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Abstract

Divide-and-conquer algorithms are suitable for moderralbelr
machines, tending to have large amounts of inherent phsatle
and working well with caches and deep memory hierarchies.
Among others, list homomorphisms are a class of recursime-fu
tions on lists, which match very well with the divide-andagoier
paradigm. However, direct programming with list homomaspis

is a challenge for many programmers. In this paper, we pepos
and implement a novel system that can automatically deigs-c
optimal list homomorphisms from a pair of sequential progga
based on the third homomorphism theorem. Our idea is to eeduc
extraction of list homomorphisms to derivation wkak right in-
verses We show that a weak right inverse always exists and can
be automatically generated from a wide class of sequent@l p
grams. We demonstrate our system with several nontriviaiex
ples, including the maximum prefix sum problem, the prefix sum
computation, the maximum segment sum problem, and theofine-
sight problem. The experimental results show practicatiefiicy

of our automatic parallelization algorithm and good sp@sdaf

the generated parallel programs.

Categories and Subject Descriptors  D.1.2 [Programming Tech-
nique§: Automatic Programming; D.1.3HFrogramming Tech-
nique§: Concurrent Programming—~Parallel programming

General Terms Algorithms, Design, Languages

Keywords Divide-and-conquer parallelism, Inversion, Program
transformation, Third homomorphism theorem

1. Introduction

Divide-and-conquer algorithms solve problems by brealimem

up into smaller subproblems, recursively solving the sabjgms,
and then combining the results to generate a solution tortgmal
problem. They match very well for modern parallel machines,
tending to have large amounts of inherent parallelism andiwg
well with caches and deep memory hierarchies [28]. Amongrsth
list homomorphisms are a class of recursive functions as, lis
which match very well with the divide-and-conquer paradifgm
11, 24, 27, 30]. Functior is said to be a list homomorphism, if
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there is an associated operatosuch that for any list: and listy
h (z ++y) = h(z) © h(y)

where-+- is the list concatenation. When functiénis defined as
the equation above, the computatiorhain a longer list, which is a
concatenation of two shorter ones, can be carried out by atngp

h on each piece in parallel and then combining the results. For
instance, the function that sums up the elements in a listbean
described as a list homomorphism

sum (x +Hy) = sum(zx) + sum(y).

List homomorphisms are attractive in parallel programniorg
several reasons. First, being a class of natural recunsinetibns on
lists, they enjoy many nice algebraic properties, amongktthe
three well-known homomorphism lemmas form the basis ofdine f
mal development of parallel programs [9,19,21,22]. Selypadd
very importantly, they are useful to solve really practigadblems.
For example, many algorithms executed on Google’s cluatersn
MapReduce [24], and most of them, such as distributed geemtc
of URL access frequency, and inverting index, are certaiolh-
ing but list homomorphisms. Moreover, homomorphisms (oata
phisms) are suitable for developing robust parallel prograand
are considered to be a primitive parallel loop structurehia de-
sign of the new parallel programming language Fortress mi\giu
crosystems [30].

Despite these appealing advantages of list homomorphisms i
parallel programming, a challenge remains for a prograniongse
them to solve their problems, particularly when the protdeare
a bit complicated. Consider the maximum prefix sum problen [6
which is to compute the maximum sum of all the prefix sublists.
instance, supposingps is the function that solves the problem, we
have

mps [1,—1,2]

ngT(1+(—1))T(1+(—1)+2)

where1 is an infix operator returning the bigger of two numbers.
It is not straightforward to obtain a parallel program by firglan
operator® such that

mps (z ++y) = mps(z) © mps(y).

It is, however, easy to obtain two sequential programs. Wg ma
compute the maximum prefix sum either by scanning the lishfro
left to right as

mps (@ + [b]) = mps(x) T (sum(z) + b)
or by scanning the list from right to left as
mps ([a] ++y) =071 (a+ mps(y)).

These two sequential programs are specialized ones ofolisbh
morphisms: In the former programis specialized to a list with



a single element, and in the latter program is specialized to a
list with a single element. This ease of sequential programming
suggests us to look into possibilities of obtaining list lwonor-
phisms from sequential programs. Noticing that not evequee-
tial program can be parallelized, that is, not all functicas be
described as list homomorphisms (in fagps cannot be a list ho-
momorphism), it is important to clarify under what conditibst
homomorphisms exist and can be automatically derived.

Interestingly, in the context of list homomorphisms, thesra
famous theorem, callethe third homomorphism theoremwhich
says that

if two sequential programs in some specific form exist in
solving a problem, then there must exist a list homomor-
phism that solves the problem too.

This theorem suggests a new parallel programming paradigah,
is, developing a parallel program with a list homomorphisomnf

a pair of sequential ones. Although this theorem gives asszcg
and sufficient condition for the existence of list homomaspfs, it

mentions nothing of how to construct them. In fact, it rersaipen

whether there is a general and automatic way to extract ameefti
list homomorphism from two sequential programs [15].

In this paper, we propose a novel approach to automaticateriv
tion of cost-optimal list homomorphisms from a wide classef
quential programs. Our idea is to reduce automatic extraaf
list homomorphisms to automatic derivation afweak right in-
verseof a function. We show that a weak right inverse always exists
and can be automatically generated for a wide class of séqlen
functions. As will be seen later, this new approach is applie
to many nontrivial examples, including the maximum prefixsu
problem [6, 14, 15], the prefix sum computation [6], the maxim
segment sum problem [3], and the line-of-sight problem [6].

Our main contribution can be summarized as follows.

e We design a new automatic parallelization algorithm based o
the third homomorphism theorem, by reformalizing the third
homomorphism theorem wittihe weak right inversand gen-
erating parallel programs by deriving weak right inverSdse
optimization procedure in the algorithm plays an importate
in making parallelized programs be efficient.

