
pr(i)=p

Li ≤ N

P
+m
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where P denotes the number of processors. By substituting this inequality to the cost

model, we can bound the cost of the worst case.

max
p

∑
pr(i)=p

(Li × tl +Di × td) +M × tm ≤
(
N

P
+m

)
×
(
tl +

td
2

)
+M × tm (6.5)

Now we want to minimize the worst-case cost given in the right-hand side of inequal-

ity (6.5). By substituting the parameter M (inequality (6.4)), the worst-case cost is bound

with respect to m. We can bound the worst-case cost for smaller m as(
N

P
+m

)
×
(
tl +

td
2

)
+M × tm ≤

(
N

P
+m

)
×
(
tl +

td
2

)
+

1
2

(
N

m
− 1
)
× tm ,

and we can bound the worst-case cost for larger m as(
N

P
+m

)
×
(
tl +

td
2

)
+M × tm ≤

(
N

P
+m

)
×
(
tl +

td
2

)
+

2N
m

− 1 × tm .

From these bounds, we can minimize the worst-case cost for some value m in the following

range.√
tm

2tl + td

√
N ≤ m ≤ 2

√
tm

2tl + td

√
N

This new range of the parameter m is much smaller than that used in the previous

studies [45, 87, 112]. In Section 6.4, we will show several experiment results that support

this new range.

6.4 Experiment Results

To confirm the efficiency of the implementation algorithm for binary-tree skeletons, we

implemented binary tree skeletons in C++ and MPI and made several experiments. We

used our PC-cluster of uniform PCs with Pentium 4 2.8-GHz CPU and 2-GByte memory

connected with Gigabit Ethernet. The compiler and MPI library used are gcc 4.1.1 and

MPICH 1.2.7, respectively.

We used the skeletal parallel program that solves the party planning problem. For the

skeletal program on our PC-cluster, the parameters of the cost model are given as tl = 0.18

μs, td = 0.25 μs, and tm = 100 μs, which are measured with a small input. The input

trees are (1) a balanced tree, (2) a randomly generated tree and (3) a fully ill-balanced

tree, each with 16,777,215 (= 224 − 1) nodes.

Figures 6.3 and 6.4 shows the general performance of the tree skeletons. Each execution

time excludes the initial data distribution and final gathering. The speedups are plotted

against the efficient sequential implementation of the program, which is implemented on

the array representing binary trees based on the same algorithm. As seen in these plots, the

implementation shows good scalability even against the efficient sequential program. By

the m-bridges, the balanced tree is divided into leaf segments of the same size and internal
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segments consisting only of one node. Therefore, the overhead caused by parallelism is

very small for the balanced binary tree, and the implementation achieves almost linear

speedups against the sequential program. For the random tree, the average depth of

the terminal nodes is so small that the implementation achieves good performance close

to that for the balance tree. The fully ill-balanced tree, however, is divided into leaf

segments consisting of one node and internal segments with their terminal node at the

depth Di = Li/2. From the cost model and its parameters, the skeletal parallel program

has overheads caused by the factor of depth of the terminal nodes, Di× td ≈ 0.7×Li× tl.
In fact, the experimental results show that the skeletal parallel program runs about two

times slower for the fully ill-balanced tree than for the other two inputs.

To analyze the cost model and the range of the parameter m more in detail, we made

more experiments for the randomly generated tree by changing the value of the parameter

m. By substituting the parameters measured by a small input, we can expect that the

parameter m in the range 50,000 < m < 100,000 supports good performance. Figure 6.5

plots the execution times to the number of processors for three values of the parameter m.

As we can see from this figure, the implementation achieves good performance for a wide

range of m. Figure 6.6 plots the execution times to the parameter m. This figure shows

that the performance gets worse if the parameter m is too small (m < 4,000) or too large

(m > 150,000). For the parameter m in the range above the skeletal program achieves

near the best performance, and we can conclude that the cost model and the estimation

of the parameter m is useful for efficient implementations.

6.5 Short Summary

In this chapter, we have developed an efficient implementation of binary-tree skeletons

for the distributed-memory parallel computers and its cost model. In our implementa-

tion, binary trees are divided into segments by m-bridges where the parameter m is esti-

mated based on the cost model. The implementation mainly consists of loops with stacks

traversing on the array representation of segments and this greatly makes the sequential

computation parts efficient.

We used the parameters of the cost model measured manually for the program in this

chapter. Some profiling systems that help estimating the parameters would be useful for

the practical use of the implementation.
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Figure 6.3. Execution times plotted to the number of processors. The parameter m for
the division of trees is m = 2 × 104.
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Chapter 7

SkeTo: Parallel Skeleton Library

We have implemented a parallel skeleton library named SkeTo (SkeTo is an abbreviation

for “Skeleton Library in Tokyo”, and means “supporter” in Japanese.) to bring the

theories studied so far to practice. Programmers can write skeletal parallel programs in

a sequential programming style on the SkeTo library. The SkeTo library is now available

online (http://www.ipl.t.u-tokyo.ac.jp/sketo/).

Figure 7.1 depicts the framework of the SkeTo library. The SkeTo library consists of two

parts: the parallel skeleton library and the optimization mechanism. The parallel skeleton

library is implemented in C++ and MPI; the optimization mechanism is implemented in

OpenC++ [28].

Three major features of the SkeTo library are as follows.

Supporting Three Data Structures Based on Constructive Algorithmics

So far many parallel skeleton libraries have been implemented by many research groups

[4,7,11,25,26,75]. Many of them supports parallel manipulation of lists (one-dimensional

arrays) and some of them supports parallel manipulation of matrices (two-dimensional

arrays) or higher-dimensional arrays.

The SkeTo library provides parallel skeletons for lists, matrices, and trees. These par-

allel skeletons are formalized based on the solid theory of constructive algorithmics. For

list skeletons, there have been several studies [65, 117, 118], and for matrix skeletons the

foundation was given by Emoto et al. [42]. For tree skeletons, we have studies in Chap-

ters 2–4. The uniform interface of the these parallel skeletons based on the constructive

algorithmics helps users to use them.

Interface and Implementation with Standard C++ and MPI

The theories of parallel skeletons are formalized based on the ideas in functional pro-

gramming such as polymorphism, higher-order functions. At the early stages of parallel

Overall of this chapter is based on [92] among which Section 7.1.3 is based on [89], Section 7.2 is based
on [93,132], and Section 7.3 is based on [91].
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Figure 7.1. Overview of the SkeTo Library

skeleton libraries, there were several implementation of parallel skeletons in imperative

languages with some extensions to support functional features [25,114].

We have implemented the parallel skeletons with standard C++ and MPI without any

language extensions borrowing the ideas from Muesli [75]. Since the C++ compiler and

MPI library are now widely available, users can use the SkeTo library on many parallel

computers. The SkeTo library also provides several wrapper functions of MPI library to

encourage users to write their parallel programs as if they wrote sequential ones.

Optimization Mechanism

Skeletal parallel programs may show poorer performance than hand-coded parallel pro-

grams. This is mainly due to overhead caused by the limited algorithms manipulatable

by parallel skeletons and overhead caused by the intermediate data structures between

parallel skeletons. The second overhead can be removed by optimizing skeletal parallel

programs while the first overhead is inevitable. Here, fusion transformations work well.

We have implemented the optimization mechanism in a meta-language OpenC++.

This optimization mechanism automatically removes the intermediate data structures by

fusing two successive skeletons.

The organization of this chapter is as follows. In Section 7.1, we discuss several im-

plementation issues of the skeleton library. In Section 7.2, we show the optimization

mechanism. In Section 7.3, we propose a code generator for auxiliary functions that sup-

ports developing skeletal parallel programs. In Section 7.4, we show experiment results on

the SkeTo library for several examples. In Section 7.5, we summarize this chapter.
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7.1 Coding Techniques for Efficiency and Programmability

With the SkeTo library users can develop parallel programs in C++ without considering

data allocation and processor communication. Figure 7.2 shows a skeletal program using

the SkeTo library corresponding to the following program that computes the height of

tree.

heightb tree1 = let tree2 = dAccb (λc b.c+ 1, λc b.c+ 1) 1 tree1
in reduceb max3 tree2
where max3 l b r = l ↑ b ↑ r

(λc b.c+ 1, λc.c b+ 1) = 〈λb.1, λb.1,+,+〉d
max3 = 〈id ,max3 ,max3 ,max3 〉u

In this program, parameter functions are first defined, then the main part of the program

follows. In the main part, the input tree is read from a file, and then the dAccb and reduceb

skeletons are called to compute the height of tree, and finally the result is output on the

standard output of the root process.

In this section, we show implementation issues of the parallel tree skeletons.

7.1.1 Function Objects

In the SkeTo library, C++ template mechanism and function objects are used to make

parallel skeletons generic and efficient. Advantages of these features of C++ for the

implementation of parallel skeletons were studied by Striegnitz and Kuchen [76,122]. There

are two ways in developing higher-order functions in C++: by pointers to functions and by

function objects. In the implementation of the SkeTo library, we utilize function objects

for reasons of efficiency and programmability.

In programs developed with skeletons, parameter functions are called so many times

that the overhead of calling parameter functions greatly slows the programs down. Using

function objects the C++ compilers perform inline-expansion of the function objects, and

therefore there is no overhead for calling parameter functions.

In terms of programmability, based on the template mechanism we can generate new

function objects by partially binding some arguments and/or composing functions. Strieg-

nitz and Kuchen [76,122] developed a skeleton library in which functions are curried and

allowed to bind some arguments. These techniques are also implemented in the boost

library as boost::bind and boost::compose [1, 71]. Generating new function objects is

helpful if we implement user-defined parallel skeletons on the existing parallel skeletons.

For example, we implement the rose-tree skeletons, by composing binary-tree skeletons

where function objects for the binary-tree skeletons are automatically generated from the

functions objects passed to the rose-tree skeletons.

In the SkeTo library, users should define function objects by inferring function objects

provided by the SkeTo library. For example, the base class for the binary functions is

provided as follows.
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#include <iostream>
#include <tree_skeletons.h>
using namespace std;

//----------------------------------------------------------------------
// function objects

SKETO_DEF_BINOP( f_dAcc_g, int, int, int,
return x + 1; );

SKETO_DEF_UNOP( f_const_one, int, int,
return 1; );

SKETO_DEF_BINOP( f_plus, int, int, int,
return x + y; );

SKETO_DEF_TEROP( f_max3, int, int, int, int,
return max( max( x, y ), z ); );

SKETO_DEF_UNOP( f_id, int, int,
return x; );

//----------------------------------------------------------------------
// main function

int SketoMain( int argc, char *argv[] ) {
const char* filename_in = argv[ 1 ];
dist_tree< int, int > *tree1
= dist_tree< int, int >::read_from_file( filename_in );

dist_tree< int, int > *tree2
= tree_skeletons::dAcc( f_dAcc_g, f_dAcc_g,

f_const_one, f_const_one, f_plus, f_plus,
1, tree1 );

int result
= tree_skeletons::reduce( f_max3,

f_id, f_max3, f_max3, f_max3,
tree2 );

skeleton::cout << "height of the input tree: " << result << std::endl;

skeleton::safe_delete( tree2 );
skeleton::safe_delete( tree1 );
return 0;

}

Figure 7.2. Sample program for computing height of binary tree.
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template< typename Arg, typename Arg2, typename Res >
struct binary_function {
typedef Arg first_argument_type;
typedef Arg second_argument_type;
typedef Res result_type;

};

The type information (e.g., first_argument_type) is used in determining the type

of parallel skeletons. With this information, we need not to specify types when we call

skeletons. For example, the function object f_dAcc_g that represents (λc b.c+ 1) can be

defined as follows. Here, the type of the function object is named as f_dAcc_g_t.

struct f_dAcc_g_t
: public skeleton::binary_function< int, int, int > {

int operator(int c, int b) const {return c + 1;}
} f_dAcc_g;

To shorten this long definition of function object, we can use the SKETO_DEF_BINOP macro.

SKETO_DEF_BINOP(f_dAcc_g, int, int, int
return x + 1; );

This new definition of function is easy to develop and read.

Due to the limitation of C macros, the arguments of the function are named as x and

y in this order, and types specified with templates are not allowed.

7.1.2 Implementation of Binary-Tree Skeletons

The implementation algorithm for binary-tree skeletons is in Chapter 6. In this section, we

show the interface of skeletons and discuss some coding techniques in the implementation

of skeletons in C++.

The binary-tree skeleton library mainly consists of two classes dist_tree for binary

trees distributed over processors and tree_skeletons for providing binary-tree skeletons.

The tree skeletons are separated from class dist_tree in two reasons. One reason is

the look of the program. We have used Haskell for the discussion of developing skeletal

programs. The calls of tree skeletons in the SkeTo library look like programs in Haskell.

We discuss this topic in the implementation of the mapb skeleton. Another reason is the

limitation of template mechanism in C++. If we define two classes with different template

parameter, the two classes are considered to be different ones and the private attributes

of one class cannot be accessed from the other.

Data Structure for Binary Trees

The distributed binary trees that are manipulated by binary-tree skeletons are defined by

the dist_tree class. The following code segment shows the definition of dist_tree. We

have formalized binary trees to have two different types for leaves and for internal nodes.

In the implementation in C++, we specify these two types for two template parameters A

and B.
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template< typename A, typename B >
class dist_tree
{
friend class local_tree< A, B >;
friend class tree_skeletons;

int global_size; // the number of segments
node_type *types; // an array of node-types
int *index_to_proc; // an array for processor IDs
local_tree< A, B > **segments; // an array of pointers to segments
...

The local segments are distributed over processors. Therefore, among the segments,

the processor in charge of a segment has an actual pointer to the local segment. The

node_type is an enumeration type that is used to distinguish a leaf, an internal node, and

a terminal node. After the attributes, several functions for input/output are defined.

Local segments are defined by the local_tree class that consists of an array for flags

of node types and an array of values. The nodes are put in the array in the order of the

prefix traversal as shown in Section 6.1.2.

template < typename A, typename B >
class local_tree
{
friend class dist_tree< A, B >;
friend class tree_skeletons;

int size; // the number of nodes
node_type *types; // an array of node-types
node< A, B > *vals; // an array of values
...

There are two ways for implementing the class node for nodes. One is by the structure

that have two values for a leaf and an internal node disjointly. The other, and used in our

implementation, is by the union as shown in the following code.

template< typename A, typename B >
struct node
{
union {
A val_l; // for the case of a leaf
B val_n; // for the case of an internal node

};
};

The advantage of using union is to decrease the amount of memory needed for a node, but

a disadvantage is that the constructors cannot be used for the types A or B.

For the cases when the two types of a leaf value and an internal node value are the

same, we define the following specialization of the node class.

template< typename A >
struct node< A, A >
{
union {
A val_l; // for the case of a leaf
A val_n; // for the case of an internal node

A val; // for the unified access to the value
};

};
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By the new value val, we can access to the value uniformly. This uniform access to the
value benefits in implementing the uAccb and dAccb skeletons.

In fact, if we deal with the values for leaves and values for internal nodes separately,
we can reduce the amount of memory used and the constructors are allowed. However,
this makes the implementation of tree skeletons so complicated that we now do not adopt
it.

Implementation of the mapb Skeleton

The binary-tree skeletons are implemented in the tree_skeletons class. In the following
of this section, we show the implementation of the mapb and reduceb skeletons.

The mapb skeleton has the following interface.

template< typename K1, typename K2 >
static dist_tree< typename K1::result_type, typename K2::result_type > *
map( const K1 &k1,

const K2 &k2,
const dist_tree< typename K1::argument_type,

typename K2::argument_type > *t );

Only two template parameters for the parameter functions K1 and K2 are used in this
definition. These two template parameters are guessed by C++ compilers and users need
not to specify them.

With this coding technique and the separation of skeletons from the dist_tree class,
we can call the tree skeletons as the specification in Haskell. For example, the program
using the mapb skeleton, t2 = mapb kl kn t1, can be implemented as follows by using our
library.

dist_tree* t2 = tree_skeletons::map(kl, kn, t1);

The type of values are extracted from the definitions of function objects. The local
computation is implemented as shown in Section 6.2 using loops on the local segments. The
following shows the implementation of the mapb skeleton where the function map_adapter

is called from map with specification of template parameters.
template< typename A, typename B, typename C, typename D,

typename K1, typename K2 >
dist_tree< C, D >* tree_skeletons::map_adapter( const K1 &k1,

const K2 &k2,
const dist_tree< A, B > *t )

{
dist_tree< C, D >* ret_tree = copy_shape< C, D, A, B >( t );
for ( int ltree = 0; ltree < t->global_size; ltree++ ) {
if ( !t->segments[ ltree ] ) continue;
const local_tree< A, B >* src = t->segments[ ltree ];
local_tree< C, D >* dist = ret_tree->segments[ ltree ];

for ( int i = 0; i < src->size; i++ ) {
switch ( src->types[ i ] ) {
case LEAF:

dist->vals[ i ].val_l = k1( src->vals[ i ].val_l ); break;
case NODE: case TERMINAL:

dist->vals[ i ].val_n = k2( src->vals[ i ].val_n ); break;
default: assert( false ); } } }

return ret_tree;
}
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Implementation of the reduceb Skeleton

The reduceb skeleton takes a parameter function f and for parallel implementation we

need four auxiliary functions. We implemented the following function reduce so that it

takes function objects corresponding to k and four auxiliary functions explicitly. Users

should be responsible to whether the auxiliary functions satisfy the condition.

template< typename K,
typename PHI, typename PSIN, typename PSIL, typename PSIR >

static typename K::result_type
reduce( const K &k,

const PHI &phi,
const PSIN &psiN,
const PSIL &psiL,
const PSIR &psiR,
const dist_tree< typename K::result_type,

typename K::second_argument_type >* t );

In the implementation of local reductions, we use a stack to store intermediate values.

Here, the values pushed to the stack may have different types in the implementation

algorithm in Section 6.2. Since only one value that corresponds to a subtree with a

terminal node is in the stack at a time, we implement the value of type D (δ in the

implementation algorithm) out of the stack. The following segment of code represents the

local reductions.
D value_d; int depth_d = -1;
std::stack< C > stack_c;

for ( int i = local_tree->size - 1; i >= 0; i-- ) {
switch ( local_tree->types[ i ] ) {
case LEAF:
stack_c.push( local_tree->vals[ i ].val_l );
if ( depth_d != -1 ) depth_d++;
break;

case NODE:
switch ( depth_d ) {
case 0: {
C right = stack_c.top( ); stack_c.pop( );
value_d = psiL( value_d, phi( local_tree->vals[ i ].val_n), right );

} break;
case 1: {
C left = stack_c.top( ); stack_c.pop( );
value_d = psiR( left, phi( local_tree->vals[ i ].val_n), value_d );
depth_d = 0;

} break;

...

Another implementation technique is used in the gathering step. To minimize the effect

of communication latency, we first pack the data gathered from a process and then com-

municate it by the asynchronous communication of the MPI (MPI_Isend and MPI_Irecv).

As seen in Chapter 5, the reduceb and uAccb skeletons are often called after the mapb

skeleton. In the local computation of these skeletons, loops traverse the arrays that include

the values of leaves. Therefore, it is smart to provide functions for the fusions of the mapb

and reduceb skeletons or the mapb and uAccb skeletons. We implemented these fused

skeletons as map_reduce and map_uAcc.
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7.1.3 Implementation of Rose-Tree Skeletons

In this section, we show the implementation of rose-tree skeletons based on their design

in Chapter 4. The template mechanism in C++ enables us to develop rose-tree skeletons

without modifying the base binary-tree skeletons.

We first show the implementation of the data structure for rose trees, and then show

the implementation of the mapr and lAccr skeletons for examples.

Data Structure for Rose Trees

In our implementation of the rose-tree skeletons, we deal with rose trees in the form of their

binary-tree representation in Section 4.3.1. We can implement the class for the binary-tree

representation just by using the dist_tree class. The following is a segment of code for

rose-tree structures where A is a template type representing the type of node in a rose

tree. Since the leaves are dummy nodes, we assign the same type as the internal nodes.

template< typename A >
class dist_rose_tree
{
dist_tree< A, A >* btree;
...

In our implementation, we provide several functions for input/output.

Implementation of the mapr Skeleton

Similar to the implementation of binary-tree skeletons, we implement the rose-tree skele-

tons in another class rose_tree_skeletons. We show the implementation of the mapr

skeleton, which is the simplest skeleton of our seven rose-tree skeletons.

Interface of the mapr skeleton is given in the following code. The first argument is a

function object of type K, whose argument and return value are of types K::result_type

and K::argument_type, respectively.

class rose_tree_skeletons
{
public:
template< typename K >
static dist_rose_tree< typename K::result_type > *
map( const K &k,

const dist_rose_tree< typename K::argument_type > *t );

The implementation of rose-tree skeletons consists of the two parts: the definitions

of function objects passed to the binary-tree skeletons, and the wrapper functions which

implement the rose-tree skeletons by calling the binary-tree skeletons.

