
Automatic Inversion Generates
Divide-and-Conquer Parallel Programs

Kazutaka Morita Akimasa Morihata Kiminori Matsuzaki Zhenjiang Hu Masato Takeichi
Graduate School of Information Science and Technology, University of Tokyo

{kazutaka,morihata,kmatsu}@ipl.t.u-tokyo.ac.jp {hu,takeichi}@mist.i.u-tokyo.ac.jp

Abstract
Divide-and-conquer algorithms are suitable for modern parallel
machines, tending to have large amounts of inherent parallelism
and working well with caches and deep memory hierarchies.
Among others, list homomorphisms are a class of recursive func-
tions on lists, which match very well with the divide-and-conquer
paradigm. However, direct programming with list homomorphisms
is a challenge for many programmers. In this paper, we propose
and implement a novel system that can automatically derive cost-
optimal list homomorphisms from a pair of sequential programs,
based on the third homomorphism theorem. Our idea is to reduce
extraction of list homomorphisms to derivation ofweak right in-
verses. We show that a weak right inverse always exists and can
be automatically generated from a wide class of sequential pro-
grams. We demonstrate our system with several nontrivial exam-
ples, including the maximum prefix sum problem, the prefix sum
computation, the maximum segment sum problem, and the line-of-
sight problem. The experimental results show practical efficiency
of our automatic parallelization algorithm and good speedups of
the generated parallel programs.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming

General Terms Algorithms, Design, Languages

Keywords Divide-and-conquer parallelism, Inversion, Program
transformation, Third homomorphism theorem

1. Introduction
Divide-and-conquer algorithms solve problems by breakingthem
up into smaller subproblems, recursively solving the subproblems,
and then combining the results to generate a solution to the original
problem. They match very well for modern parallel machines,
tending to have large amounts of inherent parallelism and working
well with caches and deep memory hierarchies [28]. Among others,
list homomorphisms are a class of recursive functions on lists,
which match very well with the divide-and-conquer paradigm[9,
11, 24, 27, 30]. Functionh is said to be a list homomorphism, if

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

there is an associated operator⊙ such that for any listx and listy

h (x ++ y) = h(x) ⊙ h(y)

where++ is the list concatenation. When functionh is defined as
the equation above, the computation ofh on a longer list, which is a
concatenation of two shorter ones, can be carried out by computing
h on each piece in parallel and then combining the results. For
instance, the function that sums up the elements in a list canbe
described as a list homomorphism

sum (x ++ y) = sum(x) + sum(y).

List homomorphisms are attractive in parallel programmingfor
several reasons. First, being a class of natural recursive functions on
lists, they enjoy many nice algebraic properties, among which, the
three well-known homomorphism lemmas form the basis of the for-
mal development of parallel programs [9,19,21,22]. Secondly, and
very importantly, they are useful to solve really practicalproblems.
For example, many algorithms executed on Google’s clustersare on
MapReduce [24], and most of them, such as distributed grep, count
of URL access frequency, and inverting index, are certainlynoth-
ing but list homomorphisms. Moreover, homomorphisms (catamor-
phisms) are suitable for developing robust parallel programs, and
are considered to be a primitive parallel loop structure in the de-
sign of the new parallel programming language Fortress in Sun Mi-
crosystems [30].

Despite these appealing advantages of list homomorphisms in
parallel programming, a challenge remains for a programmerto use
them to solve their problems, particularly when the problems are
a bit complicated. Consider the maximum prefix sum problem [6],
which is to compute the maximum sum of all the prefix sublists.For
instance, supposingmps is the function that solves the problem, we
have

mps [1,−1, 2] = 0 ↑ 1 ↑ (1 + (−1)) ↑ (1 + (−1) + 2)
= 2

where↑ is an infix operator returning the bigger of two numbers.
It is not straightforward to obtain a parallel program by finding an
operator⊙ such that

mps (x ++ y) = mps(x) ⊙ mps(y).

It is, however, easy to obtain two sequential programs. We may
compute the maximum prefix sum either by scanning the list from
left to right as

mps (x ++ [b]) = mps(x) ↑ (sum(x) + b)

or by scanning the list from right to left as

mps ([a] ++ y) = 0 ↑ (a + mps(y)).