We define a language in which users can describe sequential
programs for solving various kinds of problems on lists. It
is guaranteed that under a reasonable condition an efficient
parallel program can be automatically derived from a pair of
sequential programs in the language.

We have implemented the new automatic parallelization al-
gorithm, and tested the generated parallel programs ubig t
SkeTo parallel programming environment, which directlp-su
ports parallel programming with map and reduce (two special
cases of list homomorphisms.) The experimental resultessho
practical efficiency of our automatic parallelization aigfam

and good speedups of the generated parallel programs.fFhis i
dicates the promise of our new approach.

The rest of this paper is organized as follows. In Section&, w
briefly explain the base theory used in our parallelizatiamie-
work, our parallel computation patterns, and the third homoo
phism theorem. In Section 3, we define the new concept of tiawe
right inverse. In Section 4, we describe our automatic pelizé-
tion algorithm: we explain the source language we deal wité,
algorithm to derive a weak right inverse, which is the corg pa
our parallelization algorithm, and the optimization aigan for
the derived programs. We discuss the implementation isanés
show experimental results, together with several apjptinagxam-
ples in Section 5, and discuss the extensions of our tecaraqd
related work in Section 6. We conclude the paper in Section 7.

2. Basic Theory of List Homomorphisms

In this section, we briefly explain the base theory of our jpeliza-
tion framework, our parallel computation pattern, and tiiedtho-
momorphism theorem that gives a necessary and sufficiewli-con
tion for the existence of list homomorphisms.

2.1 Notations on Functions and Lists

Our notations are basically based on the functional progrizg
language Haskell [5]. Functional application is denotedIspace
and an argument may be written without brackets. Thusneans
f(a). Functions are curried, i.e. functions take one argumedt an
return a function or a value, and the function applicaticsoamtes

to the left. Thusf a b means(f a) b. Infix binary operators will
often be denoted bg, ®, ©®. Functional application binds stronger
than any other operators, goa @ b means(f a) @ b, but not
fla®b). Afunctional composition is denoted by a centered circle
o. By definition,(f o g) x = f (g =). A functional composition is
an associative operator. The identity function is denoteélbThe
operatorx is for tupling two functions, defined by

(fagla=(fa, ga).

The operator] expresses the operation that computes the maxi-
mum, and is defined as

z 1 y=if (z > y) then z else y.

Lists are (nonempty) finite sequences of values of the sapee ty
A listis either a singleton or a concatenation of two liste #¢note
[a] for a singleton list with element, andz++y for a concatenation
of two listsz andy. The concatenation operator is associative. Lists
are destructed by pattern matching.

2.2 Leftwards, Rightwards, and List Homomorphisms

One point of our parallelization method lies in good captafe
the structure of recursive computation. We classify mosthef
list manipulation computation into three classes, nanightwards
functions, leftwards functions, and list homomorphisnis [4

Definition 2.1 (Leftwards function) Functionh is leftwardsif it is
defined in the following form with functiorf and operatorb.

h [a] fa

h ([a] H z) a®hz

That is, a leftwards function iterates the computation byuse-
tially scanning the list from right to left. a

Definition 2.2 (Rightwards function) Function# is rightwardsif
it is defined in the following form with functiorf and operator.
h [a] fa
h (z + [a]) hx®a

That is, a rightwards function iterates the computation égyugn-
tially scanning the list from left to right. |

Definition 2.3 (List homomorphism [4]) Functionh is alist ho-
momorphism(f, ®J]), where® is an associative operator, if it is
defined in the following divide-and-conquer form.

h [a] fa
h(x+y) = haOhy

Leftwards and rightwards functions have good correspotelien
to usual sequential programs, while list homomorphisms lwan
seen as a general form for efficient divide-and-conquerligara
computation on list: If a function is a list homomorphism rihies
result does not depend on the place where the input list i spl
because the operataris associative.

a



2.3 Parallel Skeletons

List homomorphisms play a central role in skeletal pargied-
gramming [8, 27], in which users are provided with a fixed set
of parallel computation patterns (skeletons) to write pararo-
grams. The following four parallel skeletons, namely mapluce,

h [a] = fa
h(la] Hz) = adhax
h(z+a]) = hz®a. g

Corollary 2.2 ([16]). If function h can be defined as both leftwards
and rightwards functions, and if there is functigrsatisfyingh o

and two scans, are considered to be the most fundamentat to de g o b = h, then there exists an associative binary operatsuch

scribe parallel computation on lists.
Map is the operator that applies a function to every elemeat i
list. Informally, we have

Jxn] = [f x1, f 22, .., f xa).

If fusesO(1) computation time, themap f can be implemented
usingO(1) parallel time.

Reduce is the operator that collapses a list into a singlesvay
repeated application of an associative binary operatéorrimally,
for associative binary operatar, we have

map f [x1,x2,...

reduce (®) [T1,T2,...,Tn] =21 Q22O -+ O Tn.

If ® usesO(1) computation time, themeduce (®) can be imple-
mented usind (log n) parallel time.

In fact, we can express every instance of list homomorphisms
by map with reduce.

(f; ©) = reduce (©) o map f

Therefore, list homomorphisms can be efficiently impleredriy
map and reduce.

Scanl is the operator that accumulates all intermediatdtses
for computation of reduce from left to right. Informally,rfasso-
ciative binary operator), we have

L T10T20: - -Oxn].

The dual operatoscanr is to scan a list from right to left. 1>
usesO(1) computation time, bothRcanl (®) and scanr (©) can
be implemented usin@ (log n) parallel time.