For the mapr skeleton, we need to define the don’t-care function −, which does nothing

but keeps consistency of the types. We can generate such a function object UnaryUndef,

which accepts a value of type A and returns a dummy value of type B as follows.
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template< typename A, typename B >
struct UnaryUndef : public skeleton::unary_function< A, B > {
B operator()( const A& ) const { B dummy; return dummy; }

};

By using this function object, we can implement the mapr skeleton as follows. To make
the program simple, we insert a function map_adapter which is instantiated from the map

function. The implementation of the skeleton is directly given by calling the map skeleton
for binary trees.

template< typename A, typename B, typename K >
dist_rose_tree< B > *
rose_tree_skeletons::map_adapter( const K &k,

const dist_rose_tree< A > *t )
{
dist_tree< B, B > *bt
= tree_skeletons::map( UnaryUndef< A, B >( ), k, t->btree );

return new dist_rose_tree< B >( bt );
}

Implementation of the lAccr skeleton

We show the implementation of another more complicated skeleton lAccr.
In the implementation of the lAccr skeleton, we have two values as a tuple (p, a) in

the auxiliary functions of uAccb. First, we define the structure of tuples as the following
lAcc_in_t (named from lAccr internal type).

template < typename A >
struct lAcc_in_t {
bool p;
A a;

};

As in the case of the mapr skeleton, we implement the function objects for binary-tree
skeletons. In the case of the lAccr skeleton, we need a constant function for the mapb

skeleton, and k, φ, ψn, ψl, and ψr for the uAccb skeleton. For example, the function
object for φl is constructed from the function object oplus for operator ⊕ defined as the
following structure func_lAcc_psiL_t.

template < typename A, typename OPLUS >
struct func_lAcc_psiL_t : public skeleton::ternary_function<

lAcc_in_t< A >, A, lAcc_in_t< A >, lAcc_in_t< A > > {
const OPLUS &oplus;
func_lAcc_psiL_t( OPLUS oplus_ ) : oplus( oplus_ ) {};
lAcc_in_t< A > operator()( const lAcc_in_t< A >& /* l */,

const lAcc_in_t< A >& n,
const A& r ) const {

lAcc_in_t< A > retval;
if (n.p) { retval.p = false; retval.a = n.a + r; }
else { retval.p = false; retval.a = n.a; }
return retval;

}
};

The other functions can also be defined in the same way.
After defining the function objects, we can straightforwardly implement the lAccr skele-

ton as follows. The map_uAcc skeleton is the composition of the mapb skeleton followed
by the uAccb skeleton.
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template< typename A, typename OPLUS >
dist_rose_tree< A > *
rose_tree_skeletons::lAcc_adapter( const OPLUS& oplus,

const A& unit_oplus,
const dist_rose_tree< A > *t )

{
dist_tree< A, A > *bt1 = tree_skeletons::map_uAcc(

UnaryConst< A, A >( unit_oplus ),
func_lAcc_k_t< A, OPLUS >( oplus ),
func_lAcc_phi_t< A >( ),
func_lAcc_psiN_t< A, OPLUS >( oplus ),
func_lAcc_psiL_t< A, OPLUS >( oplus ),
func_lAcc_psiR_t< A, OPLUS >( oplus ),
t->btree );

dist_tree< A, A > *bt2
= tree_skeletons::getchr( unit_oplus, bt1 );

if ( bt1 ) delete bt1;
return new dist_rose_tree< A >( bt2 );

}

As seen so far, using the function objects and the template mechanism in C++, we
can implement the lAccr skeleton without much effort. The implemented skeletons how-
ever may be worse in efficiency than hand-optimized C++ and MPI programs due to the

intermediate data structures passed between the skeletons. The main aim of the implemen-
tation in this section is to verify the scalability of the parallel skeletons, and improvement
of the efficiency of the parallel skeletons is our future work.

7.2 Optimization Mechanism

We implemented a prototype system of optimization mechanism in OpenC++, which
transforms the skeletal parallel programs written in C++. In this section, we first sum-
marize fusion transformation for list skeletons [61], and then show the implementation of

the optimization system and experiment results.

7.2.1 List Skeletons and Their Fusion Transformation

The prototype implementation of the optimization mechanism only manipulates list skele-

tons. Here, we show the definition of list skeletons briefly. Important list skeletons are
map, reduce, and scan.

Map applies a function to every element in a list. Informally, we have

map k [x1, x2, . . . , xn] = [k x1, k x2, . . . , k xn].

Reduce collapses a list into a single value by repeatedly applying a certain associative
binary operator. Informally, for associative binary operator ⊕ and initial value e, we have

reduce (⊕) e [x1, x2, . . . , xn] = x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ e.

Scan accumulates all intermediate results in the computation of reduce. Informally,
for associative binary operator ⊕ and initial value e, we have

scan (⊕) e [x1, x2, . . . , xn] = [e, e ⊕ x1, e⊕ x1 ⊕ x2, . . . , e⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn].
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Note that this scan skeleton returns a list that is longer by one than the input list.
To fuse the composition of skeletons into one to eliminate unnecessary intermediate

data structures passed between skeletons, one may develop rules to do algebraic transfor-
mations on skeletal parallel programs like the authors in [5,53]. Unfortunately, this would
require a huge set of rules to take all possible combinations of skeletal functions into ac-
count. In this paper, we borrow the idea of shortcut deforestation [51], which optimizes
sequential programs, and simplifies the entire set into just a single rule. The idea is to
structure each skeleton with an interface that characterizes how it consumes and produces
the parallel data structure.

To manipulate skeletal parallel programs, we structured skeletons with the following
three functions: acc, cataJ and buildJ. Let g, p, q be functions, and ⊕ and ⊗ be associative
operators. The skeleton acc, for which we write [[g, (p,⊕), (q,⊗)]], is defined by

[[g, (p,⊕), (q,⊗)]] [ ] e = g e
[[g, (p,⊕), (q,⊗)]] (a : x) e = p (a, e) ⊕ [[g, (p,⊕), (q,⊗)]] x (e⊗ q a) .

We define cataJ as a special case of acc, where the accumulative parameter, e, is not used.
The skeleton cataJ, for which we write ([⊕, p, e]), is defined by

([⊕, p, e]) [ ] = e
([⊕, p, e]) (a : x) = p a⊕ ([⊕, p, e]) x .

Indeed, the cataJ skeleton is a specialization of accumulate as follows.

([⊕, p, e]) = [[id , (p ◦ fst ,⊕), (−,−)]]

The last function, buildJ, is to standardize the production of join-lists with implicit paral-
lelism.

buildJ gen = gen (++) [·] [ ]

Here, [.] stands for the function λa.[a], used for construction a singleton list from an
element.

We can express the list skeletons by using the structured skeletons defined above.

map f = buildJ (λc s e. ([c, s ◦ f, e]))
reduce (⊕) e = ([⊕, id, e])
scan (⊕) e x = buildJ (λc s e. [[s, (λ(a, e′). s e′, c), (id,⊕)]]) x e

Following the thought in [51], we may define our shortcut fusion for join lists as follows.
This rule is called CataJ-BuildJ rule.

([c, s, e]) ◦ buildJ gen = gen c s e

An example of applying this rule shows that the reduce skeleton after the map skeleton
can be fused into a single cataJ skeleton.

(reduce (⊕) e) ◦ (map k) = {structured form for the map and reduce skeletons}
([⊕, id , e]) ◦ (buildJ (λ c s e. ([c, s ◦ f, e])))

= {CataJ-BuildJ rule}
(λ c s e. ([c, s ◦ f, e])) (⊕) id e

= {lambda application}
([⊕, f, e])
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A variant of this rule is given as follows for the case that the both functions are enclosed

by buildJ. We call the following BuildJ(CataJ-BuildJ) rule.

(buildJ (λc s e. ([φ1, φ2, φ3]))) ◦ (buildJ gen) = buildJ (λc s e. gen φ1 φ2 φ3)

Finally, we generalize this rule to the following most generic fusion rule for accumulate.

Definition 7.1 (BuildJ(Acc-BuildJ) Rule [61])

buildJ (λc s e. [[g, (p,⊕), (q,⊗)]]) (buildJ gen x) e
= fst (buildJ (λc s e. gen (�) f d) x e)

where (u� v) e = let (r1, s1, t1) = u e
(r2, s2, t2) = v (e⊗ t1)

in (s1 ⊕ r2, s1 ⊕ s2, t1 ⊗ t2)
f a e = (p (a, e) ⊕ g (e⊗ q a), p (a, e), q a))
d e = (g e,−,−) �

7.2.2 Implementation of Optimization Mechanism

Figure 7.3 overviews our optimization system, which consists of three components:

• the user-interface database,

• the generic transformation engine, and

• the implementation database.

Taking a C++ program with skeletons, our transformation system first converts the skele-

tons into structured form (an intermediate form) by applying rules given as meta-programs

in the user-interface database. The generic transformation engine manipulates and fuses

the structured form with the shortcut fusion rules. Finally, our system links the opti-

mized program with efficiently implemented skeletons in our library by the rules in the

implementation database.

The optimization system is implemented in OpenC++, a meta language for manipu-

lating C++ programs.

Transformation
Engine

User C++

Program

Optimized

Program

User-interface DB

map → buildJ
reduce → cataJ
poly → cataJ

...

Implementation DB

buildJ → map
cataJ → reduce
cataJ → cataj

...

Figure 7.3. Overview of the optimization mechanism.
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Transformation to Structured Forms

In OpenC++, the program text is accessible at the meta level in the form of a parse tree,

represented as a nested list of logical tokens. A part of the C++ program to compute the

variance

sum = as->reduce(add, 0.0);
ave = sum / size;
subs = as->map1(sub, ave);
sqs = subs->map(sq);
sq_sum = sqs->reduce(add, 0.0);

is converted into the following parse tree.

[[sum = [[as -> reduce] ( [add , 0.0] )]] ;]
[[ave = [sum / size]] ;]
[[subs = [[as -> map1] ( [sub , ave] )]] ;]
[[sqs = [[subs -> map] ( [sq] )]] ;]
[[sq_sum = [[sqs -> reduce] ( [add , 0.0] )]] ;]

We define the rules to convert user skeletons to structured form and vice versa in

OpenC++. For example, a meta program that implements the conversion of a map

skeleton into buildJ form

map f as = buildJ (λc s e.([c, f ◦ s, e]))

can be implemented as follows.

Ptree* map_to_buildJ( Ptree *sentence )
{
Ptree *dst, *src, *function;
if (Ptree::Match( sentence, "[[%? = [[%? -> map] ( %? )]] ;]",

&dst, &src, &function) ) {
return make_buildJ( dst, src,

Ptree::List( var_c ),
Ptree::List( var_s, function ),
Ptree::List( var_e ));

}
...

The user-interface database is a correction of these functions from list skeletons to

their structured forms. The reflection mechanism in OpenC++ enables pattern matching

and function composition to be easily implemented. Thus, we can easily convert skeletons

to their structured forms.

Using conversion with our user-interface library, the last three lines in the parse tree

above are converted into the following structured forms. st

[‘buildJ‘ subs as [[var_c] [var_s [sub ave]] [var_e]] ;]
[‘buildJ‘ sqs subs [[var_c] [var_s [sq]] [var_e]] ;]
[‘cataJ‘ sq_sum sqs [[add] [func_id] [0.0]] ;]

Here, terms var_c, var_s, and var_e are used to represent three arguments of the buildJ,

++, [·], and [ ].
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Generic Transformation Engine

Our system implements the fusion rule in [65] and it repeatedly applies the rule on struc-

tured forms. We restricted the elements in structured forms so that they were represented

as a composition of functions. This simplified the application of the fusion rule so that just

the occurrences of a bound variable to the corresponding argument had to be replaced.

Note that such a restriction is insignificant since reflection can take care of it.

Our generic transformation engine applies the CataJ-BuildJ rule [65] twice on the

structured forms above in our running example,

[‘buildJ‘ subs as [[var_c] [var_s [sub ave]] [var_e]] ;]
[‘buildJ‘ sqs subs [[var_c] [var_s [sq]] [var_e]] ;]
[‘cataJ‘ sq_sum sqs [[add] [func_id] [0.0]] ;]

and optimizes it into a single cataJ form as follows.

[‘cataJ‘ sq_sum as [[add] [func_id [sq] [sub ave]] [0.0]] ;]

Transformation from Structured Forms

Finally, the optimization system puts the structured form back into one of the parallel

skeletons. Due to the generality of the structured forms, we need to select a suitable

skeleton implementation based on the parameters of the structured forms.

Two examples are shown as follows: the first one is from a combination of the map

and reduce skeletons, and the second one is from a single reduce skeleton.

[‘cataJ‘ sq_sum as [[add] [func_id [sq] [sub ave]] [0.0]] ;]

[‘cataJ‘ sum as [[add] [func_id] [0.0]] ;]

For the first structured form, we map it onto the cataj skeleton implemented in the skeleton

library. Though the cataj skeleton is semantically equal to the composition of map and

reduce skeletons, the cataj skeleton provides more efficient implementation by fusion of

them. For the second structured form, since the second argument is the identity function

func_id, we map the structured form onto the reduceb skeleton.

7.2.3 Experimental Results for Optimization

To see how efficient the generated optimized program is, we compared it with the following

two programs for the variance problem [92]:

(1) the original program using a map skeleton that produces new data (duplicative map),

(2) another program using a map skeleton that overwrites the input data (overwriting

map).
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Figure 7.4. Experimental results for the optimization mechanism. Speedups are plot-
ted against the program with reduce and duplicative map executed with one
processor.

In the second program, the individual skeletons are optimized and they do not generate

unnecessary data. We implemented these programs and did our experiments on a cluster

of four Pentium 4 Xeon 2.0-GHz dual-processor PCs with 1-GB of memory, connected

through a Gigabit Ethernet. The OS was FreeBSD 4.8 and we used gcc 2.95 for the

compiler.

Figure 7.4 plots the results of speedups to the original program with one processor for

an array of 1,000,000 elements. The computation time for the original program with one

processor is 1.67 s and the computation times for (1), (2), and the optimized one with

eight processors are 0.243 s, 0.197 s, and 0.138 s, respectively. As a natural consequence

of using the skeletons, all programs demonstrated outstanding scalability. Comparison

with (2) proves the success of our framework: The effect of fusion far exceeds individual

refinements on each skeleton.

7.3 Code Generator

We have studied three algebraic properties in Section 5.2, with which we can derive aux-

iliary functions for binary-tree skeletons systematically. Among them, the tupled-ring

property gives a clear condition for parallelizing tree manipulations with multiple param-

eters, but developing auxiliary functions is somehow tedious due to the large number of

parameters introduced in the matrices.

To encourage programmers to develop parallel programs based on the tupled-ring prop-

erty, we have developed a system that automatically translates users’ recursive specifica-

tions into parallel C++ codes. Figure 7.5 depicts the outline of our code generator. In this
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User’s specification in C++ like notation

Splitter

code for leaves code for internal nodes

Normalization

matrices
for gl and gr

Optimization
Mechanism

variables’ usage

Program Generator

C++ code for auxiliary functions

Figure 7.5. Outline of our code generator.

system, not only the parallel code is generated but also the generated code is optimized
by removing the computation on constants.

In this section, we describe the outline of our code generator, and then demonstrate
the parallelization steps with an example of simple XPath query.

Running Example: A Simple XPath Query

In this section, we demonstrate our code generator with a simple XPath query [13]. As
our running example, we consider the following XPath query.

//x[./y/following-sibling::z]

This XPath query searches for a node labeled x that has children labeled y and z in this
order from left (Note that the node x may have other children). The detailed derivation of
skeletal parallel programs for XPath queries will be studied in Chapter 9. For simplicity,
let the input tree is given in the binary-tree representation in Figure 4.9, and here we want
to determine whether there is a node matching to the XPath query or not.

An automaton corresponding to the XPath query on the binary-tree representation
is given in Figure 7.6. Based on this automaton, we can develop a sequential program
that computes this simple query. The query is computed by (fst ◦ xpq) where the function
xpq is a tree homomorphism given as follows. In the function xpq , three values of a
tuple corresponds to the states S0, S1, and S2 in the automaton. Note that the program
traverses the automaton in the reversed direction.

xpq (BLeaf a) = (False,False,False)
xpq (BNode l b r)

= let (l0, l1, l2) = xpq l; (r0, r1, r2) = xpq r
in (l0 ∨ r0 ∨ (b == “x” ∧ l1), r1 ∨ (b == “y” ∧ r2), r2 ∨ b == “z”)
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∗/Sibling
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Figure 7.6. A nondeterministic automaton for the sample XPath query. The initial state
is S0. Transition labeled x/Child occurs when a node is labeled as x and
we traverse to the child. Transition labeled x/Sibling occurs when a node is
labeled as x and we traverse to the sibling.

7.3.1 Input of Code Generator

The code generator takes recursive functions written in C++ like notation with some

annotations. A input code for the running example is given in Figure 7.7. Users are allowed

to write their programs using operators, functions, and if-statements. We introduced a

notation for tuples such as

tuple<bool> (l0, l1, l2) = xpq(n.l);

to enable users to write tree algorithms computing multiple values concisely. Since it is

hard to find automatically two operators that form a commutative semiring, we ask users

to specify the properties among operators (i.e., commutative semirings) as annotations.

Annotation consists of the type of the values and two operators with their units.

Our code generator first splits the specification into two parts corresponding to two

cases for leaves and for internal nodes by finding if-statement with the predicate of

is_leaf().

For the example XPath query, we can write a recursive function shown in Figure 7.7.

With the notation of tuples, we can write the program in almost the same way as the

specification above. Note that the first line

// semiring(bool, ||, &&, false, true);

// semiring(bool, ||, &&, false, true);
tuple<bool> xpq(node< char > n) {

if (n.is_leaf()) {
return (false, false, false);

} else {
tuple<bool> (l0, l1, l2) = xpq(n.l);
tuple<bool> (r0, r1, r2) = xpq(n.r);
bool v0 = l0 || r0 || ((n.v == ’x’) && l1);
bool v1 = r1 || ((n.v == ’y’) && r2);
bool v2 = r2 || (n.v == ’z’);
return (v0, v1, v2);

}
}

Figure 7.7. A sample code for input specification.
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is an annotation to let the system know the commutative semiring {Bool,∨,∧}.
The system first splits the definitions for leaves and internal nodes, and parses the

definition for internal nodes. In this analysis, the system generates an abstract syntax

tree corresponding to the following segment of program with annotation.

//semiring (bool, ||, &&, false, true)
//recursion (l0, l1, l2) (r0, r1, r2)
//node v
//results (v0, v1, v2)
v0 = l0 || r0 || ((n.v == ’x’) && l1)
v1 = r1 || ((n.v == ’y’) && r2)
v2 = r2 || (n.v == ’z’)

7.3.2 Normalization

The system then transforms the abstract syntax tree into the two bi-linear polynomial

forms

k l b r = gl (b, r) � l , and
k l b r = gr (b, l)� r ,

to generate the matrices specified as functions gl and gr. This normalization is performed

in the following three steps.

1. We expand the expressions by using the distributive law x⊗(b⊕c) = (x⊗b)⊕(x⊗c).
Note that any operation distributes over the if-statement, that is, for any operator

⊕, we have (if p then a else b) ⊕ x = if p then a⊕ x else b⊕ x.

2. We flatten the expression with the associative law, and sort the arguments with the

commutative law.

3. For each argument we put sub-expressions together by using the distributive law in

the reversed direction. Here if there is no occurrence of an argument xi, then we

insert (ι⊕ ⊗ xi) that is equal to ι⊕.

After normalization, the system checks that each expression is linear polynomial, and then

generates the matrices for two functions gl and gr.

Let us see back to our running example. For example, the normalization of the following

equation for v0 against parameters r0, r1 and r2 is done as follows.

v0 = l0 || r0 || ((n.v == ’x’) && l1)

At the first step, the system applies the distributive law to expand all the parts related to

the parameters. The system does nothing for the equation, since the operator && is inside

of ||. The system then sorts the subexpressions with respect to the arguments r0, r1 and

r2.

v0 = l0 || r0 || ((n.v == ’x’) && l1)
= r0 || l0 || ((n.v == ’x’) && l1)
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Finally, the system applies the distributive law in the reversed direction. For the

arguments r1 and r2, there are no occurrences of the arguments and thus the system

inserts a special value Z (named from zero-element, ι⊕) with the arguments. For the

argument r0, there is no coefficient and thus the system inserts a special value I (named

from identity-unit, ι⊗). Therefore, the system transforms the equation as follows.

v0 = r0 || l0 || ((n.v == ’x’) && l1)
= (I && r0)

|| (Z && r1)
|| (Z && r2)
|| (l0 || ((n.v == ’x’) && l1))

After normalizing all the expressions with respect to the parameters r0, r1 and r2, we

obtain the following 4 × 4 matrix for the function gr.

I Z Z (l0 || ((n.v == ’x’) && l1))
Z I (n.v == ’y’) Z
Z Z I (n.v == ’z’)
Z Z Z I

In the same way, we obtain the following matrix for the function gl.