These two sequential programs are specialized ones of list homo-
morphisms: In the former programy is specialized to a list with

a single elementb, and in the latter programx is specialized to a
list with a single elementa. This ease of sequential programming
suggests us to look into possibilities of obtaining list homomor-
phisms from sequential programs. Noticing that not every sequen-
tial program can be parallelized, that is, not all functionscan be
described as list homomorphisms (in factmps cannot be a list ho-
momorphism), it is important to clarify under what condition list
homomorphisms exist and can be automatically derived.

Interestingly, in the context of list homomorphisms, thereis a
famous theorem, calledthe third homomorphism theorem, which
says that

if two sequential programs in some specific form exist in
solving a problem, then there must exist a list homomor-
phism that solves the problem too.

This theorem suggests a new parallel programming paradigm,that
is, developing a parallel program with a list homomorphism from
a pair of sequential ones. Although this theorem gives a necessary
and sufficient condition for the existence of list homomorphisms, it
mentions nothing of how to construct them. In fact, it remains open
whether there is a general and automatic way to extract an efficient
list homomorphism from two sequential programs [15].

In this paper, we propose a novel approach to automatic deriva-
tion of cost-optimal list homomorphisms from a wide class ofse-
quential programs. Our idea is to reduce automatic extraction of
list homomorphisms to automatic derivation ofa weak right in-
verseof a function. We show that a weak right inverse always exists
and can be automatically generated for a wide class of sequential
functions. As will be seen later, this new approach is applicable
to many nontrivial examples, including the maximum prefix sum
problem [6, 14, 15], the prefix sum computation [6], the maximum
segment sum problem [3], and the line-of-sight problem [6].

Our main contribution can be summarized as follows.

• We design a new automatic parallelization algorithm based on
the third homomorphism theorem, by reformalizing the third
homomorphism theorem withthe weak right inverseand gen-
erating parallel programs by deriving weak right inverses.The
optimization procedure in the algorithm plays an importantrole
in making parallelized programs be efficient.

• We define a language in which users can describe sequential
programs for solving various kinds of problems on lists. It
is guaranteed that under a reasonable condition an efficient
parallel program can be automatically derived from a pair of
sequential programs in the language.

• We have implemented the new automatic parallelization al-
gorithm, and tested the generated parallel programs using the
SkeTo parallel programming environment, which directly sup-
ports parallel programming with map and reduce (two special
cases of list homomorphisms.) The experimental results show
practical efficiency of our automatic parallelization algorithm
and good speedups of the generated parallel programs. This in-
dicates the promise of our new approach.

The rest of this paper is organized as follows. In Section 2, we
briefly explain the base theory used in our parallelization frame-
work, our parallel computation patterns, and the third homomor-
phism theorem. In Section 3, we define the new concept of the weak
right inverse. In Section 4, we describe our automatic paralleliza-
tion algorithm: we explain the source language we deal with,the
algorithm to derive a weak right inverse, which is the core part of
our parallelization algorithm, and the optimization algorithm for
the derived programs. We discuss the implementation issuesand
show experimental results, together with several application exam-
ples in Section 5, and discuss the extensions of our technique and
related work in Section 6. We conclude the paper in Section 7.

2. Basic Theory of List Homomorphisms
In this section, we briefly explain the base theory of our paralleliza-
tion framework, our parallel computation pattern, and the third ho-
momorphism theorem that gives a necessary and sufficient condi-
tion for the existence of list homomorphisms.

2.1 Notations on Functions and Lists

Our notations are basically based on the functional programming
language Haskell [5]. Functional application is denoted bya space
and an argument may be written without brackets. Thusf a means
f(a). Functions are curried, i.e. functions take one argument and
return a function or a value, and the function application associates
to the left. Thusf a b means(f a) b. Infix binary operators will
often be denoted by⊕,⊗,⊙. Functional application binds stronger
than any other operators, sof a ⊕ b means(f a) ⊕ b, but not
f(a⊕ b). A functional composition is denoted by a centered circle
◦. By definition,(f ◦ g) x = f (g x). A functional composition is
an associative operator. The identity function is denoted by id . The
operator△ is for tupling two functions, defined by

(f △ g) a = (f a, g a).

The operator↑ expresses the operation that computes the maxi-
mum, and is defined as

x ↑ y = if (x ≥ y) then x else y.

Lists are (nonempty) finite sequences of values of the same type.
A list is either a singleton or a concatenation of two lists. We denote
[a] for a singleton list with elementa, andx++y for a concatenation
of two listsx andy. The concatenation operator is associative. Lists
are destructed by pattern matching.