Scans have a strong relationship with list homomorphisms.
Consider the functiongnits andtails, for computing all the prefix
sublists and the postfix sublists of a list, respectively.

scanl (®) [x1,x2,. .., Tn] = [X1, 21022, ..

mits [x1, T2, ..., xn] = [[x1], [T1, 22], ..., [T1, 22, . .., Tx]]
tails [x1, T2, ..., 2n] = [[X1,22, .., Tnl]y -+, [Tn—1, Tx], [Tx]]

Then, scans can be defined in termsnedp, reduce, inits, and
tails.
scanl (©)
scanr (®)

This implies that computation patternsmafip (reduce (®))oinits
and map (reduce (®)) o tails can be efficiently computed in
parallel. This fact will be useful to parallelize sequehgieograms
that use accumulation parameters.

Our objective is to derive programs written by parallel skeths
from usual sequential programs.

map (reduce (®)) o inits
map (reduce (®)) o tails

2.4 Third Homomorphism Theorem

When writing a program in terms of list homomorphisms or peka
skeletons, the most difficult step is to find the associativary
operator.The third homomorphism theordit6] is the theorem that
gives a necessary and sufficient condition for the existendbe
associative binary operator.

Theorem 2.1 (Third homomorphism theorem [16])Function i
can be described as a list homomorphism, if and only if it can b
defined by both leftwards and rightwards functions. Thathiere
exists associative operaterand functionf such that

h=(f,®)
if and only if there existf, @, and® such that

that the following equation holds.

h(zHy)=hzOhy
wherea ®@b="h (ga++gb) |

It is worth noting that the third homomorphism theorem only
shows the existence of a list homomorphism. We need an atitoma
method to derive such listhomomorphisms, which is the napict
of this paper.

3. Weak Right Inverse

In this section, we introduce the basic conceptwafak right in-
verseswhich play a very important role in construction of our par-
allelization algorithm in Section 4.

Definition 3.1 (Weak right inverse) Functiong is a weak right
inverse of functionf, if g satisfies

Vb € range(f), gb=a= fa=1>
O

Compared with the standard right inverse, the abpieweak
in the sense that the domain g@fcan be larger than the range of
f. In other wordsg is a right inverse off only if the domain of
g is within the range of the original functiofi. Unlike inverses,
any function has one or many weak right inverses. Consider th
weak right inverse ofum. Each function that returns a list whose
sum is equal to the input value is a weak right inversewf.. For
instance, each of the following functions is a weak rightnse of
sum.

whererange(f) denotes the range of the functign

gra = ld]

g2a = [a_ 1, 1]
gz a = [17 27 a_3]
gaa = [a/2, a/2].

While a function may have many weak right inverses, there
exists at least one weak right inverse for any function.

Lemma 3.1. At least one weak right inverse exists for any func-
tion.

Proof. Let f be a function. We define functiapby returning one
of thosex that satisfie§’ z = y for an inputy. This g is obviously
a weak right inverse from the definition. Therefore, a weaktri
inverse exists for any function. a

For notational convenience, we wrifé to denote a weak right
inverse of functionf. Below we give more examples, whesert
is a function for sorting the elements of a list.

sum® a = [a]
sort° xr =
(map f)° = map f°x
Weak right inverses are useful for parallelization, beeaafshe
following lemma.

Lemma 3.2. Let f be a function. The following property holds for
a weak right inversg®.

fofiof=f

Proof. By the definition of the weak right inverse, we know that for
anyb in the range off, if f°b =athenfa =0b.So(fo f°)b
=f(f°b)=fa=0b,and thusf o f° o f = f holds. |



Recall Corollary 2.2, which says that an associative operat
for parallel computation can be derived if functignsatisfying
ogo f = f exists. Now, by Corollary 2.2 and Lemma 3.2, we
have the following parallelization theorem.

Theorem 3.3(Parallelization with weak right inverse)f function
h is both leftwards and rightwards, then

h=(f,©)
where fa=h[a
a®b=nh(h®a++h°b)

holds. O

Theorem 3.3 shows that, when the functiois leftwards and
rightwards, we can obtain the definition of the list homoniism
of h, provided that we have a weak right inversehof

Example 3.1. Let us see how Theorem 3.3 works. Functiam.
is leftwards and rightwards:

sum [a] =a
sum ([a] +z) = a+ sumx
sum (x + [a]) = sumz+a

so sum can be defined in the form of the list homomorphism ac-
cording to the third homomorphism theorem. Unlike the thicd
momorphism theorem that helps little in deriving the listrt@mor-
phism forsum, Theorem 3.3 shows us a way to go. As seen before,
we have obtainedum® a = [a], SO we can derive the following
list homomorphism:

sum = (f, @)
where fa=a
a®b=a+b

by two calculationssum [a] = a andsum (sum® a+sum® b) =
sum ([a] ++ [b]) = a + b. O

Example 3.2. As a more involved example, consider the maximum
prefix sum problem, which we introduced in the introduction.

We start with a quick but incorrect derivation of a list hormam
phism formps. Noticing thatmps® a = [a], one may calculate as
follows:

a®b mps (mps® a +H mps® b)
mps ([a] +-[b])
07al(a+b)
and conclude (see Theorem 3.3) thats (z ++ y) = mps  ©
mps y. This derived homomorphism is actually incorrect, because
mps |1, —2, 2, 1] should be2, butmps [1, —2] ©® mps [2, 1] gives
3. The problem in this derivation is in its wrong applicatioh o
Theorem 3.3; it did not check whether the function can betemit
by both leftwards and rightwards functions, which is regdiby
the theorem. In factyps is leftwards:

mps ([a] ++2) = 0T (a+ mps )

but itis not rightwards in the sense that there does not exmich
that mps (z ++ [a]) = mps © ® a. However, it can be defined
rightwards if the auxiliary functiosum is allowed to be used:

mps (z +H [a]) = mps x | (sum x + a)

This suggest us to consider tupling of the two functionsabt,fthe
tupled function(mps » sum) is both leftwards and rightwards:

(mps & sum) [a] (a10,a)

(mps & sum) ([a] H ) a @ (mps o sum) x

(mps » sum) (z + [a]) (mps » sum) z® a
where a @ (p, ) = (0 | (a+p),a+5)

(p,s)@a=(pT(s+a)s+a)

To derive the list homomorphic form dfnps a sum) by The-
orem 3.3, we need to find a weak right inverse(ofps ~ sum),

C

sequential programs )

leftwards function &
;rightwards function

inverter

1. unfolding functions

2. solving constraint equation
3. optimization

4. verification of domain

Lweak right inverse

n

\/
| code generator |

Lparallel skeletons
(__ parallel programs )

Figure 1. Parallelization framework.

namely (mps ~ sum)®, which should take a pair of two values
(p, s), and output a list whose maximum prefix sum musplaad
whose sum must be That is,

(mps a sum)® (p,s) = x
such that mpsx =pAsumax=s.