I (n.v == ’x’) Z r0
Z Z Z r1 || ((n.v == ’y’) && r2)
Z Z Z r2 || (n.v == ’z’)
Z Z Z I

7.3.3 Optimization by Removing Constants

In many cases some elements keep the same value throughout the computation of tree

skeletons. If some values do not change throughout the computation of tree skeletons,

we can save the memory space and computations for the values. In our code generator,

we implemented the optimization by simulating the computation of tree skeletons with

abstract values.

After deriving the matrices, the system proceeds into the optimization phase. In the

optimization phase, the system abstracts the values to three values, 0, 1, and ∗:

• a 0 denotes an element keeping the value being the zero-element of the commutative

semiring (= ι⊕);

• an 1 denotes an element keeping the value being the identity-unit of the commutative

semiring (= ι⊗);

• an ∗ denotes an element that is neither 0 nor 1, listed above.

First, the system compares the corresponding values in the matrices for gl and gr, and

generates an initial matrix for the analysis. In this initial matrix, the ∗ elements denote

that the values on the positions are required to the tree contraction algorithms. The
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⊕′ 0 1 ∗
0 0 1 ∗
1 1 ∗ ∗
∗ ∗ ∗ ∗

⊗′ 0 1 ∗
0 0 0 0
1 0 1 ∗
∗ 0 ∗ ∗

� 0 1 ∗
0 0 ∗ ∗
1 ∗ 1 ∗
∗ ∗ ∗ ∗

Figure 7.8. Semantics of three operations on three values for updating abstract matrices.

system then simulates the computation of tree skeletons, by squaring the matrix using the
operators given in Figure 7.8. We update the abstract matrix by the following recurrence
equation

An+1 = An ×⊗′,⊕′ An +� An

until the matrix reaches fixpoint, that is An+1 = An. Note that the iteration terminates,
since during the squaring the matrix the value changes only to ∗, and once an element
has the value ∗ then the value never changes any more. In the result matrix, the value
V indicates that the element should be computed through the tree contraction because
the value may change; and the other values, 0s and 1s, denote that the elements do not
change through the tree contractions and we can remove them by substituting the values
to the variables. Thus, this optimization can reduce the computation time as well as the
memory space during the computation of tree skeletons.

For our running example, the system perform the optimization as follows. First, by
comparing two matrices for gl and gr, the system yields the following abstract matrix.
The value of an element is 0 if corresponding elements in both matrices have value Z, 1 if
corresponding elements in both matrices have value I, and ∗ otherwise.

A0 =

⎛
⎜⎜⎝

1 ∗ 0 ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

⎞
⎟⎟⎠

Then the system updates the abstract matrix using the recurrence equation.

A1 =

⎛
⎜⎜⎝

1 ∗ 0 ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

⎞
⎟⎟⎠×⊕′,⊗′

⎛
⎜⎜⎝

1 ∗ 0 ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

⎞
⎟⎟⎠+�

⎛
⎜⎜⎝

1 ∗ 0 ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

⎞
⎟⎟⎠

In fact, the abstract matrix A1 reaches fixpoint. We can verify the fact by computing
the next abstract matrix A2 as follows.

A2 =

⎛
⎜⎜⎝

1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

⎞
⎟⎟⎠×⊕′,⊗′

⎛
⎜⎜⎝

1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

⎞
⎟⎟⎠+�

⎛
⎜⎜⎝

1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

⎞
⎟⎟⎠

In the abstract matrix that reaches fixpoint, there are eight ∗s. Therefore, we only
need to compute these eight values not all the sixteen elements. In other words, we can
reduce the number of variables in a matrix to a half.
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7.3.4 Code Generation

The system finally generates parallel programs where C++ code calling a parallel skeleton

is generated. For the case of the reduceb skeleton, generated components are as follows:

• data structure for tuples, matrices, and intermediate values,

• associative operator of matrix multiplication,

• parameter functions of the skeleton, kl and kn, and

• auxiliary functions for parallel implementation φ, ψn, ψl, and ψr.

In the generated code, a matrix has values corresponding to the ∗ elements in the

optimization step. In addition to this optimization, a matrix has an additional flag for

the case of identity matrix. Since in the computation of the reduceb and uAccb skeletons

an identity matrix is assigned to each node, this flag for identity matrix is important in

terms of efficiency. This flag for the identity matrix may reduce the number of ∗ elements

on the diagonal line.

For our running example, the system generates C++ code as shown in Figure 7.9.

The structures xpq_ret_t, xpq_matrix_t, and xpq_inter_t are for the resulting tuples,

matrices with eight elements, and intermediate values, respectively, which are used in the

computation of the reduceb skeleton. After the definition of the structures, the definition

of function objects for the reduceb skeleton are given. Using these function objects, we

can develop a parallel program for the sample XPath query.

7.4 Experiment Results

We have developed skeletal parallel programs listed below, and make several experiments

to measure their scalability. The source code of all the parallel programs will be available

at the website of the SkeTo library.

Programs Developed with Binary-Tree Skeletons

• height: This program computes the height of a given binary tree with the mapb and

reduceb skeletons. The input is a randomly generated tree with 16,777,215 (= 224−1)

nodes.

• diameter: This program computes the diameter of a given binary tree. This prob-

lem is a maximum weight-sum problem and the program is given in Section 8.6.2

with the mapb and reduceb skeletons. The input is a randomly generated tree with

16,777,215 (= 224 − 1) nodes.
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struct xpq_ret_t {
int v0, v1, v2;

};

struct xpq_matrix_t {
bool flag;
bool a01, a02, a03, a11, a12, a13, a22, a23;
xpq_matrix_t( ) {
flag = true;

}
};

struct xpq_inter_t {
char b;
xpq_matrix_t a;

};

xpq_matrix_t operator*( const xpq_matrix_t &lhs,
const xpq_matrix_t &rhs ) {

if (lhs.flag) return rhs;
if (rhs.flag) return lhs;

xpq_matrix_t ret;
ret.a01 = rhs.a01 || (lhs.a01 && rhs.a11);
ret.a02 = rhs.a02 || (lhs.a01 && rhs.a12) || (lhs.a02 && rhs.a22 );

... (snip) ...

ret.a23 = (lhs.a22 && rhs.a23) || lhs.a23;
return ret;

}

SKETO_DEF_UNOP( xpq_kl, char, xpq_ret_t,
xpq_ret_t ret;
ret.v0 = false; ret.v1 = false; ret.v2 = false;
return ret;

);

SKETO_DEF_TEROP( xpq_kn, xpq_ret_t, char, xpq_ret_t, xpq_ret_t,
xpq_ret_t ret;
ret.v0 = x.v0 || z.v0 || ((y == ’x’) && x.v1);
ret.v1 = z.v1 || ((y == ’y’) && z.v2);
ret.v2 = z.v2 || (y == ’z’);
return ret;

);

SKETO_DEF_UNOP( xpq_phi, char, xpq_inter_t,
xpq_inter_t ret;
ret.b = x;
return ret;

);

... (snip) ...

SKETO_DEF_TEROP( xpq_psiR, xpq_ret_t, xpq_inter_t, xpq_inter_t,
xpq_inter_t,

xpq_matrix_t gr; gr.flag = false;
gr.a01 = false; gr.a02 = false; gr.a03 = x.v0 || ((y.b == ’x’) && x.v1);
gr.a11 = true; gr.a12 = (y.b == ’y’); gr.a13 = false;
gr.a22 = true; gr.a23 = (y.b == ’z’);

xpq_inter_t ret;
ret.b = z.b; ret.a = y.a * gr * z.a;
return ret;

);

Figure 7.9. Segments of generated code for the sample XPath query.
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• prefix (prefix numbering): This program assigns a number for each node in the order

of prefix traversal on a given binary tree. The program is given in Section 5.1.1 and

uses the mapb, uAccb, and dAccb skeletons. The input is a randomly generated tree

with 16,777,215 (= 224 − 1) nodes.

• 3mcs (maximum three connected-set sum): This problem is an instance of the max-

imum weight-sum problem in which the predicate validates that the nodes marked

as True form at most three connected components. The program uses the mapb and

reduceb skeletons where the intermediate value of auxiliary functions for the reduceb

skeleton is the upper-right triangle of a 7×7 matrix. The input is a randomly gen-

erated tree with 16,777,215 (= 224 − 1) nodes.

• xpath-s (small XPath query): This program perform a small XPath query

/desc::*[desc::b/child::d]

in parallel. The input is a binary tree representing a randomly generated rose tree

with 100,000 nodes. This program uses the mapb and uAccb skeleton.

• xpath-lr (large XPath query for random tree): This program perform a larger

XPath query

/desc::*[desc::b/child::d]/desc::c[desc::u/child::w]/desc::f

in parallel. The input is a binary tree representing a randomly generated rose tree

with 100,000 nodes. This program uses the mapb, zipwithb, uAccb and dAccb skeleton.

• xpath-lf (large XPath query for flat tree): This program perform the larger XPath

query in parallel. The input is a binary tree representing a flat rose tree with its

height at most ten. The number of nodes is 100,000.

Programs Developed with Rose-Tree Skeletons

• prefix-Rb (prefix numbering on complete binary-tree): The program given in Sec-

tion 4.2.2 that assigns a number for each node in the order of prefix traversal. This

program uses the mapr, uAccr, rAccr, zipwithr, and dAccr skeletons. The input is a

complete binary tree (dealt with as a rose tree) with 4,194,303 (= 222 − 1) nodes.

• prefix-Rr (prefix numbering on random tree): The program of prefix numbering

is executed on randomly generated rose tree. The number of nodes is 4,194,303

(= 222 − 1) nodes.
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Table 7.1. Execution times and speedups for programs height, diameter, prefix, and
3mcs, developed with binary-tree skeletons. The execution times are in sec-
onds and the speedups are given in the parentheses.

P height diameter prefix 3mcs
1 0.274 ( 1.00) 0.488 ( 1.00) 1.686 ( 1.00) 2.298 ( 1.00)
2 0.136 ( 2.02) 0.248 ( 1.97) 0.902 ( 1.87) 1.174 ( 1.96)
4 0.068 ( 3.98) 0.131 ( 2.91) 0.429 ( 3.93) 0.589 ( 3.90)
6 0.044 ( 6.23) 0.086 ( 3.72) 0.289 ( 5.84) 0.398 ( 5.77)
8 0.034 ( 7.94) 0.092 ( 5.69) 0.230 ( 7.34) 0.301 ( 7.63)
12 0.023 (11.68) 0.044 ( 5.28) 0.201 ( 8.40) 0.202 (11.35)
16 0.017 (16.50) 0.034 (11.15) 0.121 (13.90) 0.156 (14.77)
24 0.012 (22.64) 0.026 (14.33) 0.096 (17.57) 0.104 (22.06)
32 0.011 (24.06) 0.020 (18.99) 0.080 (21.01) 0.086 (26.78)

The parallel program is executed on a PC-cluster composed of uniform PCs with two

Pentium 4 2.8-GHz CPUs (only one CPU is used in experiments) and 2-GByte memory

connected with Gigabit Ethernet. The compiler and MPI library used are gcc 4.1.1 and

MPICH 1.2.7, respectively.

Tables 7.1, 7.2 and 7.3 show the execution times without initial distribution and final

gathering of data and the speedup against the case executed with one processor. We show

the execution times without initial distribution and final gathering since the computational

cost of the examples is rather small with respect to the the cost of distribution and

gathering. We can omit distribution and gathering if tree skeletons are called successively.

Note that the execution times listed are almost the same as those of sequential programs

since the skeletons have almost no overhead for the execution on one processor. As seen

from Figures 7.10, 7.11 and 7.12 that plots the experimental results, all the skeletal parallel

programs achieved good scalability.

7.5 Short Summary

In this chapter, we have shown the implementation issues of our skeleton library named

SkeTo. The SkeTo library mainly consists of two parts: the parallel skeleton library

for parallel data structures lists, matrices, and trees; the optimization mechanism imple-

mented by the meta-programming technique. We have also developed a code generator

with optimization for the computation with tupled-ring property. We have confirmed the

efficacy of parallel programs developed on the SkeTo library using several examples.

The SkeTo library is still growing up. For example, we are now working on the imple-

mentation of parallel skeletons for more flexible parallel data structures such as lists with

variable length, and the implementation of fusion rules for matrices and trees. Another

implementation specific to parallel computational models such as Cell Broadband Engine

Architecture (Cell BE) [64] would be an interesting future research.
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Figure 7.10. Experimental results for programs height, diameter, prefix, and 3mcs, de-
veloped with binary-tree skeletons.
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Figure 7.11. Experimental results for programs xpath-s, xpath-lr and xpath-sf, devel-
oped with binary-tree skeletons.

Table 7.2. Execution times and speedups for programs xpath-s, xpath-lr, and xpath-lf,
developed with binary-tree skeletons. The execution times are in seconds and
the speedups are given in the parentheses.

P xpath-s xpath-lr xpath-lf
1 0.74 ( 1.00) 2.05 ( 1.00) 2.13 ( 1.00)
2 0.41 ( 1.80) 1.07 ( 1.90) 1.15 ( 1.85)
4 0.22 ( 3.34) 0.56 ( 3.65) 0.61 ( 3.52)
8 0.10 ( 7.59) 0.27 ( 7.64) 0.31 ( 6.98)
16 0.05 (13.82) 0.14 (14.32) 0.16 (13.26)
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Figure 7.12. Experimental results for programs developed with rose-tree skeletons.

Table 7.3. Execution times and speedups for the programs developed with rose-tree
skeletons. The execution times are in seconds and the speedups are given
in the parentheses.

P prefix-Rr prefix-Rb
1 12.5 ( 1.00) 13.0 ( 1.00)
2 6.44 ( 1.94) 6.37 ( 2.04)
4 2.41 ( 5.19) 2.34 ( 5.55)
6 1.36 ( 9.19) 1.80 ( 7.22)
8 1.66 ( 7.53) 1.29 (10.1 )
12 1.08 (11.6 ) 0.98 (13.3 )
16 1.41 ( 8.86) 0.87 (14.9 )
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Chapter 8

Parallelizing Maximum Marking
Problems

In the following two chapters, we study the expressiveness of parallel tree skeletons by

showing the derivation of parallel programs for two classes of non trivial problems.

In this chapter, we study the maximum marking problems [17,116] that cover a wide

class of optimization problems. The generic specification of the problems is as follows.

Given a data structure x and a predicate p, the task is to find a way to mark

some elements in x, such that the marked data structure x∗ satisfies a certain

property p and the weight-sum of the marked elements gets maximum.

In this chapter, we assume each marked element to be a boolean value, True or False.

Parametrization of the data structure and the predicate gives this formalization great

flexibility. For example, let x be a list and p be a predicate that allows at most one set of

continuous Trues, we can specify the maximum segment sum problem over lists, which is

a well-known problem in Bentley’s programming pearls [12]. The party planing problems

on binary trees, appeared as the running example in Introduction, is also a maximum

marking problem where x is a binary tree and p invalidates markings in which there exist

marked elements next to each other.

Many researchers have studied the derivation of parallel programs for instances of

the maximum marking problems. Fisher and Ghuloum [43] developed a system that can

derive a parallel program for the maximum segment sum problem on lists. Cole [34] showed

derivation of a parallel program for the same problem based on list homomorphism. Several

researchers have studied parallel algorithms for the maximum segment sum problem on

lists (arrays) and the maximum subarray sum problem (maximum segment sum problem

on two-dimensional arrays) for several parallel-computation models [6,9,59,106,109,127].

For tree structures, He [57] developed a parallel algorithm for the maximum independent-

set problem, which is a simpler version of the maximum marking problem where we ignore

the value of the node.



166 Chapter 8 Parallelizing Maximum Marking Problems

Sasano et al. [116] developed a systematic method of deriving sequential programs from

recursive specifications of the predicates. In this chapter, we extend it to the derivation

of parallel programs. The finiteness property and the tupled-ring property in Section 5.2

play an important role in the derivation of parallel programs. We furthermore discuss the

optimization of derived parallel programs.

This chapter is organized as follows. In Section 8.1, we define two classes of the

maximum marking problems targeted in this chapter. Before studying the derivation of

parallel programs, we review Sasano et al.’s method of deriving sequential programs in

Section 8.2. In Section 8.3, we develop a derivation algorithm for the maximum weight-

sum problems, subproblems of the maximum marking problems, and in Section 8.4, we

develop a derivation algorithm for the maximum marking problems. In Section 8.5, we

discuss the optimization of derived programs. The usefulness of the derivation method

is demonstrated with two non trivial instances of the maximum marking problems in

Section 8.6. Finally, Section 8.7 summarizes this chapter.

8.1 Specification of Maximum Marking Problems

We first specify the target classes of the maximum marking problems for which we derive

parallel programs in this chapter. As we see in Section 8.6, even under the following

conditions there are still many interesting problems.

1. The data structure x of the input is a binary tree in which nodes have a number of

type Num. If the input has another type, we should apply a certain preprocess.

2. In terms of the marked data structure, each node is marked with a boolean value of

type Bool.

3. The predicate p is given as composition of tree homomorphism ([pl, pn])b and a func-

tion accept . Here, the tree homomorphism may return a tuple of boolean values. In

other words, the predicate should be written as follows where n is a finite number.

p = accept ◦ ([pl, pn])b
where accept :: Booln → Bool

([pl, pn])b :: BTree Bool Bool → Booln

The second condition on the marked data structure and the third condition on the predi-

cate are also assumed in the derivation algorithm developed by Sasano et al. [116]. There-

fore, the additional condition for the derivation of parallel programs in this chapter is the

binary-tree structure for the input.

Tree homomorphisms returning a tupled value are often given from mutual recursive

functions over the tree structure. Such mutual recursive functions are called mutumor-

phisms [44, 67] and it is known that mutumorphisms can be turned into a single homo-

morphism by the tupling transformation [44, 62]. Based on the mutumorphisms and the
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tupling transformation, we can specify the maximum marking problems more easily by

using mutual recursive functions instead of a homomorphism returning a tupled values.

We give a formal specification of the maximum marking problems and their subprob-

lems called the maximum weight-sum problems.

Definition 8.1 (Target Maximum Marking Problem) Let p be a given predicate in

the form of p = accept ◦ ([pl, pn])b, where for a finite number n the function accept has

type accept :: Booln → Bool and the tree homomorphism ([pl, pn])b has type ([pl, pn])b ::

BTree Bool Bool → Booln. For a given binary tree of type BTree Num Num, the maximum

marking problem targeted in this paper is to mark the nodes by either True or False in

such a way that the marked tree satisfies the predicate and the sum of values on nodes

marked as True is as large as possible.

We denote a maximum marking problem defined with predicate p as mmp p. �

Definition 8.2 (Target Maximum Weight-Sum Problem) Let p be a given pred-

icate in the form of p = accept ◦ ([pl, pn])b, where for a finite number n the function

accept has type accept :: Booln → Bool and the tree homomorphism ([pl, pn])b has type

([pl, pn])b :: BTree Bool Bool → Booln. For a given binary tree of type BTree Num Num, the

maximum weight-sum problem targeted in this paper is to compute the maximum among

the sums of values on nodes marked as True under the condition that the marked tree

satisfies the predicate p.

We denote a maximum weight-sum problem defined with predicate p as mws p. �

We introduce two instances of the maximum marking problems: computing the height

of binary trees (in Section 2.2) and the party planning problem (in Sections 1.2 and 5.3).

We will use these two instances as our running examples in deriving skeletal parallel

programs.

We can specify computing the height of binary trees as a maximum weight-sum prob-

lem. After assigning one to each node, we obtain the height of a tree by the length of the

longest path from the root to a leaf. We define the following function path that validates

whether or not marking of nodes forms a path. Auxiliary function nomark returns True

if there is no node marked as True.

path (BLeaf a) = a
path (BNode l b r) = b ∧ ((path l ∧ nomark r) ∨ (nomark l ∧ path r))

nomark (BLeaf a) = ¬a
nomark (BNode l b r) = ¬b ∧ nomark l ∧ nomark r

Tupling these two functions, that is,

([pl, pn])b x = (path � nomark ) x = (path x,nomark x) ,
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we can specify computing the height of binary trees as a maximum weight-sum problem

as follows.

heightb = mws (fst ◦ ([pl, pn])b) ◦map (λa.1, λb.1)
where pl a = (a,¬a)

pn (lp, ln) b (rp, rn) = (b ∧ ((lp ∧ rn) ∨ (ln ∧ rp)),¬b ∧ ln ∧ rn)
The party planning problem is a maximum marking problem. We define function

independent that returns True if no two nodes marked as True are adjacent, and auxiliary

function rootb.

independent (BLeaf a) = True
independent (BNode l b r) = independent l ∧ independent r

∧ (¬b ∨ (¬(rootb l) ∧ ¬(rootb r)))

rootb (BLeaf a) = a
rootb (BNode l b r) = b

Tupling these two functions,

([pl, pn])b x = (independent � rootb) x = (independent x, rootb x) ,

we can specify the party planning problem as a maximum marking problem as follows.

pppb = mmp (fst ◦ ([pl, pn])b)
where pl a = (True, a)

pn (li, lr) b (ri, rr) = (li ∧ ri ∧ (¬b ∨ (¬lr ∧ ¬rr)), b)

8.2 Review: Sasano et al’s derivation Algorithm

A straightforward but inefficient solution to the maximum marking problems is with the

so-called generate-and-test approach. We first enumerate all the ways of markings on the

input tree (genMark), then compute the sums of elements marked as True (sumMark) for

the markings that satisfy the predicate p, and return a marking with the maximum sum

(maxMark ).

mmp x = maxMark [sumMark x′ | x′ ← genMark x, p x]

This program is inefficient since the function genMark generates an exponential number

of markings.