Derivation of (mps » sum)® is not obvious at all, which will be
studied in the next section. O

4. Automatic Parallelization Algorithm

Theorem 3.3 indicates that in order to obtain a list homorism,
it is sufficient to derive its weak right inverse. In this sent we
propose a novel parallelization algorithm based on thisolas
tion. With our parallelization algorithm, users can obtafficient
parallel programs for free, by focusing only on the develeptrof
a pair of sequential programs.

4.1 Overview

Figure 1 shows the framework of our parallelization alduorit It
accepts a sequential program as input, which may contaist a li
of functions that are both leftwards and rightwards, deriweak
right inverses of the functions in the input, and generatesrallel
program composed by parallel skeletons.

Input: Sequential Programs

The input to our parallelization algorithm is a sequentiagram
that describes computation on lists. Different from thesotaral-
lelizing tools, our algorithm requires each function in thput to
be implemented by a pair of sequential functions that perfoom-
putation by scanning lists leftwards and rightwards resypey.
This requirement is to guarantee the existence of paratgirpms.

To see concretely what the input sequential programs Ik li
consider again the maximum prefix sum problem. If the inpat is
list with only a single element, easily we obtain

mps [a] =01 a.
Otherwise, we hope to defineps by scanning the lists leftwards
and rightwards, that is, to find and¢» such that
mps ([a] H ) ty
mps (z -+ [a]) ta.
The basic restriction on the termsandt. is thatz must appear in
the form of f « wheref is a function that is defined both leftwards

and rightwards. This restriction ensures the order of ingithe
elements of the list. As seen in Example 3.2, suclandt, exist



with an auxiliary functionsum that can be defined both leftwards
and rightwards.

To parallelize more general programs, we consider another e
ample. It is known that accumulation parameters are impbita
designing efficient programs. Efficient programs often appethe
following extended leftwards and rightwards forms:

F(lal+a)e =t
T+ la)e = ta

where an accumulation parameteis used. They seem out of the
scope discussed above, but it has been shown [1] that thdsofin
programs can be decomposed into a combination of skeletons

g1 o map f1 o inits
g5 o map f4 o tails

where f1, f5, g1, andg) are sequential functions defined without
accumulation parameters. Our algorithm can deal with tkterla
style of sequential programs, whenevgr, f3, g1, and g5 are
defined leftwards and rightwards. As an example, consider th
prefix sum problem [7, 14, 15]: given a list, compute the suins o
all the prefix sublists. It can be sequentially described by

psum’ x 0
[a+ ]
la + c] + psum’ x (a + ¢)

psum x =
psum’ [a] ¢ =
psum’ ([a] +z) ¢ =

which can be equivalently described by
psum = map sum o inits

where sum can be sequentially implemented by both leftwards
and rightwards functions, and our algorithm can generatealpl
program forpsum.

The syntax of the source language is summarized in Figure 2.

The sequential program, namely the input to our algoritraofi
the following three forms:

e [rsegs: leftwards/rightwards programs;
e map lrsegs o inits: leftwards accumulative programs;
® map Irseqs o tails: rightwards accumulative programs.

The main functions are specified by the special identiféem. The
language to define leftwards/rightwards programs will lseassed
in Section 4.2.

Parallelization Engine: Inverter and Code Generator

Our parallelization engine consists of two layers: The fissthe
inverter and the second is the code generator.

The first layer of our algorithm, namely the inverter, desive
a weak right inverse fronirsegs. Let fi, fa,..., fn be all the
functions defined in thérsegs. Then the inverter derives a weak
right inverse of the tupled function, that (g o fo a --- a fn)°.
This layer is the main part of our parallelization enginegcéaese
weak right inverses derive associative operators thatecessary
to construct list homomorphisms. We will show the automagak
right inversion algorithm in Section 4.3.

The second layer, namely the code generator, does thregsthin
Firstly, it derives list homomorphism fairseqs based on Theo-
rem 3.3, from the weak right inverse generated by the inuedte-
ondly, it transforms the sequential program defined in onthef
three basic forms into a skeletal parallel program by thieidhg
rules.

(f.e) =

map ((f, ®)) o inits
map ((f,®)) o tails

reduce (®) o map f
scanl (®) o map f
scanr (®) o map f

Finally, it generates executable parallel code for theetképarallel
program. Our parallelization never fails whenever thev@gion of
weak right inverses succeeds.

Output: Skeletal Parallel Programs

Our algorithm automatically generates parallel progranas are
defined with parallel skeletons, which can be executed effityi
in parallel [27]. For instance, our algorithm generatesftfiewing
skeletal parallel program fonps:

MPSpara = fSt 0 reduce (©) o map
D

where
fst (a,b) = a
fa=(a10, )

(Pz, 82) © (py, Sy)
= (mps & sum) ([pz, sz — pe| + [Py, Sy — py)

This program is a© (log n) parallel program formps wheren is
the length of the input list.