It was know that the maximum marking problem can be solved efficiently under certain

conditions [14,24]. Sasano et al. [116] developed a systematic method of deriving practical

linear-time programs from the specification of the predicate. Sasano et al.’s derivation

assumes the second and third conditions for the marks and the predicate, but any data

structure that can be written by constructors with finite arguments is allowed. In this

section, we review the derivation method.

Let us call a value of type Booln as a state (from automata). By the principle of

optimality, we only need for each state a marking corresponding to the maximum sum in
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the computation of the maximum marking problems. The main ideas in the derivation of

a sequential program are: to map a homomorphism in the predicate to another homomor-

phism that solves the maximum marking problem, and to pick up the case corresponding

to the maximum sum for each state at each iterative step.

Sasano et al.’s derivation method generates the following two functions kl and kn.

These functions return a list of triples (c, w, t), where c is a state, w is weight sum, and t

is a marked tree. In the following definition, function eachmax takes a list of triples and

filters the maximum one in terms of the weight sum (the second value of the triple) for

each state (the first value of the triple).

kl a = eachmax [(pl m, if m then a else 0,BLeaf m) | m ← [True,False]]

kn l b r = eachmax [(pn cl m cr, wl + (if m then b else 0) + wr,BNode tl m tr)
| m ← [True,False], (cl, wl, tl) ← l, (cr, wr, tr) ← r]

Using these functions we can obtain the following sequential program that solves si-

multaneously the maximum weight-sum problem and the maximum marking problem.

The result of the maximum weight-sum problem is given as the first value of the resulting

pair, and the result of the maximum marking problem is given as the second value of the

resulting pair. Operator ↑fst returns the tuple whose first value is the larger of the two.

(mws (accept ◦ ([pl, pn])b) � mmp (accept ◦ ([pl, pn])b)) x
=
∑

↑fst
[(w, t) | (c, w, t) ← ([kl, kn])b x, accept c]

where kl a = eachmax [(pl m, if m then a else 0,BLeaf m)
| m← [True,False]]

kn l b r = eachmax [(pn cl m cr,
wl + (if m then b else 0) + wr,
BNode tl m tr)
| m← [True,False],
(cl, wl, tl) ← l, (cr, wr, tr) ← r]

We now demonstrate the derivation of sequential programs with the two examples.

For computing the height of binary trees, we only need the maximum weight sum, and

thus we omit the third value of the triples. By substituting the definition of the predicate,

we obtain the following sequential program that computes the height of binary trees. In

the following program, function eachmax ′ takes a list of pairs (c, w) and filters a pair for

each state c that has the maximum weight sum w.

heightb x
=
∑

↑[w | (c, w) ← ([kl, kn])b (mapb (λx.1) (λx.1) x), fst c]
where kl a = [((True,False), a), ((False,True), 0)]

kn l b r = eachmax ′ [(pn cl m cr, wl + (if m then b else 0) + wr)
| m← [True,False], (cl, wl) ← l, (cr, wr) ← r]

pn (lp, ln) b (rp, rn) = (b ∧ ((lp ∧ rn) ∨ (ln ∧ rp)),¬ b ∧ ln ∧ rn)
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Similarly, we can derive a sequential program for the party planning problem just by

substituting the predicate.

pppb x = snd (
∑

↑fst
[(w, t) | (c, w, t) ← ([kl, kn])b x, fst c]

where kl a = [((True,True), a,BLeaf True), ((True,False), 0,BLeaf False)]
kn l b r = eachmax [(pn cl m cr, wl + (if m then b else 0) + wr,

BNode tl m tr)
| m← [True,False],
(cl, wl, tl) ← l, (cr, wr, tr) ← r]

pn (li, lr) b (ri, rr) = (li ∧ ri ∧ (¬ b ∨ (¬ lr ∧ ¬ rr)), b)

8.3 Deriving Parallel Programs for Maximum Weight-Sum
Problems

Based on the derivation of sequential programs in the previous section, in this section we

develop a derivation method of parallel programs for the maximum weight-sum problems.

The tree homomorphism ([kl, kn])b in the derived sequential programs returns a list

of triples. Here, the following two facts are worth remarking. First, the number of the

elements in the resulting list is at most 2n where n is the number of functions tupled in

the predicate. Second, the result of the predicate depends only on marks and not on the

values of nodes. Taking these facts in mind, we rewrite the sequential program in the

previous section into one in which the tree homomorphism returns a tuple of 2n elements.

To achieve this rewriting, we first define an indexing of the states. We here number

the states using the following functions. Function bf2idn (named from “bit-field to ID”)

takes a tuple of n boolean values and returns an integer given by reading the tuple as a

binary number. Function id2bf n (named from “ID to bit-field”) is the inverse function

of bf2idn, that is, the function id2bf n takes an integer and returns a tuple of n boolean

values denoting the number in the binary system. The following two examples illustrate

these two functions. Here, note that ten is 1010 in the binary system.

bf2id5 (False,True,False,True,False) = 10
id2bf 5 10 = (False,True,False,True,False)

Based on this indexing of the states, we introduce three functions accept ′, p′l and p′n
that are used instead of those in the predicate.

accept ′ :: Int → Bool
accept ′ a = accept (id2bf n a)

([p′l, p
′
n])b :: BTree Bool Bool → Int

p′l a = bf2idn (pl a)
p′n l b r = bf2idn (pn (id2bf n l) b (id2bf n r))

Using these functions, we can remove the eachmax function by replacing the result

list of the tree homomorphism with a tuple of 2n elements (in the following, we denote
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2n = s). The following sequential program solves the maximum weight-sum problem. We

use the notation of list comprehension for tuples for readability.

mws (accept ◦ ([pl, pn])b) x
=
∑

↑[wi | (w0, w1, . . . , ws−1) = ([k′l, k
′
n])b x, i← [0..s−1], accept ′ i]

where
k′l a = (w0, w1, . . . , ws−1)

where wi =

⎧⎪⎪⎨
⎪⎪⎩

a ↑ 0 if p′l True == i ∧ p′l False == i
a if p′l True == i ∧ p′l False �= i
0 if p′l True �= i ∧ p′l False == i
−∞ otherwise

k′n (l0, l1, . . . , ls−1) b (r0, r1, . . . , rs−1) = (w0, w1, . . . , ws−1)
where wi =

∑
↑[lj + (if m then b else 0) + rk
| j, k ← [0..s−1],m← [True,False], p′n j m k == i]

Now, we return to the example. For the computation of the height of binary trees,

since the predicate is defined with a pair of functions (path � nomark ), we number the

states as

(False,False) = 0, (False,True) = 1, (True,False) = 2, and (True,True) = 3.

Under this numbering, the functions accept ′ and p′l are defined as

accept ′ x =
{

True if i == 2 ∨ i == 3
False otherwise

p′l True = 2
p′l False = 1 ,

and the function p′n is defined by the following tables.

r
p′n l True r 0 1 2 3

0 0 0 0 0
1 0 2 2 2

l 2 0 2 0 2
3 0 2 2 2

r
p′n l False r 0 1 2 3

0 0 0 0 0
1 0 1 0 1

l 2 0 0 0 0
3 0 1 0 1

Substituting the parameter functions and simplifying the program, we obtain the following

sequential program.

heightb x = let (w0, w1, w2, w3) = ([k′l, k
′
n])b (mapb (λx.1) (λx.1) x) in w2 ↑ w3

where k′l a = (−∞, 0, a,−∞)
k′n (l0, l1, l2, l3) b (r0, r1, r2, r3) = (w0, w1, w2, w3)

where wi =
∑

↑[lj + (if m then b else 0) + rk
| j, k ← [0, 1, 2, 3],m ← [True,False],
p′n j m k == i]
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We then parallelize the derived sequential program using the tupled-ring property in

Section 5.2. It follows from the following two facts that the function k′n satisfies the tupled-

ring property. First, two operators + and ↑ form a commutative semi-ring {Num, ↑,+}.
Second, we can rewrite the computation of the ith element wi in the function k′n as follows.

wi =
∑

↑[lj + (if m then b else 0) + rk
| j, k ← [0..s−1],m← [True,False], p′n j m k == i]

=
∑

↑[lj + rk + bjk | j, k ← [0..s−1]]

where bjk =

⎧⎪⎪⎨
⎪⎪⎩

b ↑ 0 if p′n j True k == i ∧ p′n j False k == i
b if p′n j True k == i ∧ p′n j False k �= i
0 if p′n j True k �= i ∧ p′n j False k == i
−∞ otherwise

From the program rewritten above, we can easily prove that the function can be defined

as the two bi-linear polynomial functions.∑
↑[lj + rk + bjk | j, k ← [0..s−1]]
=
∑

↑[lj +
∑

↑[rk + bjk | k ← [0..s−1]] | j ← [0..s−1]]

∑
↑[lj + rk + bjk | j, k ← [0..s−1]]
=
∑

↑[rk +
∑

↑[lj + bjk | j ← [0..s−1]] | k ← [0..s−1]]

From the calculations above, we can apply Theorem 5.12 to derive a parallel program

for the maximum weight-sum problems.

Theorem 8.1 There exists a parallel program that solves the target maximum weight-sum

problem given in Definition 8.2.

Proof. First, from the derivations above a skeletal program for the maximum weight-sum

problem is given as follows.

mws (accept ◦ ([pl, pn])b) x
=
∑

↑[wi | (w0, w1, . . . , ws−1) = reduceb k
′
n (mapb k

′
l id x),

i← [0..s−1], accept ′ i]
where
k′l a = (w0, w1, . . . , ws−1)

where wi =

⎧⎪⎪⎨
⎪⎪⎩

a ↑ 0 if p′l True == i ∧ p′l False == i
a if p′l True == i ∧ p′l False �= i
0 if p′l True �= i ∧ p′l False == i
−∞ otherwise

k′n (l0, l1, . . . , ls−1) b (r0, r1, . . . , rs−1) = (w0, w1, . . . , ws−1)
where wi =

∑
↑[lj + b′ijk b+ rk | j, k ∈ [0..s − 1]]

accept ′ a = accept (id2bf n a)
p′l a = bf2idn (pl a)
p′n l b r = bf2idn (pn (id2bf n l) b (id2bf n r))

b′ijk b =

⎧⎪⎪⎨
⎪⎪⎩

b ↑ 0 if p′n j True k == i ∧ p′n j False k == i
b if p′n j True k == i ∧ p′n j False k �= i
0 if p′n j True k �= i ∧ p′n j False k == i
−∞ otherwise
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The functions bf2idn and id2bf n were defined at the start of this section. To make the

derived skeletal program runs in parallel, we need to derive auxiliary functions for the

skeleton reduceb called with k′n. Here, from the Theorem 5.12, we can derive auxiliary

functions φ, ψn, ψl, and ψr satisfying k′n = 〈φ,ψn, ψl, ψr〉u as follows. Note that in the

following definition, the matrices are of size s × s. We can remove the (s + 1)th column

and the (s+ 1)th row since they are equal to those in the identity matrix.

φ b = (b, I)
ψn l (bn,Mn) r = Mn ×+,↑ k′n l bn r
ψl (bl,Ml) (bn,Mn) (r0, r1, . . . , rs−1) = (bl,Mn ×+,↑ {r′ij b} ×+,↑ Ml)

where r′ij b =
∑

↑[rk + b′ijk b | k ← [0..s−1]]
ψr (l0, l1, . . . , ls−1) (bn,Mn) (rn,Mr) = (br,Mn ×+,↑ {l′ik b} ×+,↑ Mr)

where l′ik b =
∑

↑[lj + b′ijk b | j ← [0..s−1]]

It follows from the skeletal program and the auxiliary functions given above that the

theorem holds. �

It is worth noting that the predicate is static against the values of nodes and therefore

we can specialize the definition of k′n and auxiliary functions for each instance of the max-

imum weight-sum problems. We will discuss the optimization based on this specialization

in Section 8.5.

We show a parallel program for the computation of height of binary trees in Figure 8.1.

We can derive the parallel program by straightforward substitution of parameters.

8.4 Deriving Parallel Programs for Maximum Marking
Problems

In the sequential program derived by Sasano et al.’s method, the marked trees are gener-

ated in a bottom-up manner as well as the weight sums. Since the generation of trees is

hard to parallelize by our tree skeletons, we decompose the sequential program into two

tree accumulations.

A well-known technique for dynamic programming generates marked structures by

two-pass algorithms. We first compute the maximum weight sum storing intermediate

maximal weight sums at each element, and then mark elements by traversing the stored

values in the reversed order. For the maximum marking problems on trees, we store

intermediate maximal weight sums at each node by an upwards accumulation and then

mark nodes by traversing the tree by a downwards accumulation.

Here, we should pay some attentions to the implementation of marking nodes by the

downwards accumulation. An internal node of a binary tree has two children, and in

general the marks on these two children depend on each other as well as the parent mark.

For example, when we mark a path from the root to a leaf, we should mark either of

the two children if the parent node is marked. To cope with these dependency using the
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heightb = let (w0, w1, w2, w3) = reduceb k
′
n (mapb k

′
l (λx.1) x)

in w2 ↑ w3

where
k′l a = (−∞, 0, 1,−∞)

k′n (l0, l1, l2, l3) b (r0, r1, r2, r3) = (w0, w1, w2, w3)
where wi =

∑
↑[lj + b′ijk b+ rk | j, k ← [0, 1, 2, 3]]

φ b = (b, I)

ψn l (bn,Mn) r = Mn ×+,↑ k′n l bn r

ψl (bl,Ml) (bn,Mn) (r0, r1, r2, r3) = (bl,Mn ×+,↑ {r′ij bn} ×+,↑ Ml)
where r′ij bn =

∑
↑[rk + b′ijk bn | k ← [0, 1, 2, 3]]

ψr (l0, l1, l2, l3) (bn,Mn) (br,Mr) = (br,Mn ×+,↑ {l′ik bn} ×+,↑ Mr)
where l′ik bn =

∑
↑[lj + b′ijk bn | j ← [0, 1, 2, 3]]

k
b′0jk b 0 1 2 3

0 b ↑ 0 b ↑ 0 b ↑ 0 b ↑ 0
1 b ↑ 0 −∞ 0 −∞

j 2 b ↑ 0 0 b ↑ 0 0
3 b ↑ 0 −∞ 0 −∞

k
b′1jk b 0 1 2 3

0 −∞ −∞ −∞ −∞
1 −∞ 0 −∞ 0

j 2 −∞ −∞ −∞ −∞
3 −∞ 0 −∞ 0

k
b′2jk b 0 1 2 3

0 −∞ −∞ −∞ −∞
1 −∞ b b b

j 2 −∞ b −∞ b
3 −∞ b b b

k
b′3jk b 0 1 2 3

0 −∞ −∞ −∞ −∞
1 −∞ −∞ −∞ −∞

j 2 −∞ −∞ −∞ −∞
3 −∞ −∞ −∞ −∞

Figure 8.1. Derived skeletal parallel program for computing the height of binary trees.
In this program, two sequential mapb skeletons are fused into one.
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downwards accumulation, we decide at the parent node whether two children are marked
or not, and we need to attach the maximal weight sums of the children to their parent.

Based on these ideas, we develop parallel programs that solve the maximum marking
problems in the following four steps.

1. Compute maximal weight sums for each node in a bottom-up manner.

2. Attach the maximal weight sums for each node.

3. Compute a state for each node in a top-down manner.

4. Decide the mark for each node from the state and maximal weight sums.

In the following discussion, let t be the input tree, and accept ′, p′l, p
′
n, k

′
l and k′n be

functions given in the previous section.
In the first step, we compute maximal weight sums for each node by the mapb and

uAccb skeletons instead of the mapb and reduceb skeletons.

bt = uAccb k
′
n (mapb k

′
l id t)

The auxiliary functions for the uAccb skeleton are those given for the reduceb skeleton in
the previous section.

In the second step, we attach the maximal weight sums to the original value for each
node.

zt = zip4b t bt (getchlb − bt) (getchrb − bt)

Each node in the tree zt has a tuple in the form (b,ms , ls , rs), where b and ms are the
original value and the maximal weight sums of the nodes, ls is the maximal weight sums
of the left child, and rs is the maximal weight sums of the right child.

In the third step, we apply the dAccb skeleton to the zipped tree with an accumulative
parameter indicating a state of the node that yields the maximum weight sum at the root.
The accumulative parameter for the root can be given from the maximal weight sums at
the root as follows.

c = let m =
∑

↑[wi | (w0, w1, . . . , ws−1) = rootb bt , i← [0..s−1], accept ′ i]
in fst [i | (w0, w1, . . . , ws−1) = rootb bt , i← [0..s−1], accept ′ i,m == wi]

If there are more than or equal to two states that have the maximum weight sum, we
choose one of it (here, we use function fst for it). The two parameter functions gl and gr

for the dAccb skeleton find states of two children where the states of two children should
yield the maximum sum corresponding to the state passed as accumulating parameter c.
In the following definition, wc indicates the cth element of the tuple (w0, w1, . . . , ws−1).

ct = dAccb (gl, gr) c zt
where

(gl c � gr c) (b, (w0, w1, . . . , ws−1), (l0, l1, . . . , ls−1), (r0, r1, . . . , rs−1))
= fst [(j, k) | (j, k) ← [0..s−1],m← [True,False],

wc == li + (if m then b else 0) + rk, p
′
n j m k == c]
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Finally in the fourth step, we compute the resulting mark for each node based on the

state computed in the previous step.

zipwithb k
′′
l k

′′
n ct zt

where
k′′l c (a, (w0, w1, . . . , ws−1),−,−) = (wc == a ∧ p′l True == c)
k′′n c (b, (w0, w1, . . . , ws−1), (l0, l1, . . . , ls−1), (r0, r1, . . . , rs−1))

= fst [m | (j, k) ← [0..s−1],m← [True,False],
wc == li + (if m then b else 0) + rk, p

′
n j m k == c]

Note that the functions gl, gr, and k′′n should enumerate the cases in the same order for

the correctness of the resulting marks. Otherwise, the dependency between children will

be broken.

We can derive the auxiliary functions for the uAccb and dAccb skeletons. For the uAccb

skeleton, we can use the auxiliary functions derived for the reduceb skeleton in the previous

section. For the dAccb skeleton, since the number of states is finite (i.e., s), we can derive

the auxiliary functions based on the finiteness property using Theorem 5.9.

Theorem 8.2 There exists a parallel program that solves the target maximum marking

problems in Definition 8.1.

Proof. By summarizing the discussion above, we can give a skeletal program that solves

the maximum marking problem as follows.

mmp (accept ◦ ([pl, pn])b) t
= let bt = uAccb k

′
n (mapb k

′
l id t)

zt = zip4b t bt (getchlb − bt) (getchrb − bt)
m=

∑
↑[wi | (w0, w1, . . . , ws−1) = rootb bt , i← [0..s−1], accept ′ i]

c = fst [i | (w0, w1, . . . , ws−1) = rootb bt , i← [0..s−1], accept ′ i,m == wi]
ct = dAccb (gl, gr) c zt

in zipwithb k
′′
l k

′′
n ct zt

In this skeletal program, functions k′l, k
′
n, and accept ′ and their auxiliary functions p′l and

p′n are defined in Theorem 8.1. The other functions gl, gr, k′′l , and k′′n are defined as follows

(the same as the definitions above).

(gl c � gr c) (b, (w0, w1, . . . , ws−1), (l0, l1, . . . , ls−1), (r0, r1, . . . , rs−1))
= fst [(j, k) | j, k ← [0..s−1],m← [True,False],

wc == lj + (if m then b else 0) + rk, p
′
n j m k == c]

k′′l c (a, (w0, w1, . . . , ws−1),−,−) = (wc == a ∧ p′l True == c)
k′′n c (b, (w0, w1, . . . , ws−1), (l0, l1, . . . , ls−1), (r0, r1, . . . , rs−1))

= fst [m | j, k ← [0..s−1],m← [True,False],
wc == lj + (if m then b else 0) + rk, p

′
n j m k == c]

To derive auxiliary functions of the uAccb skeleton, we apply Theorem 8.1. By substi-

tuting the functions gl and gr for those in Theorem 5.9, we here derive auxiliary functions
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for the dAccb skeleton, φl, φr, ψu, and ψd satisfying (gl, gr) = 〈φl, φr, ψu, ψd〉d.