4.2 Language to Specify Leftwards/Rightwards Programs

We provide users with a language to write leftwards and wghdls
sequential programs, which are the input of the invertee [Eim-
guage captures a wide class of functions that accepts & lispat
and computes a numeric value. Leftwards and rightwardsesequ
tial programs are specified by the nontermifrakgs in Figure 2.
The nonterminalrsegs consists of one or more function definitions
(def), which provide leftwards definitions and rightwards defini
tions. The body of each definition is a linear teimrm, which
is constructed by additions of two linear terms, multiplicas by
constants, applications of a function to the rest of thexlistalues
of the element of the lisk, constants, or conditional expressions.
Any function used initerm must be defined in the program, and
the list elemeng should appear in the definition body at least once.
As an example, recall the maximum prefix sum problem. We
can use the language to describe a sequential program awsoll
In the following program, thel operator is unfolded with the
conditional expression.

main = mps;

mps [a] =
mps ([al++x) =

if (a <= 0) then 0 else a;
if (0 <= a + mps(x))

then a + mps(x)

else O;

mps (x++[a]) = if (mps(x) <= sum(x) + a)
then sum(x) + a
else mps(x);

sum [a] = a;

sum ([a]++x) = a + sum(x);

sum (x++[a]) = sum(x) + a;

Itis worth noting that we need to write the leftwards and tigdrds
program ofsum, becauseum is necessary to write the rightwards
program ofmps. From this program, our inverter derives a weak
right inverse of(mps a sum).

For successful and automatic derivation of a weak rightrsee
we impose some restriction on our language. This restrictic
cludes some functions that are necessary for parallel ctatipo.
We can relax this restriction and deal with wider classesuatf
tions in our framework. We will discuss these extensions eéa-S
tion 6.

4.3 Automatic Weak Right Inversion for Parallelization

Now we consider how to derive a weak right inverselrfeqs
consists of only one function, it is easy to derive its weajtti
inverse, as seen in Example 3.1. But as seen in the Exampiei8.2
hard to derive a weak right inverse of a tupled function. 8imany



prog = main; lrsegqs (program)
main = main = fun (main function)
| main = map(fun) . (inits|tails)
lrseqs = def+
def = fun [al = lterm; (function definition)
fun ([al++x) = lterm;
fun (x++[al) = lterm;
lterm == lterm (+| =) lterm (addition)
| lterm (x| /) Integer (multiplication)
| fun(x) (function application)
| a (element of the list)
| Integer (constant number)
| if(cond) then lterm else lterm
(condition)
cond == lterm (==|1=|<=|>=]|<|>) lterm

| cond (11 |&&) cond

Figure 2. The source language of our parallelization algorithm

functions are defined in terms of both leftwards and rightisdoy
using other auxiliary functions, we will focus on the detiva of
a weak right inverse of such a function.

As shown in Figure 3, our derivation of a weak right inverse is
carried out by the following procedure. Firstly, we get tbastraint
equations by unfolding the sequential functions for an frijza
of fixed length. Secondly, we solve the constraint equatiamd
get a weak right inverse that is correct but may be inefficient
Next, we optimize the weak right inverse by eliminating nedant
conditional branches. Finally, we verify whether the damafithe
weak right inverse is correct with respect to our precoodti
Figure 3 summarizes the four steps of the procedure. We iexpla
these four steps from Section 4.3.1 to Section 4.3.4, aret aft
that, we demonstrate how they work with a concrete example in
Section 4.3.5.

The inverter takes only one program, either leftwards dntrig
wards, to derive a weak right inverse. Note that the invexiér a
single program does not make up the correct parallelizatigo-
rithm without the other one, since both sequential prograhike
pair are required to guarantee the existence of a paratigrpm as
stated in Theorem 3.3.

4.3.1 Unfolding Functions and Getting Constraint Equatiors

As the first step to obtain a weak right inverse, we unfold ttigi-o
nal functions to get relational expressions (constraihiz) explic-
itly describe the relation between their input list and thaitput
values. Since the input list of the original functions cepends to
the output of the objective weak right inverse, our objexis to
derive the computation that computes the input list fromaigput
values.

Taking the maximum prefix sum problem (Example 3.2) as an
example, we may assume that the weak right invérges ~ sum)°
takes(p, s) € range(mps » sum) and returns a singleton lift]
as

(mps & sum)® (p, s) = [a].
Then we get the following equation according to the definitid
the weak right inverse as

(p, 5) = (mps & sum) [a]
that is,

p=mps[a], s= sum [a].
By unfolding the functionsnps andsum, we get

p=1if (a<0)thenOelsea, s=a

/I function

/I Inversion

/I input

/I funcSet all functions included in the program
/I output

/I aweak right inverse of the tupled function

function Inversion (funcSet)
return Optimize(Solve(Unfold(funcSet)))

function Unfold (funcSet)
constraintEquation = funcSet.Unfold(funcSet)
return constraintEquation.EnumCond()

function Solve (constraintEquationSet)
foreach ((cond, eq)in constraintEquationSet)
exprs = eq.solve()
cond.Subst(exprs)
weakRightlnverse.Add(cond, exprs)
return weakRightlnverse

function Optimize (weakRightinverse)
foreach ((cond, exprs)n weakRightlnverse)
if (Icond || weakRightlnverse.Or())
then weakRightInverse.Remove(cond,exprs)
return weakRightlnverse

/I function

/I Verification

/I input

/I preCond the precondition that the functions satisfy
/I weakRightinverse a weak right inverse

/I output

/I whether the weak right inverse is valid

function Verification (preCond, weakRightinverse)
return (!preCond|| weakRightinverse.Or())

Figure 3. Algorithm to derive a weak right inverse

which can be expressed by the constraint equations withithonsl
in the form of C = E1, Es, ..., E,, whereC'is a constraint and
eachFE; is an equation:

{a<0} = p=0,s=a
{a>0} = p=a, s=a.

These two constraint equations imply that the weak righerise
(mps o sum)® (p, s) returns the singleton ligs] when (1)p is 0
ands is 0 or less, or (2) is positive and equal tp.

The result is not satisfactory: The result is a partial daéini
of a weak right inverse and we know nothing about the caseavher
the weak right inverse should return a longer list. It is ooy
impossible to run the same algorithm for all the possiblgtles of
the output lists, though it would derive a full definition ofaeeak
right inverse.

To resolve this problem, we assume that a weak right inverse
returns a list whose length is the same as the number of defined
functions. For example, we assume tliatps » sum)® returns
a list of two elements. This assumption is problematic bseau
the assumption may narrow the domain of the derived weak righ
inverse. We will discuss the correctness of the derived wiggk
inverse in Section 4.3.4.



4.3.2 Solving Constraint Equations

After unfolding the functions, we get the simultaneous ¢igna

that express the relation between the input variables andutput
list of the objective weak right inverse. We then solve thegea-
tions using the constraint solver. If there are some vegmble can-
not decide their values uniquely, we substitute an arlyitralue for

one of them. After that, we substitute the result of the stemé-
ous equations for the variables of the conditional expoessiand
derive a weak right inverse.

4.3.3 Optimization

In general, the weak right inverse derived by the above-imead
process is inefficient: If there are functions withm conditional
branches, the number of constraints car2BB&"*" in the worst
case. Since there usually exist many unnecessary braneaesn
improve the efficiency of the weak right inverse by elimingti
unnecessary branches. &t be theith conditional branch. If

Ci=\/ Cx
i#k

holds, then the domain of the weak right inverse does notgean
even if C; is removed. Moreover, all the branches return a cor-
rect list as a weak right inverse if the input value is in thend.
Therefore, the expression corresponding’tas redundant and can
be removed. The expression (1) is in the form of Presburggrar
metic [25], and we can compute it by quantifier eliminatiof][1

1)

4.3.4 \erification

As mentioned in Section 4.3.1, the derived weak right inrvensly
be a partial function. Thati§/, C; = true may not hold, wheré€’;
denotes théth condition. However, it is sufficient for a weak right
inverse to return the value in the range of the original fiomctin
other words, if

)

holds, whereP corresponds to the range of the original function,
then the weak right inverse meets the requirement of theitlefin
Our algorithm works as follows. At first, the algorithm check
whether\/, C; = true holds. If not, the algorithm requires the
precondition that corresponds to the range of the origimattion,
and tries checking the condition (2). These checks can belalse
by quantifier elimination. If the verification fails, we faib derive

a weak right inverse.

P:>\/Ci

4.3.5 Example: Inversion of Maximum Prefix Sum

Now let us demonstrate the whole process of inversion byideri
a weak right inverse ofmps a sum).

all conditional branches and get a set of constraint equstigth

conditions as follows:
{b<OAO0<a}
{<O0A0>a} = p=0, s=a+b
{b>0N0<a+b} = p=a+b s=a+b
{b>0N0>a+b} = p=0, s=a+b

Solving the equations gives the following result. Two thiraye
worth noting. Firstly, we cannot uniquely decide the valoés:
andb in the second, third and fourth equations, sadéte 0 here.
Secondly, there is a dependency betwpeand s in the first and
second equations, and we add it to the conditional part:

{b<O0A0<a} = a=p, b=s—1p
{b<OAN0>0APp=0} = a=0, b=s
{b>0N0<bAp=s} = a=0, b=s
{b>0AN0>bAp=0} = a=0, b=s

Removing clearly unreachable branches and replagingdd in
the conditions by their solution yield the following equats:

{s<pAO<p} = a=p b=s—p
{s>0Ap=s} = a=0, b=s

Therefore we get the following program @fips ~ sum)°, because
(mps & sum)° (p, s) = [a, b]:

(mps & sum)°®(p, s)
= if (s <pA0<p)then[p, s—p]
elseif (s > 0Ap =s) then [0, s]

Next, we optimize this weak right inverse. Since the conditi
{s <pA0 < p}includes{s > 0Ap = s}, our optimizer removes
the branch and yields the following result:

(mps & sum)°(p, ¢)
= if (s <pAO0<p)then[p, s—p

Finally, we verify the weak right inverse. While the weakhtg
inverse is not a total function, it is correct, because thelitmn (2)
holds;s < p A 0 < p holds for all listz, where(mps a sum) © =
(p, s), because the return value of the functiamps is larger than
or equal to that ofsum. To verify the correctness, users specify
s < p A0 < pwhen our algorithm requires the precondition of
(mps & sum).

Now that we have got a weak right inverse (@fips » sum),
Theorem 3.3 soon gives a parallel program seen in Section 4.1

4.4 Properties

Two remarks are worth making on the properties of our pdizdle
tion algorithm.

First, our inversion procedure always terminates, and ovene
the derived weak right inverse is always correct provided the

Because the number of defined function is two, we assume thatverification step succeeds.

a weak right inverse afmps » sum) returns a list of two elements:
(mps & sum)® (p, s) = [a, U]

where(p, s) € range(mps » sum). This equation is equivalent to
the following equation:

(p, s) = (mps » sum) [a, b

By unfolding the definitions ofa, sum, and mps, we get the
following equations:

if (b<0)
then if (0 < a) then a else 0

(
elseif (0 < a+b) thena +belse
a+b

Let us solve these simultaneous equations:fandb to get a weak
right inverse. To solve these simultaneous equations, weerate

p:

s =

Second, our derived parallel programs are guaranteed to be
efficient in the sense that they uSglog n) parallel time, wherex
is the length of the input list. This is because the weak rigferse
returns a list of constant length, and thus the computatfap m
Theorem 3.3 uses constant time.