(φl � φr) (b, (w0, w1, . . . , ws−1), (l0, l1, . . . , ls−1), (r0, r1, . . . , rs−1))
= ((j′0, j′1, . . . , j′s−1), (k

′
0, k

′
1, . . . , k

′
s−1))

where
(j′i, k

′
i) = fst [(j, k) | j, k ← [0..s−1],m← [True,False],

wi == lj + (if m then b else 0) + rk, p
′
n j m k == i]

ψu (n0, n1, . . . , ns−1) (m0,m1, . . . ,ms−1) = (p0, p1, . . . , ps−1)
where pi = let i′ = mi in ni′

ψd c (n0, n1, . . . , ns−1) = nc

Note that since states are represented by an integer in our derivation we use the states as

the indices of tuple.

It follows from the skeletal program and the auxiliary functions derived so far that the

theorem holds. �

Figure 8.2 shows a skeletal parallel program for the party planning problem derived

from the specification in Section 8.1. The program is much more complicated than that

shown in Section 5.3.1 due to redundant computation caused by unnecessary states and due

to the generic derivation in which the dependency among children is taken into account.

In the following section, we develop an optimization method of removing unnecessary

computation due to the unnecessary states.

8.5 Optimization of Derived Parallel Programs

Parallel programs derived in the previous sections are often less efficient than those de-

veloped by hand. The main reason is redundant computation in derived programs caused

by a large number of states. For example, we derived a program for the party planning

problem on binary trees with four states in the previous section, but we can solve the

same problem with only two states as seen in Section 5.3.1. In this section, we propose an

optimization procedure for derived parallel programs.

8.5.1 Overview of Optimization

Figure 8.3 depicts the procedure of optimization for derived skeletal parallel programs.

The input SI is a set of 2n states {0, 1, . . . , 2n−1}, and the output is a set S′ of states,

state sz corresponding to the constant zero (if it exists), and a matrix A of abstract values

used for the implementation of auxiliary functions.

The optimization consists of the following three subroutines.

• Forward optimization: We remove unnecessary states whose corresponding value

must not be the maximum weight sum.

• Backward optimization: We remove unnecessary states that generate no acceptable

states.
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pppb t = let bt = uAccb k
′
n (mapb k

′
l id t)

zt = zip4b t bt (getchlb bt) (getchrb bt)
(w0, w1, w2, w3) = rootb bt
c = if w2 > w3 then 2 else 3
ct = dAccb (gl, gr) c zt

in zipwithb k
′′
l k

′′
n ct zt

k′l a = (−∞,−∞, 0, a)

k′n (l0, l1, l2, l3) b (r0, r1, r2, r3) = (w0, w1, w2, w3)
where wi =

∑
↑ [lj + b′ijk b+ rk | j, k ∈ [0, 1, 2, 3]]

(gl c � gr c) (b, (w0, w1, w2, w3), (l0, l1, l2, l3), (r0, r1, r2, r3))
= fst [(j, k) | j, k ← [0, 1, 2, 3],m ← [True,False],

wc == lj + (if m then b else 0) + rk, p
′
n j m k == c]

k′′l c (a, (w0, w1, w2, w3),−,−) = (wc == a ∧ c == 3)

k′′n c (b, (w0, w1, w2, w3), (l0, l1, l2, l3), (r0, r1, r2, r3))
= fst [m | j, k ← [0, 1, 2, 3],m ← [True,False],

wc == lj + (if m then b else 0) + rk, p
′
n j m k == c]

φ b = (b, I)

ψn l (bn,Mn) r = M×+,↑ k′n l bn r

ψl (bl,Ml) (bn,Mn) (r0, r1, r2, r3) = (bl,Mn ×+,↑ {r′ij bn} ×+,↑ Ml)
where r′ij bn =

∑
↑[rk + b′ijk bn | k ∈ [0, 1, 2, 3]]

ψr (l0, l1, l2, l3) (bn,Mn) (br,Mr) = (br,Mn ×+,↑ {l′ik bn} ×+,↑ Mr)
where l′ik bn =

∑
↑[lj + b′ijk bn | j ∈ [0, 1, 2, 3]]

(φl � φr) (b, (w0, w1, w2, w3), (l0, l1, l2, l3), (r0, r1, r2, r3))
= ((j′0, j

′
1, j

′
2, j

′
3), (k

′
0, k

′
1, k

′
2, k

′
3))

where
(j′i, k

′
i) = fst [(j, k) | j, k ← [0, 1, 2, 3],m ← [True,False],

wi == lj + (if m then b else 0) + rk, p
′
n j m k == i]

ψu (n0, n1, n2, n3) (m0,m1,m2,m3) = (p0, p1, p2, p3)
where pi = let i′ = mi in ni′

ψd c (n0, n1, n2, n3) = nc

r
p′n l True r 0 1 2 3

0 1 1 1 1
1 1 1 1 1

l 2 1 1 3 1
3 1 1 1 1

r
p′n l False r 0 1 2 3

0 0 0 0 0
1 0 0 0 0

l 2 0 0 2 2
3 0 0 2 2

b′ijk b =

⎧⎪⎪⎨
⎪⎪⎩

b ↑ 0 if p′n j True k == i ∧ p′n j False k == i
b if p′n j True k == i ∧ p′n j False k �= i
0 if p′n j True k �= i ∧ p′n j False k == i
−∞ otherwise

Figure 8.2. Derived skeletal parallel program for the party planning problem. The aux-
iliary functions satisfy k′n = 〈φ, ψn, ψl, ψr〉u and (gl, gr) = 〈φl, φr, ψu, ψd〉d.
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Forward Optimization

Backward Optimization

{0, 1, 2} {1, 2} Iterate while the set
of states is reduced

Input SI = {0, 1, 2, 3}

Tupled-ring Optimization

{1, 2}

S′ = {2}, sz = 1

A =
( ∗ ∗

−∞ 0

)Output

Figure 8.3. Procedure of optimization. The values are from the optimization for the
example of computing the height of binary trees.

• Tupled-ring Optimization: We clarify necessary elements in the matrices used for

auxiliary functions.

We apply the forward optimization and the backward optimization iteratively while the

set of states is reduced.

It is worth noting that we can use the first two subroutines also for optimizing sequen-

tial programs whereas the last one is only for parallel programs. In the following, we show

the three subroutines one by one.

8.5.2 Forward Optimization

The forward optimization simulates the computation of weight sums and removes unnec-

essary states that do not have any effect to the resulting maximum weight sum.

We perform the simulation using the following three abstract values.

• constant negative infinity, −∞ (the unit of ↑),
• constant zero, 0 (the unit of +), and

• the other values or variables denoted by ∗.

We define three operators, ↑ for taking the larger, + for addition, and � for updating, as

follows.

↑ −∞ 0 ∗
−∞ −∞ 0 ∗
0 0 0 ∗
∗ ∗ ∗ ∗

+ −∞ 0 ∗
−∞ −∞ −∞ −∞
0 −∞ 0 ∗
∗ −∞ ∗ ∗

� −∞ 0 ∗
−∞ −∞ ∗ ∗
0 ∗ 0 ∗
∗ ∗ ∗ ∗
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These three operators are specialized ones for commutative semiring {Num, ↑,+} from

those that are defined in Section 7.3 for optimizing program with tupled-ring property.
Using these operators, we can perform the forward optimization by the following three

steps. The input is a set of states SI = {s0, s1, . . . , sm} and the output is a set of states
SO = {s′0, s′1, . . . , s′n}, where SI ⊇ SO holds. In the following step, we use function p′l and

p′n defined in the derivation of skeletal programs in Section 8.3.

1. Generate an initial tuple S0 by computing an abstract value for each state.

S0 = (ws0 , ws1 , . . . , wsm) where wsi =

⎧⎨
⎩

∗ if p′l True == si
0 else if p′l False == si
−∞ otherwise

2. Update the tuple by simulating the computation of weight sums until the values do

not change.

Si+1 = k′ Si +� Si
where k′ (ws0, ws1 , . . . , wsm) = (w′

s0 , w
′
s1 , . . . , w

′
sm

)
w′
si

=
∑

↑[wsj + (if m then ∗ else 0) + wsk

| sj, sk ← [s0, s1, . . . , sm], b← [True,False],
p′n sj m sk == si]

(ws0 , ws1, . . . , wsm) +� (w′
s0, w

′
s1 , . . . , w

′
sm

)
= (ws0 � w′

s0, ws1 � w′
s1 , . . . , wsm � w′

sm
)

3. Repeat step 2 until the tuple do not change, i.e., Si+1 = Si for some i. In the

following, we denote S∞ for such a tuple of states.

4. Remove states whose corresponding value in S∞ is −∞.

We illustrate the forward optimization using the example of computing the height of
binary trees. Let the input set SI of states be SI = {0, 1, 2, 3}. Since the function p′l for

the computation of height is defined as p′l True = 2 and p′l False = 1, we have the initial
tuple S0 defined as follows.

S0 = (−∞, 0, ∗,−∞)

We then update the tuple by simulating the computation of weight sums. The following
calculations show the first two applications of step 2.

S1 = k′ S0 +� S0

= k′ (−∞, 0, ∗,−∞) +� (−∞, 0, ∗,−∞)
= (∗, 0, ∗,−∞) +� (−∞, 0, ∗,−∞)
= (∗, 0, ∗,−∞)

S2 = k′ S1 +� S1

= k′ (∗, 0, ∗,−∞) +� (∗, 0, ∗,−∞)
= (∗, 0, ∗,−∞) +� (∗, 0, ∗,−∞)
= (∗, 0, ∗,−∞)
= S1
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From these calculations, we have S∞ as S∞ = S1 = (∗, 0, ∗,−∞). By applying the fourth

step, we can remove state 4 and obtain the reduced set of states SO = {0, 1, 2} as the

output of the forward optimization.

8.5.3 Backward Optimization

The backward optimization removes states that affect nothing on the resulting maximum

weight sum. This optimization is named backward since the optimization starts from the

acceptable states and traverses the dependency among states in a reversed direction.

We first generate a graph representing the transition of states. Let SI be a given set of

states. A reversed transition graph G constructed from SI is a directed graph G = {V,E}
where

• V is a set of nodes that is equal to SI , and

• E is a set of edges given as follows.

E = {(sj , si) | ∃s ∈ SI , p′n si True s == sj ∨ p′n si False s == sj
∨ p′n s True si == sj ∨ p′n s False si == sj}

Given a reversed transition graph G, we perform the backward optimization as follows.

1. For each acceptable state si ∈ SI that satisfies accept ′ si == True, compute a set Ri
of states reachable from si in the graph G.

2. Compute the union R of Ri, i.e., R =
⋃
iRi.

3. Remove the state that are not included in the set R, that is, this set R is the output

of the backward optimization.

Now we return to the example of computing the height of binary trees. Let the input

set SI be SI = {0, 1, 2}, which is the output of the forward optimization in Section 8.5.2.

First, we generate a reversed transition graph of SI that has three nodes V = {0, 1, 2},
and three edges V = {(0, 1), (0, 2), (2, 1)}. We omit edges whose start node and end node

are the same (e.g., (0, 0)), because they affect nothing to reachability. Figure 8.4 illustrates

the generated reversed transition graph. We then perform the backward optimization using

this graph G. Since state 2 is only acceptable, by computing the reachable states from

state 2 we obtain set R as R = {1, 2}. This R is the output of the backward optimization,

and we can remove state 0 by this backward optimization.
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0

1 2

0

1 2
=⇒

Figure 8.4. A reversed transition graph (Left) and reachable nodes from the acceptable
state (Right). The acceptable state is denoted by doubly-lined circle (state
2), and reachable nodes from it are filled gray.

8.5.4 Tupled-Ring Optimization

Tupled-ring optimization is an optimization that removes unnecessary values in the com-

putation of the reduceb and uAccb skeletons. This optimization was already discussed in

our code generator in Section 7.3. Here, we omit the detailed optimization steps and only

show the input matrices for the optimization.

Let S∞ be a set of values computed in the forward optimization. We consider the

generation of input matrices in the following two cases: when there is no state whose

corresponding value in S∞ is constantly zero, and when there exists such a state.

When there is no state whose corresponding value is constantly zero, we generate

matrices for the tupled-ring optimization in the same way as Section 8.3. Therefore, given

a set of states SI = {s0, s1, . . . , st−1}, we generate t× t matrices as follows.

gl b (r0, r1, . . . , rt−1) = {r′ij}
where r′ij =

∑
↑[(if m then b else 0) + rk
| k ← [1..t−1],m← [True,False], p′n sj m sk == si]

gr b (l0, l1, . . . , lt−1) = {l′ik}
where l′ik =

∑
↑[(if m then b else 0) + lj
| j ← [1..t−1],m← [True,False], p′n sj m sk == si]

Based on these matrices, the definition of parameter function and auxiliary functions can

be given in the same way as the code generator in Section 7.3.

When there is a state whose corresponding value is constantly zero, we can remove the

state by substituting zeros in the definition of functions. Therefore, the number of values

in the tuple during the computation is less by one than that in SI . In the following we

discuss the generation of the matrices in this case. Let sz be the state whose corresponding

value is constantly zero, and S′ be a set of the other states, S′ = SI−{sz}. For readability,

we denote the set S′ as S′ = {s0, s1, . . . , st′−1} where t′ = t− 1.

We generate matrices of the input of the tupled-ring optimization as follows. The

generated matrices are of size (t′ +1)× (t′ +1) (or, in other words t× t), and the (t′ +1)th
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column is for the state sz and the (t′ +1)th row is the same as that in the identity matrix.

gl b (r0, r1, . . . , rt′−1) = {r′ij}
where r′nn = 0

r′nj = −∞
r′in =

∑
↑[(if m then b else 0) + rk

| k ← [1..t′−1],m← [True,False], p′n sz m sk == si]
↑∑↑[if m then b else 0 | m← [True,False], p′n sz m sz == si]

r′ij =
∑

↑[(if m then b else 0) + rk
| k ← [1..t′−1],m← [True,False], p′n sj m sk == si]

↑∑↑[if m then b else 0 | m← [True,False], p′n sj m sz == si]

gr b (l0, l1, . . . , lt′−1) = {l′ik}
where l′nn = 0

l′nk = −∞
l′in =

∑
↑[(if m then b else 0) + lj

| j ← [1..t′−1],m← [True,False], p′n sj m sz == si]
↑∑↑[if m then b else 0 | m← [True,False], p′n sz m sz == si]

l′ik =
∑

↑[(if m then b else 0) + lj
| j ← [1..t′−1],m← [True,False], p′n sj m sk == si]

↑∑↑[if m then b else 0 | m← [True,False], p′n sz m sk == si]

Now we illustrate the generation of matrices using the example of computing the height

of binary trees.

Inheriting the states from the backward transformation, we use SI = {1, 2} for the

input of tupled-ring optimization. As seen from the forward optimization, the value cor-

responding to state 1 is constantly zero. Therefore, we have S′ = {2} and sv = 1. By

using these S′ and sv, we can derive the following matrices for functions gl and gr. For

readability of the derived functions, we use indices from the states instead of numbers

starting at 0.

gl b r2 =
(

b b+ r2
−∞ 0

)

gr b l2 =
(

b b+ l2
−∞ 0

)

We simulate the computation of tree skeletons on the abstract values, and obtain the

following matrix A defined with abstract values.

A =
( ∗ ∗

−∞ 0

)

Based on gl, gr, and A derived so far, we can obtain an efficient implementation for

computing the height of binary trees. The result of the reduceb is now a value instead of a

tuple of four values, and in the auxiliary functions only two values need to be computed in

the matrices. Figure 8.5 shows the optimized skeletal parallel program for the computation

of the height of binary trees.
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heightb x = reduceb k
′
n (mapb k

′
l (λx.1) x)

where
k′l a = 1
k′n l2 b r2 = b ↑ (b+ l2) ↑ (b+ r2)
φ b = (b, (0,−∞))
ψn l2 (bn (pn, qn)) r2 = let v = (pn + (k′n l2 bn r2)) ↑ qn
ψl (bl, (pl, ql)) (bn, (pn, qn)) r2 = (bl, (pn, qn) ⊗ (bn, bn + r2) ⊗ (pl, ql))
ψr l2 (bn, (pn, qn)) (br, (pr, qr)) = (br, (pn, qn) ⊗ (bn, bn + l2) ⊗ (pr, qr))
(p, q) ⊗ (p′, q′) = (p+ p′, (p + q′) ↑ q)

Figure 8.5. Optimized skeletal parallel program for computing the height of binary trees.
The operator ⊗ is a specialized operator for matrix multiplication.

8.6 Examples

In the previous sections, we have developed a derivation method and an optimization
procedure of skeletal parallel programs for maximum marking problems. We also demon-
strated the methods with two examples.

In this section, we furthermore demonstrate the application of the derivation method
to the following two problems: the maximum connected-set sum problem and computing
diameter of binary trees.

8.6.1 Maximum Connected-Set Sum Problem

The maximum connected-set sum problem is a tree version of the maximum segment sum
problem on lists. Given a tree in which each node has a number, and the problem is to
find a connected set such that the sum of values in the set gets the maximum. Note that
a connected set is not necessarily a subtree. In this section, we develop a skeletal parallel
program for the maximum connected-set sum problem on binary trees.

First of all, we write the specification of the problem. The maximum connected-set
sum problem is a maximum weight-sum problem, and we can specify the predicate p by
using the following four functions accept , cs , nomark , and rootb as p = accept ◦ (cs �

nomark � rootb).

• accept : Function accept checks a marking of tree forms at most one connected set.

• cs: Function cs returns True if a marking forms exactly one connected set.

• nomark : Function nomark returns True if there exists no node marked as True.

• rootb: Function rootb returns the mark of the root.

accept t = cs t ∨ nomark t

cs (BLeaf a) = a
cs (BNode l b r) = (b ∧ (nomark l ∨ (rootb l ∧ cs l))

∧ (nomark r ∨ (rootb r ∧ cs r)))
∨ (¬ b ∧ ((nomark l ∧ cs r) ∨ (nomark r ∧ cs l)))
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nomark (BLeaf a) = ¬ a
nomark (BNode l b r) = ¬ b ∧ nomark l ∧ nomark r

rootb (BLeaf a) = a
rootb (BNode l b r) = b

We number the states from zero to seven. Based on the definition of the predicate,

we derive three functions accept ′, p′l, and p′n that take or return states represented by

numbers.

accept ′ x =
{

True if x ∈ {2, 3, 4, 5, 6, 7}
False otherwise

p′l True = 5
p′l False = 2

r
p′n l True r 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 1 1 5 5 1 5 5 5
3 1 1 5 5 1 5 5 5

l 4 1 1 1 1 1 1 1 1
5 1 1 5 5 1 5 5 5
6 1 1 5 5 1 5 5 5
7 1 1 5 5 1 5 5 5

r
p′n l False r 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 2 2 4 4 6 6
3 0 0 2 2 4 4 6 6

l 4 0 0 4 4 0 0 4 4
5 0 0 4 4 0 0 4 4
6 0 0 6 6 4 4 6 6
7 0 0 6 6 4 4 6 6

We then remove unnecessary states by the optimization procedure in Section 8.5. The

input of the optimization procedure is a set SI of all the states, SI = {0, 1, 2, 3, 4, 5, 6, 7}.
In the first step of the optimization, we apply the forward optimization as shown in

the following calculations.

S0 = (−∞,−∞, 0,−∞,−∞, ∗,−∞,−∞)

S1 = k′ S0 +� S0

= k′ (−∞,−∞, 0,−∞,−∞, ∗,−∞,−∞) +� (−∞,−∞, 0,−∞,−∞, ∗,−∞,−∞)
= (∗,−∞, 0,−∞, ∗, ∗,−∞,−∞) +� (−∞,−∞, 0,−∞,−∞, ∗,−∞,−∞)
= (∗,−∞, 0,−∞, ∗, ∗,−∞,−∞)

S2 = k′ S1 +� S1

= k′ (∗,−∞, 0,−∞, ∗, ∗,−∞,−∞) +� (∗,−∞, 0,−∞, ∗, ∗,−∞,−∞)
= (∗, ∗, 0,−∞, ∗, ∗,−∞,−∞) +� (∗,−∞, 0,−∞, ∗, ∗,−∞,−∞)
= (∗, ∗, 0,−∞, ∗, ∗,−∞,−∞)

S3 = k′ S2 +� S2

= k′ (∗, ∗, 0,−∞, ∗, ∗,−∞,−∞) +� (∗, ∗, 0,−∞, ∗, ∗,−∞,−∞)
= (∗, ∗, 0,−∞, ∗, ∗,−∞,−∞) +� (∗, ∗, 0,−∞, ∗, ∗,−∞,−∞)
= (∗, ∗, 0,−∞, ∗, ∗,−∞,−∞)
= S2

From the calculations above, we can remove states 3, 6, and 7 from SI and obtain a

reduced set S′
I of states S′

I = {0, 1, 2, 4, 5}.
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In the second step of the optimization, we apply the backward optimization. The

reversed transition graph G constructed from S′
I is given as follows.