5. Implementation and Experiments

We have implemented an automatic parallel code generattreon
parallelization algorithm in C++. Two major issues in ourpie+
mentation are the speedup of the optimization step and therge
tion of architecture-independent parallel programs.

In the optimization step (Section 4.3.3), we need compurtati
on a large number of constraint equations, which occupiest ofo
the time in our parallelization algorithm. To resolve thislgem,
we note that all the expressions in the optimization stepratiee



form of Presburger arithmetic, and we used the Omega litiheaty
solves truth judgments in the Presburger arithmetic faseédan
the omega tesiethod [26]. The use of the Omega library enables
our parallel code generator to work in practical time.

The generation of architecture-independent executalsklgla
programs is another implementation issue. We need to take in
account the architecture of parallel computers to geneféitgent
parallel programs, but there are so many parallel architestfrom
shared-memory ones to distributed-memory ones that acthie-
specific implementation is almost impossible. Our apprdadio
generate parallel programs that can be combined with th&Ske
brary [24], which provides not onlyrap andreduce but alsoscanl
and scanr as parallel primitives based on the MPI environments.
Our parallelization system generates C++ code of the maitin®
and the function objects used with the parallel primitives.

In the rest of this section, we demonstrate the ability ofarr
allelization tools with two more examples, and give expenital
results on the efficiency of our system.

5.1 Maximum Segment Sum Problem

To show the power of our system, we consider the maximum
segment sum problem, which computes the maximum of the sums
for all the segments (contiguous sublists) of a list. It iSrestance
of the maximum weight-sum problems [29] that capture many
dynamic-programming problems. Our system can automatical
parallelize all the problems on lists in [29]. As an example show
automatic parallelization of the maximum segment sum jerobl

The input sequential programs for the maximum segment sum
is given as follows:

main = mss
mss [a]

mss ([al++x)
mss (x++[al)

max(a, 0);
max(a + mps(x), mss(x));
max (mss(x), mts(x) + a);

max(a, 0);
max(0, a + mps(x));
max(mps(x), sum(x) + a);

mps [a]
mps ([a]++x)
mps (x++[a])

mts [a]
mts ([al++x)
mts (x++[al)

max(a, 0);
max(mts(x), a + sum(x));
max(mts(x) + a, 0);

sum [a]
sum ([a]l++x)
sum (x++[a])

aj;
a + sum(x);
sum(x) + a;

wheremax is a macro and defined as follows:
max(x, y) = if (x>=y) then x else y

andmts is a function to compute the maximum sum of all the
postfix sublists. From this input source code, our parabion
system generates the following weak right inverse for tmetion
(mss A mps ~mts A sum).

weakinv(mss & mps & mts & sum) (m, p, t, s)
= if(0 <= p <=m && 0 <=t <= m && s+m <= t+p)
then [p, -p-t+s, m, -m+t]

And based on the Theorem 3.3 with this weak right inverse, our
code generator generates the parallel program for the Sikedoy
as shown in Figure 4.

5.2 Line-of-Sight Problem

Given an observation point and a list of buildings along a (see
Figure 5), the line-of-sight problem is to find which builgmare
visible originating at the observation point [7]. Let eaakilthng
be represented by the vertical angle from the observatiant pm
the top of the building. Then, a building on the line is visiifland

struct mss_tuple_t {

int m, p, t, s;

mss_tuple_t(int m_, int p_, int t_, int s_) {
m=m_; p=p_; t=1t_; s =s_;

mss_tuple_t O{}

};

struct func_t : public skeleton::unary_function
<int, mss_tuple_t> {
mss_tuple_t operator() (int a) comnst {
return mss_tuple_t(max(a, 0), max(a, 0),
max(a, 0), a); }
} func;

inline mss_tuple_t fwd(int *ar, int n) {
if (n == 1) {
return mss_tuple_t(max(*ar, 0), max(*xar, 0),
max(*ar, 0), *ar);
} else {
mss_tuple_t x = fwd(ar + 1, n - 1);
return mss_tuple_t(max(*ar + x.p, x.m),
max(0, *ar + x.p),max(x.t, *ar + x.s), *ar + x.s);
}

}

inline void bwd(const mss_tuple_t &x, int* ar) {
ar[ 0] = x.p; ar[ 1] -X.p - X.t + x.8;
ar[ 2 ] = x.m; ar[ 3 ] -x.m + X.t;

struct odot_t : public skeleton::binary_function
<mss_tuple_t, mss_tuple_t, mss_tuple_t> {
mss_tuple_t operator() (const mss_tuple_t &x,
const mss_tuple_t &y) const {
int ar[4#2]; bwd(x, ar); bwd(y, ar+4);
return fwd(ar, 4x*2);

} odot;

/* main routine */
dist_list<mss_tuple_t> *listl

= list_skeletons: :map(func, data);
mss_tuple_t result

= list_skeletons: :reduce(odot, listl);
return result.m;

Figure 4. The generated parallel program for the maximum seg-
ment sum problem. Thiewd function is the implementation of the
weak right inverse anflunc andodot are function objects that are
used in calling skeletal primitives.

only if no other building between it and the observation pbis a
greater vertical angle.

We start by solving this problem sequentially. Since we have
compute on each point, it is natural to use the formmap f oinits
as discussed in Section 4.1.

main = map(visible) . inits;

1;

if (a <= amax(x) && visible(x) == 1)
then 1 else 0;

if (amax(x) <= a) then 1 else 0;

visible [a]
visible ([a]l++x)

visible (x++[al)

amax [a]
amax ([a]++x)
amax (x++[a])

a;
max(a, amax(x));
max (amax(x), a);

From this source code the system automatically generates a
weak right inverse for the functiofvisible » amax).
weakinv(visible & amax) (v,m)

= if(v == 1 && 0 <= m) then [0, m]
else if(v == 0 && O <= m) then [m, O]

Finally, based on this weak right inverse, the system geeera
parallel code using skeletal primitivesiap and scanl. Note that



\
i
T

mi

1 2 3 5 7

Figure 5. Line-of-sight problem. This figure shows the sequence
of buildings. There is no obstacle to see the bldg-7, so ttig-Blis
visible. In this case, the answer[is 1,0, 0, 1,0, 1, 0].
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Table 1. Execution time (in seconds) for inversion.

Branches| Execution time
Max. prefix sum 4 0.021
Max. segment surmj 70 0.209
Line of sight 2 0.021

Table 2. Execution time (in seconds) for generated parallel pro-

grams.
Processors 1 4 16 32
Max. prefix sum 3.30 | 0.845| 0.212| 0.126
Max. segment surm} 6.25 | 1.58 | 0.401| 0.236
Line of sight 6.53 | 1.70 | 0.445] 0.250

the following equation holds for the main program:

map visible o inits

map (fst o (visible o amax)) o inits
map fst o map (visible ~ amazx) o inits
map fst o scanl (®)

los

wherefst is a function that returns the first value of the pair and
is the associative operator derived from the weak rightrswef
(visible a amax).

5.3 Experimental Results

To verify the efficiency of our parallelization algorithmatihe gen-

erated parallel programs, we have made the following expants.
First, we give the experimental result of the parallelizatlgo-

rithm. Itis worth remarking that fomss, nine if-statements implied

in the functiormax cause 70 branches in total before optimization.

But due to the use of the Omega library, it takes only 0.209 s in

deriving the weak right inverse. Table 1 shows the execttioas

of computing weak right inverses for three examples.

Next we show the experimental result of the generated ghrall
programs. We used our PC-clusters that consists of unifd@s P
with Pentium 4 Xeon 2.4 GHz CPU and 2 GB of memory con-
nected Gigabit Ethernet. The OS is Linux 2.4 and the C++ com-
piler and the base MPI library used in SkeTo library are gdcl4.
and mpich 1.2.7 respectively. We executed three paraltgirams
for the maximum prefix sum problem, the maximum segment sum
problem, and the line-of-sight problem using an array of &M
most 67 million) elements using up to 32 processors. Theutxeat
times are given in Table 2 and the relative speedups agaaabt e
programs executed on one processor are given in Figure &. Wit
these results, we can confirm the efficiency of the paraltsgmms
generated by our system.

6. Discussion and Related Work

In this section, we discuss most related work in additionhiat t
in the introduction, and highlight limitations and extears of our
parallelization system.

32

" max. prefix sum ——
28 | mMax. segment sum - o
line of sight -
24 linear
g 20t
=)
o
o 16| /
& /
12 +
8 .
4 .
12 4 8 12 16 ” -

Number of Processors

Figure 6. Speedups for the three programs

6.1 Derivation of List Homomorphism

The research on parallelization via derivation of list honoo-
phisms has gained great interest, and there have been many
approaches, such as the third homomorphism theorem based
method [15, 19], function composition based method [14]irixa
multiplication based method [31] and recurrence equatiaset
method [2]. Our approach is unique in its use of weak right in-
verse in derivation of parallel programs. One of the advgegaof
our approach is that our parallelization framework work$! oz

any function, if we have a way to obtain a weak right inverse. W
used the Omega library to solve truth judgments in the Prgsiu
arithmetic. We would derive the more parallel programs freen
quential programs if we use the more powerful constraintessl

In addition, it might be possible to extend our approach tweot
data structures such as trees, but this could be difficul whie
other approaches.

6.2

We have reduced parallelization process to derivation ofeakw
right inverse, and thus our approach is related to resesuaheu-
tomatic inversion [12,13,17, 18, 20, 23]. Different fronetimverse
that does not always exist for a given function, our weaktrigh
verse always exists for any function. To guarantee the effayi of
the weak right inverse, as in Section 4, we impose some cestri
tion on our objective functions and obtain a weak right iseer
by solving linear equations. Though it may look restrictioar
framework is powerful enough to solve many practical exaspl
including most recurrence equations, and to generateeffipiar-
allel programs within the framework of Presburger arithiogetlt
will be interesting to see if we can make better use of teckesq
on inversion to parallelize more functions.

Inversion and Parallelization

6.3 Generalization

We have an assumption (as in Section 4.3.1) that the ougtatf &
weak right inverse is of constant length. This assumptiariueles
many functions that are necessary for parallel computatiore
example is the functiofength, which computes the length of a list.
Our algorithm cannot derive a weak right inversdafgth though
length is both leftwards and rightwards.

length [a] =1
length ([a] ++ z) = 1+ length x
length (x ++ [a]) = length z + 1

This is because variabte does not appear in the definition body,
which is required by our system. This problem may be solved by
generalization: generalizing constdnto variablea. This general-
ization would splitlength into two functions Jength’ andmap, as
follows:



length = length' o map one
length’ [a] =a
length! ([a] +x) = a+ length’ =
length’ (z ++ [a]) = length’ z +a
where one is the function which always returnisfor any input.
Now we can derive a parallel program &ngth because our
inversion algorithm can deal witlength'. (In fact,length’ is sum.)

7. Conclusion
In this paper, we have introduced a new concept calledk right

inverse proposed a novel parallelization framework based on the

third homomorphism theorem and derivation of a weak right in
verse, and implemented a parallelization system that ctomea-
ically generate efficient parallel programs suitable fa tfivide-
and-conquer paradigm. The experimental results show geoofi
the approach.

We are now looking into how to formalize and automate the

generalization step discussed in Section 6. In addition,avee
considering using more powerful constraint solvers in gustesm
so that more involved constraint equations can be solvedramd
sequential programs can be parallelized. Extending ouoagh to
other data structures such as trees is interesting future wo
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