G = ({0, 1, 2, 4, 5},
{(0, 1), (0, 2), (0, 4), (0, 5), (1, 0), (1, 2), (1, 4), (1, 5), (4, 2), (4, 5), (5, 2)})

Starting from state 2, we have reachable states R2 as R2 = {2}. Similarly, we have

reachable states from states 4 and 5 as R4 = {2, 4, 5} and R5 = {2, 5}, respectively. The

union of these three sets yields R = {2, 4, 5}, and we can remove states 0 and 1 from the

set of states.

This set of states {2, 4, 5} does not change anymore by both the forward optimization

and the backward optimization, we proceed to the tupled-ring optimization. As we have

seen in the calculations in the forward optimization, the value corresponding to state 2 is

constantly zero. Therefore, we have the following input for the tupled-ring optimization.

S′ = {4, 5}, sz = 2

For readability, we extract the elements related to the states 2, 4, and 5 as shown in the

following tables. In the following tables, − denotes an element that can be ignored in the

following derivation since it yields a state rather that the states 2, 4, and 5.

r
p′n l True r 2 4 5

2 5 − 5
l 4 − − −

5 5 − 5

r
p′n l False r 2 4 5

2 2 4 4
l 4 4 − −

5 4 − −
Using these two tables, we can derive two matrices for functions gl and gr as follows.

gl b (r4, r5) =

⎛
⎝ 0 0 r4 ↑ r5

−∞ r5 ↑ 0 r5 ↑ 0
−∞ −∞ 0

⎞
⎠

gr b (l4, l5) =

⎛
⎝ 0 0 l4 ↑ l5

−∞ l5 ↑ 0 l5 ↑ 0
−∞ −∞ 0

⎞
⎠

By abstracting values we have a matrix⎛
⎝ 0 0 ∗

−∞ ∗ ∗
−∞ −∞ 0

⎞
⎠ ,

and simulating the computation of the reduceb, we have the following matrix A with

abstract values as the output of the tupled-ring optimization.

A =

⎛
⎝ 0 ∗ ∗

−∞ ∗ ∗
−∞ −∞ 0

⎞
⎠
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After optimization, we have.

S′ = {4, 5}, sv = 2, A =

⎛
⎝ 0 ∗ ∗

−∞ ∗ ∗
−∞ −∞ 0

⎞
⎠

Finally, we generate a skeletal parallel program. The generated skeletal parallel pro-

gram mcss is given as follows. We can derive the functions k′l and k′n just by substituting

the parameter. For the auxiliary functions, we specialize the matrix multiplication with

+ and ↑ into operator ⊗ in which only four values denoted by ∗ are used.

mcss t = reduceb k
′
n (mapb k

′
l id t)

where
k′l a = (−∞, a)
k′n (l4, l5) b (r4, r5) = (l4 ↑ l5 ↑ r4 ↑ r5, (l5 + r5) ↑ l5 ↑ r5 ↑ 0)

φ b =
(
b,

( −∞ −∞
0 −∞

))

ψn (l4, l5)
(
bn,

(
a01 a02

a11 a12

))
(r4, r5)

= let (x4, x5) = k′n (l4, l5) bn (r4, r5)
in (x4 ↑ (a01 + x5) ↑ a02, (a11 + x5) ↑ a12)

ψl (bl,Ml) (bn,Mn) (r4, r5) =
(
bl,Mn ⊗

(
0 r0 ↑ r1

r1 ↑ 0 r1 ↑ 0

)
⊗Mr

)

ψr (l4, l5) (bn,Mn) (br,Mr) =
(
br,Mn ⊗

(
0 l0 ↑ l1

l1 ↑ 0 l1 ↑ 0

)
⊗Ml

)

Here, auxiliary functions satisfy k′n = 〈φ,ψn, ψl, ψr〉u.

We can easily extend the skeletal program to find a marking that yields the maximum

connected-set sum based on the derivation methods in Section 8.4. Let mcsm be a function

that returns a marking for the maximum connected-set sum. The derivation is done

by straightforward substitution of the parameter functions accept ′, p′l and p′n. In the

substitution, we only consider the values corresponding to the states remaining after the

optimization procedures. Note that a node in the result tree of the uAccb skeleton do

not have the value zero corresponding to the state 2. Therefore, we complement it in the

computation of the downwards accumulation.

mcsm t = let bt = uAccb k
′
n (mapb k

′
l id t)

zt = zip4b t bt (getchlb bt) (getchrb bt)
(w4, w5) = rootb bt
m = 0 ↑ w4 ↑ w5

c = if m == 0 then 2 else if m == w4 then 4 else 5
ct = dAccb (gl, gr) c zt

in zipwithb k
′′
l k

′′
n ct zt
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(gl c � gr c) (b, (w4, w5), (l4, l5), (r4, r5))
= fst [(j, k) | j, k ← [2, 4, 5],m ← [True,False],

wc == lj + (if m then b else 0) + rk, p
′
n j m k == c]

where w2 = l2 = r2 = 0

k′′l c (a, (w4, w5),−,−) = (w5 == a ∧ c == 5)

k′′n c (b, (w4, w5), (l4, l5), (r4, r5))
= fst [m | j, k ← [2, 4, 5],m ← [True,False],

wc == lj + (if m then b else 0) + rk, p
′
n j m k == c]

where w2 = l2 = r2 = 0

(φl � φr) (b, (w4, w5), (l4, l5), (r4, r5))
= ((j′2, j′4, j′5), (k′2, k′4, k′5))
where
(j′i, k

′
i) = fst [(j, k) | j, k ← [2, 4, 5],m ← [True,False],

wi == lj + (if m then b else 0) + rk, p
′
n j m k == i]

where w2 = l2 = r2 = 0

ψu (n2, n4, n5) (m2,m4,m5) = (p2, p4, p5)
where pi = let i′ = mi in ni′

ψd c (n2, n4, n5) = nc

Here, auxiliary functions satisfy (gl, gr) = 〈φl, φr, ψu, ψd〉d. The functions k′l, k
′
n and

auxiliary functions for k′n are defined for the maximum connected-set sum mcss .

8.6.2 Diameter of Trees

Diameter of an undirected (weighted) graph is the maximum among the (weigthed) lengths
of shortest paths for all pair of nodes [56]. A tree is an instance of undirected graphs where
there is exactly one path for each pair of nodes, and thus diameter of a tree is given by
the length of the longest path. We can specify the computation of the diameter of a given
binary tree as a maximum weight-sum problem.

Note that an edge of a tree connects to a unique child node. Let input t be a binary
tree in which a node except the root represents the weight of the edge that connects the
node to its parent, and the root have value zero. We assume the weight of the edge to
be positive. On this tree, paths are classified into the following two in terms of their
appearance.

• Complete path: A path is complete if there exists a node from which two non branch-
ing paths go downwards to a leaf.

• Partial path: A path is partial if a non branching path goes downwards from the
root to a leaf.

In the definition above, we omit paths that are obviously shorter than another based
on the fact that the longest path on trees connects two leaves. To specify the paths on
binary trees, we define the following four functions. We can define the predicate p for the
maximum weight-sum problem as p = accept ◦ (cpath � ppath � nomark ).
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• accept : Function accept checks a marking of a binary tree forms a complete path.

• cpath : Function cpath returns True if a tree has exactly one complete path inside.

• ppath : Function ppath returns True if a tree has exactly one partial path.

• nomark : Function nomark returns True if no node in a tree is marked as True.

accept t = cpath t

cpath (BLeaf a) = False
cpath (BNode l b r) = ¬ b ∧ ((cpath l ∧ nomark r) ∨ (cpath r ∧ nomark l)

∨ (ppath l ∧ ppath r))

ppath (BLeaf a) = a
ppath (BNode l b r) = b ∧ ((ppath l ∧ nomark r) ∨ (ppath r ∧ nomark l)

∨ (nomark l ∧ nomark r))

nomark (BLeaf a) = ¬ a
nomark (BNode l b r) = ¬ b ∧ nomark l ∧ nomark r

Let diameter be a function that computes the diameter of a given binary tree, then we

have diameter = mws (accept ◦ (cpath � ppath � nomark )).

Now we derive a skeletal parallel program from this specification. First, we number

the states from zero to seven, and derive three functions accept ′, p′l, and p′n.

accept ′ x =
{

True if x ∈ {4, 5, 6, 7}
False otherwise

p′l True = 2
p′l False = 1

r
p′n l True r 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 2 2 2 0 2 2 2
2 0 2 0 2 0 2 0 2
3 0 2 2 2 0 2 2 2

l 4 0 0 0 0 0 0 0 0
5 0 2 2 2 0 2 2 2
6 0 2 0 2 0 2 0 2
7 0 2 2 2 0 2 2 2

r
p′n l False r 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 0 1 4 5 4 5
2 0 0 4 4 0 0 4 4
3 0 1 4 5 4 5 4 5

l 4 0 4 0 4 0 4 0 4
5 0 5 0 5 4 5 4 5
6 0 4 4 4 0 4 4 4
7 0 5 4 5 4 5 4 5

We then reduce the number of states by the optimization procedure. The input set of

states is SI = {0, 1, 2, 3, 4, 5, 6, 7}.
In the first step of the optimization, we apply the forward optimization.

S0 = (−∞, 0, ∗,−∞,−∞,−∞,−∞,−∞)

S1 = k′ S0 +� S0

= k′ (−∞, 0, ∗,−∞,−∞,−∞,−∞,−∞) +� (−∞, 0, ∗,−∞,−∞,−∞,−∞,−∞)
= (∗, 0, ∗,−∞, ∗,−∞,−∞,−∞) +� (−∞, 0, ∗,−∞,−∞,−∞,−∞,−∞)
= (∗, 0, ∗,−∞, ∗,−∞,−∞,−∞)
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S2 = k′ S1 +� S1

= k′ (∗, 0, ∗,−∞, ∗,−∞,−∞,−∞) +� (∗, 0, ∗,−∞, ∗,−∞,−∞,−∞)
= (∗, 0, ∗,−∞, ∗,−∞,−∞,−∞) +� (∗, 0, ∗,−∞, ∗,−∞,−∞,−∞)
= (∗, 0, ∗,−∞, ∗,−∞,−∞,−∞)
= S1

From the calculations above, we can remove states 3, 5, 6, and 7 from SI and obtain a

reduced set of states S′
I = {0, 1, 2, 4}.

In the second step of the optimization, we apply the backward optimization to S′
I . The

reversed transition graph G constructed from S′
I is given as follows.

G = ({0, 1, 2, 4}, {(0, 1), (0, 2), (0, 4), (2, 1), (4, 1), (4, 2)})

State 4 is the only acceptable state in S′
I . By computing reachable states in G, we obtain

the set R of reachable states as R = {1, 2, 4}. Therefore, we can remove state 0 from S′
I .

This set of states {1, 2, 4} does not change by both the forward optimization and the

backward optimization anymore, and therefore we proceed to the tupled-ring optimization.

As we have seen in the calculations in the forward optimization, the value corresponding

to state 1 is constantly zero. Therefore, we have the following input for the tupled-ring

optimization.

S′ = {2, 4}, sz = 1

To make the derivation easy, we introduce the following two tables by extracting the

elements related to the states 1, 2, and 4. In the following tables, − denotes an element

that can be ignored in the following derivation since it yields a state rather than the states

1, 2, and 4.

r
p′n l True r 1 2 4

1 2 2 −
l 2 2 − −

4 − − −

r
p′n l False r 1 2 4

1 1 − 4
l 2 − 4 −

4 4 − −
Using these two tables, we can derive two matrices for functions gl and gr.

gl b (r2, r4) =

⎛
⎝ b −∞ b+ r2

r2 0 r4
−∞ −∞ 0

⎞
⎠

gr b (l2, l4) =

⎛
⎝ b −∞ b+ l2

l2 0 l4
−∞ −∞ 0

⎞
⎠

By comparing these two matrices and simulating the computation of the reduceb skeleton,

we obtain a matrix A with abstract values as follows.

A =

⎛
⎝ ∗ −∞ ∗

∗ 0 ∗
−∞ −∞ 0

⎞
⎠
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Based on the results of the optimization, we finally generate a skeletal parallel program.

The generated skeletal parallel program is as follows. The operator ⊗ is a specialized one

for the matrix multiplication with four values denoted by ∗ in the abstract matrix A.

diameter t = reduceb k
′
n (mapb k

′
l id t)

where
k′l a = (a,−∞)
k′n (l0, l1) b (r0, r1) = (b ↑ (b+ r0) ↑ (l0 + b), r1 ↑ (l0 + r0) ↑ l1)
φ b =

(
b,

(
0 −∞

−∞ −∞
))

ψn (l2, l4)
(
bn,

(
a00 a02

a10 a12

))
(r2, r4)

= let (x2, x4) = k′n (l2, l4) bn (r2, r4)
in ((a00 + x2) ↑ a02, (a10 + x2) ↑ x4 ↑ a12)

ψl (bl,Ml) (bn,Mn) (r0, r1) =
(
bl,Mn ⊗

(
bn bn + r0
r0 r1

)
⊗Mr

)

ψr (l0, l1) (bn,Mn) (br,Mr) =
(
br,Mn ⊗

(
bn bn + l0
l0 l1

)
⊗Ml

)
(
a00 a02

a10 a12

)
⊗
(
b00 b02
b10 b12

)
=
(

a00 + b00 (a00 + b02) ↑ a02

(a10 + b00) ↑ b10 (a12 + b02) ↑ b12 ↑ a12

)

Here, the auxiliary functions φ, ψn, ψl and ψr satisfy k′n = 〈φ,ψn, ψl, ψr〉u.

8.7 Short Summary

In this chapter, we have developed a method of deriving skeletal parallel programs for

the maximum marking problems and maximum weight-sum problems based on Sasano

et al.’s method of deriving sequential programs. The main idea in our method is that

we apply theorems of tupled-ring property and finiteness property after decomposing the

computation into an upwards accumulation and a downwards accumulation. To apply

these theorems, we assume the structure of the input to be binary tree, which is the

only condition required in addition to Sasano et al.’s derivation method. We have also

developed a procedure to optimize the derived skeletal parallel programs. Two subroutines

are also applicable to the optimization of sequential programs.

As we have seen in the running example of the party planning problem, we can omit

some values in the downwards accumulation of the derived skeletal parallel programs.

Deciding the dependency between two children or between the parent and a child is an

interesting and important for further optimization of skeletal parallel programs. Whether

or not we can remove the additional condition of binary-tree structures is also an open

problem.
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Chapter 9

Parallelizing XPath Queries

In recent years, XML is getting widely used for storing structured data. So far sev-

eral languages have been proposed for manipulating XML trees, such as XSLT [72] and

XQuery [23], where XPath [13] plays a very important role in addressing selections of

nodes from XML trees. There have been several studies on efficient implementations

of XPath queries, for example, in the context of stream processing [55, 103, 105] and an

implementation on relational databases [80].

Parallel processing has several advantages for manipulating huge XML trees, in par-

ticular, by speedups with multiple processors and wide memory spaces. However, few

studies have been addressed on parallelizing XML processing due to the difficulties in par-

allel programming for trees. Skillicorn [121] showed several parallelizable manipulations on

structured documents based on skeletal parallel programming, but his method is limited

to simple manipulations of trees specified by relations between parent and children, and

complicated manipulations specified with relations between siblings are out of the range

of his method.

In this chapter, we give a systematic method of parallelizing XPath queries. Our

method is powerful enough to parallelize an important class of XPath queries. In addition

to relations between parent and children, we can specify XPath queries with relations

between siblings. We can also add some conditions of subtrees using predicates. As far

as we are aware, this is the first attempt to parallelize the class of XPath queries in a

systematic way.

This chapter is organized as follows. Section 9.1 specifies the core XPath queries, which

are the target of our parallelization algorithm, and introduces a binary-tree representation

of XML trees. In Section 9.2, we define two types of homomorphisms on binary trees and

discuss the relationship between these homomorphisms and tree accumulations. We give

the core parallelization algorithms for XPath queries without predicates in Section 9.3 and

for XPath queries in a single predicate in Section 9.4. In Section 9.5, we show the overall

parallelization algorithm. Section 9.6 summarizes this chapter.

The preliminary work of this chapter is given in [133].
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9.1 XPath Queries and Binary-Tree Representation of XML

Trees

9.1.1 XPath Queries

The XPath language [13] is a language for addressing parts of an XML tree. Figure 9.1

shows a subset of XPath language, which is the target of our parallelization algorithms

in this chapter. An XPath expression (xpath-expr) consists of a list of location steps

(step), each of which includes one of the three forward axes, child, desc (descendant),

and foll-sib (following-sibling)1, a nametest with the tag name or a wildcard *, and a

predicate that specifies the condition of the subtree rooted at the node specified. Predicates

are also specified with location steps and can be nested.

We exclude several axes defined in the specification of the XPath language [13]. There

are axes such as self, following and reverse axes. It is worth noting that we can rewrite

XPath queries defined with these axes into ones defined with the above three forward axes

only. We can transform such XPath queries by the rule

following::a =⇒ parent::*/foll-sib::*/descendant-or-self::a ,

following the rare algorithm developed by Olteanu et al. [103], which removes the reverse

axes. For example, given an XPath query

/desc::a/desc-or-self::b/parent::a ,

we can remove the axis parent by transforming the query into the following equivalent

XPath queries

/desc::a[child::b] or /desc::a/desc::a[child::b] .

Here, the first expression /desc::a[child::b] may occur if the first and second a in the

original XPath query are the same. If an XPath query includes operators || and &&, then

we process it by computing the XPath queries connected by the operators one by one.

xpath-expr ::= (/step )+
step ::= forward-axis nametest [ predicate ]
forward-axis ::= child:: | desc:: | foll-sib::
nametest ::= string | *
predicate ::= [ step ( /step )∗ ]

Figure 9.1. The definition of core XPath queries in this chapter.

1We use these abbreviations to shorten the description of XPath queries.
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9.1.2 Binary-Tree Representation of XML Trees

We have two set of tree skeletons, binary-tree skeletons in Chapter 2, and rose-tree skele-
tons in Chapter 4. Though the XML trees can be formalized as rose trees, we deal with

the XML trees based on the binary-tree representation shown in Figure 4.9 to develop
parallel programs by the systematic derivation methods on binary trees in Chapter 5. In

the binary-tree representation of XML trees, we assume that the internal nodes and leaves
have the same string type. Thus, leaves have dummy values of strings.

It is worth noting again that the left child of an internal node in the binary-tree
representation indicates the left-most child in the original XML tree and the right child

indicates the next right sibling. All the leaves are dummy nodes in the binary-tree repre-

sentation. To make the program easy to read, in this chapter we denote an internal node
as BNode c x s.

9.2 Two types of Homomorphisms and Tree Accumulations

Once a recursive data structure is given, algorithms over it are often given as recursive
functions along the definition of the structure. In Section 2.2, we have already defined

the tree homomorphism and discussed relationship between tree homomorphisms and tree
accumulations. In this section, we introduce another homomorphism on binary trees called

path homomorphism [48, 119] and formalize two tree accumulations in another way.

9.2.1 Tree Homomorphism and Upwards Accumulation

A tree homomorphism h = ([kl, kn])b is a function defined recursively on binary trees as

follows.

h (BLeaf a) = kl a
h (BNode c x s) = kn (h c) x (h s)

We write a tree homomorphism as TreeHom(kl, kn) instead of ([kl, kn])b to distinguish it

from the path homomorphism introduced later.
We showed that upwards accumulations on binary trees are tree homomorphism in

Section 2.2. Here, we give another specification to the upwards accumulations [47, 119].

The specification is a tree version of the scan lemma on lists:

scan (⊕) = map (reduce (⊕)) ◦ inits .

Let subtrees be a function that takes a binary tree and returns a tree of the same shape

where each node has a subtree of the input rooted at the node. Using the notation of tree
homomorphism we can define the function subtrees as follows. Figure 9.2 illustrates the

function subtrees .

subtrees = ([k′l, k
′
n])b

where k′l a = BLeaf (BLeaf a)
k′n c x s = BNode c (BNode (root b c) x (root b)) s
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=⇒
subtrees

Figure 9.2. Illustration of function subtrees

An upwards accumulation takes a binary tree and computes a tree of the same shape
by updating values in a bottom-up manner. Let kl and kn be given functions, we specify
the upwards accumulation using tree homomorphism and the function subtrees as:

mapb (TreeHom(kl, kn)) (TreeHom(kl, kn)) ◦ subtrees .

This definition says that if we can define a tree homomorphism TreeHom(kl , kn) then we
can also specify the upwards accumulation in which the tree homomorphism is applied to
each subtree. We can implement the upwards accumulation by tree skeletons as follows.

mapb (TreeHom(kl, kn)) (TreeHom(kl, kn)) ◦ subtrees = uAccb kn ◦ mapb kl id .

9.2.2 Path Homomorphism and Downwards Accumulation

We then formalize another data structure on binary trees to represent paths from the root.
The datatype BPath defined as follows represents a sequence of nodes from the root node
to a node of binary trees. The constructors have specialized names for the binary-tree
representation of XML trees.

data BPath α = Singleton α
| Child α (BPath α)
| Sibling α (BPath α)

Let the given binary tree be

BNode (BNode (BLeaf a) b (BLeaf c))
d
(BLeaf e) ,

the path from the root to leaf c is given as

Child d (Sibling b (Sibling c)) .

Many top-down computations on binary trees that take a path from the root can be
written on this BPath structure. We formalize such computations as the following path
homomorphisms.
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Figure 9.3. Illustration of function paths

Definition 9.1 (Path Homomorphism) Function h is said to be a path homomor-

phism, if it is define in the following form with some functions kx, kc, and ks.

h (Singleton x) = kx x
h (Child x c) = kc x (f c)
h (Sibling x s) = ks x (f s)

We may denote path homomorphism h as h = PathHom(kx, kc, ks). �

Let us consider the computation of the depth of a node in an XML tree. Given a path

from the root to a node in the binary-tree representation, we can compute the depth in

the XML tree with the following path homomorphism xmldepth .

xmldepth (Singleton x) = 0
xmldepth (Child x c) = 1 + xmldepth c
xmldepth (Sibling x s) = xmldepth s

We then discuss the relation between path homomorphisms and downwards accumula-

tions. Let paths be a function that takes a binary tree and returns a tree of the same shape

in which each node has the path from the root to the node in the input tree. Figure 9.3

illustrates the function paths . We can define the function paths as follows. Note that we

assume that the internal nodes and leaves in the input binary tree have the same type.

paths (BLeaf a) = BLeaf (Singleton a)
paths (BNode c x s) = BNode (mapb (λc.Child x c) (paths c)) (Singleton x)

(mapb (λs.Sibling x s) (paths s))

The downwards accumulation can be specified using the function paths and a path

homomorphism in the following way:

mapb (PathHom(kx, kc, ks)) (PathHom(kx, kc, ks)) ◦ paths .
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By the same technique as the case of upwards accumulations, we can implement downwards

accumulations using the dAccb and zipwithb skeletons. Note that the results of the dAccb

skeleton is a tree whose nodes have functions.

(map (PathHom (kx, kc, ks)) (PathHom (kx, kc, ks)) ◦ paths) t
= zipwithb k

′
x k

′
x t (dAccb (k′c, k′s) id t)

where k′x x f = f (kx x)
k′c c x = c ◦ kc x
k′s c x = c ◦ ks x

In the parallel implementation of the dAccb skeleton, a sufficient condition for existence

of efficient parallel implementation is the existence of semi-associative operator � shared

in both functions kc and ks.

Lemma 9.1 Given a path homomorphism PathHom(kx, kc, ks), the downwards accumu-

lation defined as

mapb (PathHom(kx, kc, ks)) (PathHom(kx, kc, ks)) ◦ paths

can be efficiently implemented in parallel, if there exists a semi-associative operator � and

two functions k′′c and k′′s satisfying the following equations.

kc x c = k′′c x� c
ks x s = k′′s x� s

Proof. Under this condition, we can easily define auxiliary functions for the dAccb skeleton

by considering functional form fa = λc.a� c in the same way as the proof of Theorem 5.7.

Let ⊕ be an associative operator satisfying the equation a� (b� c) = (a⊕ b)� c, then we

can derive the definition of the skeletal parallel program as follows.

(mapb (PathHom (kx, kc, ks)) (PathHom (kx, kc, ks)) ◦ paths) t
= zipwithb k

′
x k

′
x t (dAccb 〈k′′c , k′′s , ψu, ψd〉d ι⊕ t)

where k′x x c = c� kx x
ψu n m = m⊕ n
ψd c n = n� c �

Based on Lemma 9.1, we can make use the three algebraic properties in Chapter 5 for

the parallelization of downwards accumulations specified with path homomorphisms.

9.3 Parallelizing XPath Query without Predicates

We start by considering parallelization of XPath queries without predicates. Our paral-

lelization algorithm for XPath queries without predicates consists of the following four

steps.

1. Generate an automaton from the input XPath query.

2. Map the automaton to mutual recursive functions on paths.
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Child ��
��
S2

∗/Sibling

b Child ��
��
S3

∗/Child

∗/Sibling

c Sibling ��
��
S4

∗/Sibling

d

child::b desc::c foll-sib:d

Figure 9.4. Fragments of automata for XPath queries.

3. Derive a path homomorphism by applying the tupling transformation to the mutual

recursive functions.

4. Parallelize the path homomorphism using the tupled-ring property and derive a

skeletal parallel program.

In the following of this section, we show the detail of the parallelization algorithm step by

step. In this section, we use the following XPath query

/decs::a/child::b/foll-sib::c

as our running example.

Generate an Automaton from an XPath Query

XPath queries (without predicates) specified with three forward axes, child, desc, and

foll-sib, is matched based on the information of the path from the root to a node on the

binary-tree representation. This means that information of the path from the root to each

node is essential to compute matching of an XPath query without predicates. When a

XPath query matches to a path from the root, the XPath query returns the bottom-most

node on the path.

It is well known that matching of regular expressions to strings can be done by au-

tomata. XPath queries without predicates are matched to paths and thus we formalize the

matching by using automata. Figure 9.4 shows fragments of automata corresponding to

each step of XPath queries. We can derive an automaton just by composing the fragments

and putting the last state, which is the accepted state of the automaton. For our running

example, we can map the three steps to the three fragments and combine them into an

automaton shown in Figure 9.5.

Map the Automaton to Mutual Recursive Functions

We then derive mutual recursive functions which decide whether a path is accepted not.

We can obtain mutual recursive functions from the automaton in the previous step. We

map each state in the automaton to a function where we derive the definition of the
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∗/Sibling
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�	

Figure 9.5. An automaton for XPath query /desc::a/child::b/foll-sib::c. The
initial state is S1. The transition a/Child occurs when the node is labeled
as a and traversing to the left-most child. The transition b/Sibling occurs
when the node is labeled as b and traversing to the right sibling.

function from the local shape of automaton around the corresponding state. Since the

datatype of BPath is specified so that the root locates outside, the result of XPath query

is given by the function corresponding to the initial state.

The singleton case represents the bottom-most element in the path, and thus the return

value is True if there exists a transition to the accepted state of the automaton. For the

child case, we recursively call functions if there exist transitions labeled as x/Child where

x is the label of the node. The sibling case is similarly defined for siblings x/Sibling

where x is the label of the node. The results of function calls are folded with operator ∨.

The derivation rules of each function are summarized in Figure 9.6.

Returning to our running example, we map states to functions, S1 to f1, S2 to f2, and

S3 to f3, and obtain the following mutual recursive functions.

f1 (Singleton x) = False
f1 (Child x c) = f1 c ∨ (x == “a” ∧ f2 c)
f1 (Sibling x s) = f1 s

f2 (Singleton x) = False
f2 (Child x c) = False
f2 (Sibling x s) = f2 s ∨ (x == “b” ∧ f3 s)

f3 (Singleton x) = x == “c”
f3 (Child x c) = False
f3 (Sibling x s) = f3 s

The XPath query is implemented by applying function f1 to all the paths from the root.

Let query be a function that applies the given XPath query, then the XPath query is

implemented by the mutual recursive functions as

query(/desc::a/child::b/foll-sib::c) = mapb f1 f1 ◦ paths

where f1 is the function derived above.
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��
��
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∗/Child

∗/Sibling

a/Child ��
��
Sj

fi (Child x c) = fi c ∨ (x == “a” ∧ fj c)
fi (Sibling x s) = fi s

��
��
Si

∗/Child

∗/Sibling

a/Sibling ��
��
Sj

fi (Child x c) = fi c
fi (Sibling x s) = fi s ∨ (x == “a” ∧ fj s)

��
��
Si

∗/Sibling

a/Child ��
��
Sj

fi (Child x c) = x == “a” ∧ fj c
fi (Sibling x s) = fi s

��
��
Si

∗/Sibling

a/Sibling ��
��
Sj

fi (Child x c) = False
fi (Sibling x s) = fi s ∨ (x == “a” ∧ fj s)

Figure 9.6. The derivation rules on the data structure BPath.

Derive Path Homomorphisms by Tupling Transformation

The recursive functions obtained from automata may not be path homomorphisms since
they often have calls of other functions in their body, which may involve multiple traversals
on paths. For example, in the case of the running example, the body of function f1 for
the Child case includes a call of another function f2, and the two calls of f1 and f2 to the
left child cause multiple traversals.

To transform these mutual recursive functions to a path homomorphism, we apply
the tupling transformation [62]. Informally speaking, for given mutual recursive functions
f1, f2, . . . , fm, the tupling transformation generates a new function f defined as f = (f1 �

f2 � · · · fm). Mutual recursive functions derived from automata are transformed into a
path homomorphism that manipulates tuples.

We can simplify the definition of the derived path homomorphism using the properties
of operators: operator ∨ is both associative and commutative, and operator ∧ distributes
over ∨. As seen in Figure 9.6, function fi corresponding to state Si only includes function
calls of fi and fj, both corresponding to states Si and Sj, respectively. Therefore, after ap-
plying tupling transformation and simplifying functions, we obtain a path homomorphism
defined in the following form:

f = PathHom(kx, kc, ks)
where kx x = (b11 x, b12 x, . . . , x1m x)

kc x (c1, c2, . . . , cm)
= ((b21 x ∧ c1) ∨ (b′21 x ∧ c2), (b22 x ∧ c2) ∨ (b′22 x ∧ c3),

. . . , b2m x ∧ cm)
ks x (s1, s2, . . . , sm)

= ((b31 x ∧ c1) ∨ (b′31 x ∧ c2), (b32 x ∧ c2) ∨ (b′32 x ∧ c3),
. . . , b3m x ∧ cm)
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where functions bij and b′ij are boolean functions (they may be constant functions).

Returning to our running example, by applying tupling transformation to functions

f1, f2, and f3, i.e. f = (f1 � f2 � f3), we obtain the following definition of f .

f (Singleton x) = (False,False, x == “c”)
f (Child x c) = let (c1, c2, c3) = f c

in (c1 ∨ (x == “a” ∧ c2),False,False)
f (Sibling x s) = let (s1, s2, s3) = f s

in (s1, s2 ∨ (x == “b” ∧ s3), s3)
The function f is in fact a path homomorphism. The following definition gives the

three parameter functions of the path homomorphism.

f = PathHom(kx, kc, ks)
where kx x = (False,False, x == “c”)

kc x (c1, c2, c3) = (c1 ∨ (x == “a” ∧ c2),False,False)
ks x (s1, s2, s3)= (s1, s2 ∨ (x == “b” ∧ s3), s3)

Now we can obtain a skeletal program that matches the XPath query for all the node

as follows.

query(/desc::a/child::b/foll-sib::c) t
= (mapb f1 f1 ◦ paths) t
= {f1 = fst ◦ (f1 � f2 � f3) = fst ◦ PathHom(kx, kc, ks)}

(mapb (fst ◦ PathHom(kx, kc, ks)) (fst ◦ PathHom(kx, kc, ks)) ◦ paths) t
= {distributivity of mapb over function composition ◦}

(mapb fst fst ◦ mapb (PathHom(kx, kc, ks)) (PathHom(kx, kc, ks)) ◦ paths) t
= {definition of downwards accumulation}

mapb fst fst (zipwithb (λx c.c (fx x)) (λx c.c (fx x)) t (dAccb (f ′c, f ′s) id t)
where f ′c c x = c ◦ fc x

f ′s c x = c ◦ fs x

Parallelize Path Homomorphism

We have derived a path homomorphism in the previous step, now we parallelize it using

the algebraic properties discussed in Chapter 5.

In fact, in the definition of functions operators ∧ and ∨ construct a commutative

semiring. Furthermore, no pair of recursive calls are joined with ∧, that is, there are no

occurrences of (fj c ∧ fk c) or (fj s ∧ fk s) for any j and k. With these observations, we

can apply the tupled-ring property (Theorem 5.13) to derive auxiliary functions for the

dAccb skeleton. We insert False as the coefficients of non occurring recursive calls in the

transformation from the functions kc and ks defined above into their linear polynomial

form. Note that False is the zero-element of the commutative semiring {Bool,∨,∧}.
After deriving the linear polynomial forms for two functions kc and ks, we can apply

Theorem 5.13 with Lemma 9.1 and successfully obtain skeletal parallel programs for XPath

queries.
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query(/desc::a/child::b/foll-sib::c) t
= zipwithb k

′
x k

′
x t (dAccb 〈φl, φr,×′∧,∨,×′∧,∨〉d I t)

where k′x x

⎛
⎜⎜⎝

− c12 c13 −
− c22 c23 −
− − c33 −
− − − −

⎞
⎟⎟⎠ = (c13 ∧ x == “c”)

φl x =

⎛
⎜⎜⎝

− x == “a” False −
− False False −
− − False −
− − − −

⎞
⎟⎟⎠

φr x =

⎛
⎜⎜⎝

− False False −
− True x == “b” −
− − True −
− − − −

⎞
⎟⎟⎠

I =

⎛
⎜⎜⎝

− False False −
− True False −
− − True −
− − − −

⎞
⎟⎟⎠

M×′∧,∨ N = N×∧,∨ M

Figure 9.7. Derived skeletal parallel program for XPath query xxxxxxxxxxxxxxxx
/desc::a/child::b/foll-sib::c.

For our running example, we can verify that the function kc and ks can be written in

the form of tupled linear polynomial functions as follows.

kc x (c1, c2, c3) = (c′1, c′2, c′3)
where c′1 = (True ∧ c1) ∨ (x == “a” ∧ c2) ∨ (False ∧ c3) ∨ False

c′2 = (False ∧ c1) ∨ (False ∧ c2) ∨ (False ∧ c3) ∨ False
c′3 = (False ∧ c1) ∨ (False ∧ c2) ∨ (False ∧ c3) ∨ False

ks x (s1, s2, s3) = (s′1, s
′
2, s

′
3)

where s′1 = (True ∧ s1) ∨ (False ∧ s2) ∨ (False ∧ s3) ∨ False
s′2 = (False ∧ s1) ∨ (True ∧ s2) ∨ (x == “b” ∧ s3) ∨ False
s′3 = (False ∧ s1) ∨ (False ∧ s2) ∨ (True ∧ s3) ∨ False

Based on these definitions, we can derive skeletal parallel program for the XPath query as

shown in Figure 9.7. The program is optimized by fusing the mapb and zipwithb skeleton.

In the program in Figure 9.7, eleven values of matrices denoted by − do not need to be

computed during the computation of dAccb skeleton. In other words, we only compute

the other five values. We can find these values using the code generator for tupled-ring

property in Section 7.3.

Now we summarize the discussion so far as the following lemma.

Lemma 9.2 XPath queries in Figure 9.1 defined without predicates can be parallelized.
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Proof. By transforming the automata into mutual recursive functions and applying tu-

pling transformation, we obtain a path homomorphism defined on commutative semiring
{Bool,∨,∧}. It follows from tupled-ring property (Theorem 5.13), that the XPath query
without predicates can be implemented efficiently in parallel. �

9.4 Parallelizing XPath Query Inside of Single Predicate

We then consider parallelization of XPath queries defined inside of a single predicate. Our
parallelization algorithm accepts an XPath query consisting of a nodetest with an unnested

predicate specified with three forward axes and returns a parallel tree homomorphism. It
consists of the following four steps in almost the same manner as the previous section.
Difference from the parallelization algorithm in the previous section is that the query is
matched to subtrees and that the derived program is a tree homomorphism instead of a

path homomorphism.

1. Generate an automaton from the input XPath query.

2. Map the automaton to mutual recursive functions on subtrees.

3. Derive a tree homomorphism by applying the tupling transformation to the mutual

recursive functions.

4. Parallelize the tree homomorphism based on the tupled-ring property.

In this section, we use the following XPath query as our running example,

a[desc::b/child::*] ,

which is specified with a predicate [desc::b/child::*] and the nodetest of the target
node a.

Generate an Automaton from an XPath Query

The query of a single predicate defined with three forward axes tries matching with the
information of subtrees of the binary-tree representation. When the query matches to a

subtree of a node, the root node of the subtree is the result of the query.
We transform the XPath query with a predicate to an automaton. First we flatten the

XPath query, for example,

a[desc::b/child::*] =⇒ a/desc::b/child::* .

We then construct an automaton by combining the fragments shown in Figure 9.4. Since
the leftmost nodetest, e.g., a in the running example, is specified without axes, we have
no transition to the corresponding initial state.

For our running example, after flattening the XPath query with a predicate, we obtain
an automaton shown in Figure 9.8 by composing corresponding fragments.
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��
��
S1 a/Child ��

��
S2

∗/Child

∗/Sibling

b/Child ��
��
S3

∗/Sibling

∗ ��
��
��
�	

Figure 9.8. Automaton for “a/desc::b/child::*”.

Map the Automaton to Mutual Recursive Functions

We then derive mutual recursive functions by mapping the automata to functions. In the

case of an XPath query with a single predicate, the query is matched to subtrees and the

matching succeeds if there exists such a path in the subtrees that matches to the predicate.

Therefore, we implement mutual recursive functions that match the automaton to all the

paths from a node to the descendants. Here by using the dynamic programming technique,

we can implement these mutual recursive functions where they traverse a binary tree once

in the bottom-up manner.

We can derive mutual recursive functions systematically as follows. First we assign

a function to each state in the automaton. We then define the function based on the

local shape of the automaton by the rules shown in Figure 9.9. Since every leaf in the

binary-tree representation of XML trees is a dummy, the functions always return False for

leaves. For internal nodes, we recursively call functions if there exist transitions labeled

Child or Sibling in the automaton, and we fold the results with ∨. The result of a query is

given by the result of the function corresponding to the initial state.

For our running example, we map the states to functions, S1 to f1, S2 to f2, and S3

to f3, and then obtain the following mutual recursive functions on binary trees.

f1 (BLeaf a) = False
f1 (BNode c x s) = x == “a” ∧ f2 c

f2 (BLeaf a) = False
f2 (BNode c x s) = f2 c ∨ f2 s ∨ (x == “b” ∧ f3 c)

f3 (BLeaf a) = False
f3 (BNode c x s) = f3 s ∨ True

Using these mutual recursive functions, we can implement the XPath query as

query(a[desc::b/child::*]) t = (mapb f1 f1 ◦ subtrees) t

where the function f1 is the derived above.

Derive Tree Homomorphisms by Tupling Transformation

The mutual recursive functions obtained from automata may not be tree homomorphisms

since functions may have function calls of other functions and involve multiple traversals
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��
��
Si

∗/Child

∗/Sibling

a/Child ��
��
Sj

fi (BNode c x s)
= fi c ∨ fi s ∨ (x == “a” ∧ fj c)

��
��
Si

∗/Child

∗/Sibling

a/Sibling ��
��
Sj

fi (BNode c x s)
= fi c ∨ fi s ∨ (x == “a” ∧ fj s)

��
��
Si

∗/Sibling

a/Child ��
��
Sj

fi (BNode c x s)
= fi s ∨ (x == “a” ∧ fj c)

��
��
Si

∗/Sibling

a/Sibling ��
��
Sj

fi (BNode c x s)
= fi s ∨ (x == “a” ∧ fj s)

Figure 9.9. The derivation rules for the segment of automata for XPath query with a
predicate.

on binary trees. In our running example, function f2 called for (BNode c x s) not only

has a call of another function f3 but also has calls of functions f2 and f3 for the left

child, which cause multiple traversals. To obtain tree homomorphisms, we again apply

the tupling transformation [62] to the mutual recursive functions.

We can derive a tree homomorphism defined in the following form by using the knowl-

edge of algebraic properties on ∨ and ∧. Here bij and b′ij represent boolean functions that

may be a constant function.

(f1 � f2 � · · · � fm)
= TreeHom(kl, kn)

where kl a = (False,False, . . . ,False)
kn (c1, c2, . . . , cm) x (s1, s2, . . . , sm)

= (b1x ∨ (b1c ∧ c1) ∨ (b′1c ∧ c2) ∨ (b1s ∧ s1) ∨ (b′1s ∧ s2),
b2x ∨ (b2c ∧ c2) ∨ (b′2c ∧ c3) ∨ (b2s ∧ s2) ∨ (b′2s ∧ s3),

...
bmx ∨ (bmc ∧ cm) ∨ (bms ∧ sm))

In the case of our running example, by tupling functions f1, f2, and f3, i.e., f =

(f1�f2�f3), we obtain the following tree homomorphism. In deriving tree homomorphism,

we simplified s3 ∨ True to True.

f = TreeHom(kl, kn)
where kl a = (False,False,False)

kn (c1, c2, c3) x (s1, s2, s3)
= (x == “a” ∧ c2, c2 ∨ s2 ∨ (x == “b” ∧ c3),True)
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Using this tree homomorphism, we obtain a skeletal program for the XPath query as

follows.

query(a[desc::b/child::*]) t
= mapb f1 f1 ◦ subtrees
= {f1 = fst ◦ (f1 � f2 � f3) = fst ◦ (TreeHom(kl, kn))}

mapb (fst ◦ (TreeHom(kl, kn))) (fst ◦ (TreeHom(kl, kn))) ◦ subtrees
= {distributivity of mapb over function composition ◦}

mapb fst fst ◦ mapb (TreeHom(kl, kn)) (TreeHom(kl, kn)) ◦ subtrees
= {definition of the upwards accumulation}

mapb fst fst ◦ uAccb kn ◦ mapb kl id

Parallelize Tree Homomorphism

The last step is to parallelize the derived tree homomorphism. Now again, noting that the

operators used in the tree homomorphism construct a commutative ring {Bool,∨,∧}, we

can derive auxiliary functions for the uAccb skeleton by applying the tupled-ring property

(Theorem 5.12).

For our running example, we can verify that the derived tree homomorphism satisfies

the tupled ring property by transforming the function kn to a tuple of bi-linear polynomial

functions.

kn (c1, c2, c3) x (s1, s2, s3) = (x1, x2, x3)
where x1 = (False ∧ c1) ∨ (x == “a” ∧ c2) ∨ (False ∧ c3) ∨ False

x2 = (False ∧ c1) ∨ (True ∧ c2) ∨ (x == “b” ∧ c3) ∨ s2
x3 = (False ∧ c1) ∨ (False ∧ c2) ∨ (False ∧ c3) ∨ True

kn (c1, c2, c3) x (s1, s2, s3) = (y1, y2, y3)
where y1 = (False ∧ s1) ∨ (False ∧ s2) ∨ (False ∧ s3) ∨ (x == “a” ∧ c2)

y2 = (False ∧ s1) ∨ (True ∧ s2) ∨ (False ∧ s3) ∨ (x == “b”)
y3 = (False ∧ s1) ∨ (False ∧ s2) ∨ (True ∧ s3) ∨ True

Based on these definitions of bi-linear polynomial functions, we can derive the aux-

iliary functions for the uAccb skeleton and obtain a skeletal parallel program as shown

in Figure 9.10. In the program, we need not compute the eight values in the matrices

denoted as − and the eight values denoted as cij should be computed. We can perform

this optimization using the code generator developed in Section 7.3.

Now we summarize the discussion in this section as the following lemma.

Lemma 9.3 XPath queries specified inside of a single predicate can be computed in par-

allel using parallel skeletons.

Proof. By transforming the automaton into mutual recursive functions and applying the

tupling transformation to the mutual recursive functions, we obtain a tree homomorphism

defined on commutative semiring {Bool,∨,∧}. It follows from tupled-ring property (The-

orem 5.12) that the XPath query with a single predicate can be implemented efficiently

in parallel. �
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query(a[desc::b/child::*]) = mapb fst fst ◦ uAccb〈φ,ψn, ψl, ψr〉u ◦mapb kl id

where φ x =

⎛
⎜⎜⎝
⎛
⎜⎜⎝

True False False False

− − False False

− − True False

− − − −

⎞
⎟⎟⎠ , x

⎞
⎟⎟⎠

ψn

⎛
⎝ l1

l2
l3

⎞
⎠
⎛
⎜⎜⎝
⎛
⎜⎜⎝

c11 c12 c13 c14

− − c23 c24

− − c33 c34

− − − −

⎞
⎟⎟⎠ , b

⎞
⎟⎟⎠
⎛
⎝ r1

r2
r3

⎞
⎠

= let

⎛
⎝ x1

x2

x3

⎞
⎠ = kn b

⎛
⎝ l1

l2
l3

⎞
⎠
⎛
⎝ r1

r2
r3

⎞
⎠

in

⎛
⎝ (c11 ∧ x1) ∨ (c12 ∧ x2) ∨ (c13 ∧ x3) ∨ c14

x2 ∨ (c23 ∧ x3) ∨ c24
True

⎞
⎠

ψl (Ml, bl) (Mn, bn)

⎛
⎝ r1

r2
r3

⎞
⎠

=

⎛
⎜⎜⎝Mn ×∧,∨

⎛
⎜⎜⎝

False bn == “a” False False

− − bn == “b” r2

− − False True

− − − −

⎞
⎟⎟⎠×∧,∨ Ml, bl

⎞
⎟⎟⎠

ψr

⎛
⎝ l1

l2
l3

⎞
⎠ (Mn, bn) (Mr, br)

=

⎛
⎜⎜⎝Mn ×∧,∨

⎛
⎜⎜⎝

False False False bn == “a” ∧ l2
− − False bn == “b”
− − True True

− − − −

⎞
⎟⎟⎠×∧,∨ Mr, br

⎞
⎟⎟⎠

kl x =

⎛
⎝ False

False
False

⎞
⎠

Figure 9.10. Skeletal parallel program for XPath query a[desc::b/child::*].
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9.5 Parallelizing More Complex XPath Queries

So far we have developed two procedures for parallelizing simple XPath queries, XPath

queries without predicate and XPath queries inside of a single predicate, we now highlight

how to extend them to parallelize more general XPath queries. The overall parallelization

algorithm consists of the following steps.

1. Transform the input XPath query into core XPath queries defined in Figure 9.1.

2. Repeat while there exist predicates.

2.1. Choose unnested predicates. For each unnested predicate, derive a parallel tree

homomorphism and perform matching with the upwards accumulation.

2.2. Zip the result trees to the original tree and remove the predicates from the

query.

3. For the query that is defined without predicates, derive a parallel path homomor-

phism and perform matching with the downwards accumulation.

In the following of this section, we illustrate the parallelization algorithm using the fol-

lowing XPath query

/desc::b/parent::a/child::c[foll-sib::d]

as our running example. Figure 9.11 illustrates the execution of the parallel program

derived by the parallelization algorithm.

Transform the input XPath Query

Our parallelization algorithm accepts XPath queries defined as in Figure 9.1. When the

input XPath query is defined with other axes such as reverse axes, we remove them by

Olteanu et al.’s algorithm [103].

In our example, there exists a reverse-axis “parent”. We can remove it by transforming

the query into the following equivalent XPath query

/desc::a[child::b]/child::c[foll-sib::d] ,

which has no reverse axis.

Derive Parallel Tree Homomorphism for Each Predicate

For each predicate in the XPath query, we derive a parallel tree homomorphism with the

parallelization techniques in Section 9.4. We perform matching of the query inside of the

predicate to each subtree by using the upwards accumulation.
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If predicates are nested (a predicate is in another predicate), then we compute the

matching of the innermost one first. If two or more predicates are not included in each

other, we can compute them simultaneously.

For our running example, we derive tree homomorphisms for subqueries a[child::b]

and c[foll-sib::d], and compute the tree homomorphisms for each subtree with the

upwards accumulations.

Zip Result Trees to the Original Tree

We then associate the results of the matching of predicates to the original XML tree. We

then modify the query by replacing the predicate with a special nodetest that matches to

the attached values.

For our running example, after computing the upwards accumulations for two predi-

cates, we obtain a zipped tree as shown in Figure 9.11 (c). We then replace the predicates

with two special nodetests (λ(x, y, z).y == True) and (λ(x, y, z).z == True) that matches

to the second or third value, respectively.

/desc::(λ(x, y, z).y == True)/child::(λ(x, y, z).z == True)

Derive Parallel Path Homomorphism for Overall XPath

Finally we evaluate the rest of the XPath query that has no predicate. We derive a parallel

path homomorphism with the parallelization techniques in Section 9.3, and evaluate it on

every path from the root using the downwards accumulation.

For our running example, we derive a path homomorphism for the XPath query given

in the previous step

/desc::(λ(x, y, z).y == True)/child::(λ(x, y, z).z == True)

in the same way as the derivation for

/desc::y/child::z

except for the handling of nodetests. We can perform the overall XPath query by the

downwards accumulation.

Theorem 9.1 The XPath query defined in Figure 9.1 can be computed in parallel.

Proof. As we have discussed so far, by processing the predicates from the innermost

one we can finally obtain a query without predicates. From Lemmas 9.2 and 9.3, the

matchings of queries inside of unnested predicates and queries without predicates can be

done in parallel. Therefore, we can also perform the overall query in parallel. �

Figure 9.12 shows the derived skeletal parallel program for our example XPath query.
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a

c b d

c d

(a) Original XML tree

a

c

b
d

c

d

(b) Binary-tree representation of the XML tree

(a,T,F)

(c,F,T)
(b,F,F)

(d,F,F)

(c,F,T)
(d,F,F)

(c) After attaching results of predicates

F

T

F

F

F

F

(d) The result of query on binary-tree representation

Figure 9.11. Illustration of computational steps of the derived parallel program for
XPath query /desc::a[child::b]/child::c[foll-sib::d].
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query(/desc::a[child::b]/child::c[foll-sib::d]) bt
= let bt ′1 = query(a[child::b])

bt ′2 = query(c[foll-sib::d])
zt = zip3b bt bt ′1 bt ′2

in query(/desc::(λ(x, y, z).y == True)/child::(λ(x, y, z).z == True))

Figure 9.12. Outline of a skeletal parallel program for a complex XPath query.

9.6 Short Summary

In this chapter, we have shown a parallel implementation algorithm for a subset of XPath

queries based on the theory of constructive algorithmics and skeletal parallel programs.

The main idea is deriving automata corresponding to the input XPath query followed by

the mapping of the automata to two kinds of homomorphisms on binary trees. The tupled-

ring property on the commutative semiring {Bool,∨,∧} contributes to the parallelization

of the derived homomorphisms.

The derived parallel program may be optimized if we can apply the branch-and-bound

technique often used in implementing efficient sequential programs for queries. This is an

interesting challenge both in theory and in practice.
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Chapter 10

Related Work

10.1 Tree Contraction Algorithms

Tree contraction algorithms, the idea for which was first proposed by Miller and Reif [98],

are very important parallel algorithms for efficient manipulation of trees. Many researchers

have devoted considerable effort to developing efficient implementations of tree contraction

algorithms for various parallel models [2, 8, 10, 35, 38, 46, 66, 94, 95, 125]. Among them,

Gibbons and Rytter developed a cost-optimal algorithm on a concurrent-read concurrent-

write (CREW) PRAM [46]; Abrahamson et al. developed a cost-optimal and practical

algorithm on an EREW PRAM [2]; Miller and Reif showed implementations on hypercubes

or related networks [94,95]; more efficient implementations were recently developed [8,125]

for symmetric multiprocessors and chip-level multiprocessing.

The formalization of the ternary-tree representation and tree associativity in Chapter 3

is general in terms of tree division, so the skeletal parallel programs developed in this thesis

can be implemented using these tree contraction algorithms.

Many types of tree programs have been described using the tree contraction algo-

rithms [10,35,46,57,86,99–102]. Many of these programs, however, compute a single value

instead of tupled values at each contraction step. For example, Cole and Vishkin [35] and

He [57] developed parallel algorithms based on the finiteness of the domain, e.g. for the

minimum covering-set problem and the maximum independent-set problem. Though the

maximum independent-set problem is a simpler version of the party planning problem,

their approaches are not applicable to development of parallel programs for the party

planning problem. In this sense, the tupled-ring property described in Section 5.2.4 is a

more useful property for developing parallel programs. Miller and Teng [101] proposed

a method for developing parallel programs for computational trees with min and max

functions in addition to + and × by focusing on the algebraic properties. They also

extended their idea to the evaluation of computational circuits (trees in which each leaf

has a value and each internal node has an operator) with finite-sized matrices [100, 102].

Though their approaches are interesting in theory, they impose many restrictions on the

operators associated with each internal node. The condition presented in this thesis for
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tree contraction algorithms is concise and practical — any computation on the internal

nodes can be defined.

10.2 Parallel Computing on Rose Trees and Nested Lists

In contrast to parallel computing for regular lists and matrices, parallel computing for

rose trees has been considered as irregular parallelism, and several approaches have been

taken to tackle this difficult problem. They can be classified as

• approaches based on binary-tree representation, and.

• approaches based on tree flattening.

Parallel tree contraction algorithms are now the basis for efficient parallel computa-

tion on trees. Though the original idea proposed by Miller and Reif [98] did not limit the

shapes of trees to binary, many researchers have developed more efficient tree contraction

algorithms based on the assumption of binary trees [2,8,35,95]. Several researchers devel-

oped parallel algorithms after representing rose trees as binary trees to utilize the efficient

parallel tree contraction algorithms. Cole and Vishkin [35], Diks and Hagerup [41], Skil-

licorn [119], and a previous paper of ours [86] represented rose trees as binary trees by

using dummy nodes to expand children of internal nodes. Though these representations

work well for specifying bottom-up and top-down computations, they are poor at speci-

fying intra-sibling computation. In this thesis, another binary-tree representation [36] is

used that enables us to formalize and implement intra-sibling computation as well. As

shown by the example using the prefix numbering problem in Chapter 4, this intra-sibling

computation plays a important role in the manipulation of rose trees.

Tree flattening is another data-parallel approach, and there have been several stud-

ies [20,70,73,124]. For example, the NESL programming language [20–22] provides com-

putational patterns for nested computations, and NESL programs execute efficiently in

parallel in shared-memory environments. Palmer et al. discussed how nested computa-

tions can be compiled using this paradigm [104]. We can treat rose trees as (infinitely)

nested lists. Keller and Chakravarty developed a parallel programming technique for

single-nested lists in which the lists are flattened to lists with size information. Takahashi

et al. [124] examined the problem of flattened lists with flags. Kakehi et al. [69,70] devel-

oped an efficient parallel implementation of reductions for more deeply nested cases. In

contrast to the implementation using binary-tree representation described in this thesis,

their implementation would be more efficient if the rose tree is rather flat.
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10.3 Parallel Tree Skeletons

Though trees are important data structures, writing general and efficient parallel pro-

grams for manipulating trees is complicated by their irregular structures. This calls for

helpful methods for parallel programming on trees, and here the skeletal approach is a

promising paradigm. Deldari et al. [39,40] designed and implemented parallel skeletons for

constructive solid geometry as domain-specific skeletons. Skillicorn [119] first formalized

a set of binary-tree skeletons based on constructive algorithmics [15, 18, 67] for general-

purpose tree skeletons. The implementations of these binary-tree skeletons based on the

tree contraction algorithms have been investigated [47, 50, 87]. Several studies have been

done based on parallel tree skeletons for several applications [63, 88, 120, 121]. However,

no libraries have been implemented that support the parallel tree skeletons formalized by

these studies.

Gibbons [49] investigated generic computational patterns based on the theory of con-

structive algorithmics for general trees and general recursive types, and Skillicorn [119]

and Ahn et al. [3] gave specifications for skeletons. However, the patterns by Skillicorn

lack expressiveness and the patterns by Ahn et al. do not support parallel implementa-

tions. These problems were tackled in this thesis, and a new set of rose-tree skeletons with

efficient implementation was proposed. The rose-tree skeletons presented in Chapter 4 are

not only theoretically simple but also practically expressive.

10.4 Automatic and Systematic Parallelization

Automatic parallelization of programs is quite a big challenge, and there have been sev-

eral studies on automatic parallelization of loops over arrays. Fisher and Ghuloum [43]

developed a parallelization system for loops on arrays based on the isomorphism of the

shape of program code. Lu and Mellor-Crummey [79] developed more powerful pattern-

matching and code-generation mechanisms for distributed memory environments. Xu et

al. [128,129] focused on not only associativity but also distributivity to derive parallel pro-

grams from user programs for lists and arrays and developed an automatic parallelization

system. These studies succeeded in automatically generating efficient parallel code from

user sequential code. Though there have been several studies on parallelizing loops, to

the best of our knowledge, there is no (semi-)automatic parallelization system that can be

applied to tree structures.

This thesis is also related to systematic derivation of parallel programs. Systematic

parallelization has been actively studied in the framework of skeletal parallel programming,

and many studies have been done [32,52,63,93,117] on lists and arrays. Several researchers

have studied systematic parallelization for trees. Skillicorn formalized five primitive com-

putational patterns [118], and tree reduction is one of them. Ahn and Han [3] and my

group [88] developed systematic methods for decomposing complex recursive programs
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into combinations of the primitive patterns. Chapter 5 addresses the generation of effi-

cient parallel programs for the case of general trees and the bridging of the gap between

sequential and parallel implementations of skeletons.

10.5 Skeletal Environments

Many skeleton libraries have been developed [4, 11, 25, 37, 75, 110] to help users enjoy the

benefit of skeletal parallel programming. Among them, Google’s MapReduce program-

ming model [37] is the most well known and successful one. SkeTo was constructed on

a data parallel programming model with a solid foundation based on constructive algo-

rithmics and can provide data parallel skeletons for a wide variety of distributed data

structures; it supports trees in addition to arrays and matrices. In addition, SkeTo has a

skeleton accumulate [61,65] that abstracts a general and good combination of data parallel

skeletons.

The implementation of the SkeTo library was inspired by the development of the Muesli

skeleton library [75,76]. The SkeTo library is a practical result of research on constructive

algorithmics. One of its important features is systematic program optimization by fusion

transformation. This transformation merges two successive function calls into a single one

and eliminates the overhead of both function calls and of the generation of intermediate

data structures passed between them. SkeTo is equipped with automatic fusion trans-

formation based on the idea of shortcut deforestation [51] with modifications that make

it adaptable to parallel data structures [61]. Use of shortcut deforestation enables the

number of transformation rules to be reduced and simplifies the implementation of SkeTo.

This is in sharp contrast to other transformation approaches [5, 54] with a large number

of transformation rules. This simple optimization mechanism by fusion transformation is

SkeTo’s distinguishing feature, one that has not been implemented in other systems.
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Conclusion

This thesis has investigated the principles and practices of parallel programming with tree

skeletons based on constructive algorithmics theory.

11.1 Principles of Parallel Programming for Trees

Many studies have been conducted on tree contraction algorithms for efficient parallel

programming for trees, but it is still difficult for sequential programmers to use tree con-

traction algorithms. One obstacle is that the formalization is not sufficient for deriving

parallel programs by using tree contraction algorithms.

To overcome this obstacle, in this thesis, parallel tree skeletons were formalized for

binary trees and for rose trees based on the theory of constructive algorithmics. The

parallel rose-tree skeletons are straightforward extensions of binary-tree skeletons. The

parallel tree skeletons provide users with a sequential interface and a parallel implemen-

tation. To utilize the parallel implementation of the skeletons, users must have their

programs to meet some conditions imposed on the parallel skeletons. In this thesis, we

formalized the conditions for parallel computations on binary trees based on the balanced

ternary-tree representation of binary trees. Our conditions placed on the parallel skeletons

can capture a wider class of applications than those captured by Skillicorn’s specification.

These specifications and a solid theory enabled us to develop a systematic methodology

for deriving skeletal parallel programs from given sequential recursive programs (Chap-

ter 5). Some of the steps in this derivation can be done automatically (Section 7.3). These

systematic and automatic derivations should help users to develop parallel programs for

manipulating trees more easily.

11.2 Practices of Parallel Programming for Trees

We implemented the SkeTo parallel skeleton library to make the theories underlying par-

allel computing for trees and other data structures more widely applicable. The SkeTo
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library is a skeleton library implemented in C++ and MPI for distributed-memory paral-

lel computers. It is unique in the implementation of skeletons for trees and the use of an

optimization mechanism based on fusion transformation, which are contributions of this

thesis.

In the implementation of binary-tree skeletons, we carefully designed the data structure

and algorithms to enhance the locality and load balance. Since these two properties are

uncertain in the case of trees, a cost model was developed for this implementation, and

the data distribution was analyzed. This implementation of binary-tree skeletons showed

good speedup.

To prove the effectiveness of the parallel tree skeletons and the skeletal parallel pro-

gramming paradigm, we developed parallelization algorithms for two classes of applica-

tions: the maximum marking problems and XPath queries. As far as we are aware, there

have been no parallel algorithms for these two classes of applications, meaning that skele-

tal parallel programming is effective not only for facilitating parallel programming but

also for deriving new parallel algorithms.

11.3 Future Directions

The design of parallel tree skeletons based on the theory of constructive algorithmics

is theoretically beautiful and powerful, as exemplified by this thesis. But it also has

some drawbacks. The most significant drawback of the current definition of parallel tree

skeletons is that the shape of the data structures manipulated in programs cannot be

changed without the cost of additional redistribution. The same problem can be seen in

the design of list and matrix skeletons. To make parallel skeletons applicable to more

problems, it is necessary to overcome this change in the shape of data structures. In

relation to this problem, bridging one data structure to another, for example, flattening

transformation from trees to lists, is also useful in developing programs.

In many applications, trees often expand; for example, in game programming, a game

tree grows from a single node up to a huge tree. The data-parallel paradigm is not

suitable for such cases — a task-parallel paradigm should be applied. Future work includes

investigating parallel computing for trees using task-parallel programming model based

on the theory of constructive algorithmics as was done in this thesis for data-parallel

computing on trees.
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programming with eSkel. In José C. Cunha and Pedro D. Medeiros, editors, Euro-

Par 2005, Parallel Processing, 11th International Euro-Par Conference, Lisbon,

Portugal, August 30–September 2, 2005, Proceedings, Vol. 3648 of Lecture Notes

in Computer Science, pp. 761–770. Springer, 2005.

[12] Jon Bentley. Programming Pearls. Addison-Wesley, 1st edition, 1986.

[13] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael Kay,
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