2.2 Leftwards, Rightwards, and List Homomorphisms

One point of our parallelization method lies in good captureof
the structure of recursive computation. We classify most ofthe
list manipulation computation into three classes, namely rightwards
functions, leftwards functions, and list homomorphisms [4].

Definition 2.1 (Leftwards function). Functionh is leftwardsif it is
defined in the following form with functionf and operator⊕.

h [a] = f a
h ([a] ++ x) = a ⊕ h x

That is, a leftwards function iterates the computation by sequen-
tially scanning the list from right to left.

Definition 2.2 (Rightwards function). Functionh is rightwards if
it is defined in the following form with functionf and operator⊗.

h [a] = f a
h (x ++ [a]) = h x ⊗ a

That is, a rightwards function iterates the computation by sequen-
tially scanning the list from left to right.

Definition 2.3 (List homomorphism [4]). Functionh is a list ho-
momorphism([f, ⊙]), where⊙ is an associative operator, if it is
defined in the following divide-and-conquer form.

h [a] = f a
h (x ++ y) = h x ⊙ h y

Leftwards and rightwards functions have good correspondence
to usual sequential programs, while list homomorphisms canbe
seen as a general form for efficient divide-and-conquer parallel
computation on list: If a function is a list homomorphism then its
result does not depend on the place where the input list is split,
because the operator⊙ is associative.

2.3 Parallel Skeletons

List homomorphisms play a central role in skeletal parallelpro-
gramming [8, 27], in which users are provided with a fixed set
of parallel computation patterns (skeletons) to write parallel pro-
grams. The following four parallel skeletons, namely map, reduce,
and two scans, are considered to be the most fundamental to de-
scribe parallel computation on lists.

Map is the operator that applies a function to every element in a
list. Informally, we have

map f [x1, x2, . . . , xn] = [f x1, f x2, . . . , f xn].

If f usesO(1) computation time, thenmap f can be implemented
usingO(1) parallel time.

Reduce is the operator that collapses a list into a single value by
repeated application of an associative binary operator. Informally,
for associative binary operator⊙, we have

reduce (⊙) [x1, x2, . . . , xn] = x1 ⊙ x2 ⊙ · · · ⊙ xn.

If ⊙ usesO(1) computation time, thenreduce (⊙) can be imple-
mented usingO(log n) parallel time.

In fact, we can express every instance of list homomorphisms
by map with reduce .

([f, ⊙]) = reduce (⊙) ◦ map f

Therefore, list homomorphisms can be efficiently implemented by
map and reduce.

Scanl is the operator that accumulates all intermediate results
for computation of reduce from left to right. Informally, for asso-
ciative binary operator⊙, we have

scanl (⊙) [x1, x2, . . . , xn] = [x1, x1⊙x2, . . . , x1⊙x2⊙· · ·⊙xn].

The dual operatorscanr is to scan a list from right to left. If⊙
usesO(1) computation time, bothscanl (⊙) andscanr (⊙) can
be implemented usingO(log n) parallel time.

Scans have a strong relationship with list homomorphisms.
Consider the functionsinits andtails, for computing all the prefix
sublists and the postfix sublists of a list, respectively.

inits [x1, x2, . . . , xn] = [[x1], [x1, x2], . . . , [x1, x2, . . . , xn]]
tails [x1, x2, . . . , xn] = [[x1, x2, . . . , xn], . . . , [xn−1, xn], [xn]]

Then, scans can be defined in terms ofmap, reduce , inits, and
tails.

scanl (⊙) = map (reduce (⊙)) ◦ inits
scanr (⊙) = map (reduce (⊙)) ◦ tails

This implies that computation patterns ofmap (reduce (⊙))◦inits
and map (reduce (⊙)) ◦ tails can be efficiently computed in
parallel. This fact will be useful to parallelize sequential programs
that use accumulation parameters.

Our objective is to derive programs written by parallel skeletons
from usual sequential programs.

2.4 Third Homomorphism Theorem

When writing a program in terms of list homomorphisms or parallel
skeletons, the most difficult step is to find the associative binary
operator.The third homomorphism theorem[16] is the theorem that
gives a necessary and sufficient condition for the existenceof the
associative binary operator.

Theorem 2.1 (Third homomorphism theorem [16]). Functionh
can be described as a list homomorphism, if and only if it can be
defined by both leftwards and rightwards functions. That is,there
exists associative operator⊙ and functionf such that

h = ([f,⊙])

if and only if there existf , ⊕, and⊗ such that

h [a] = f a
h ([a] ++ x) = a ⊕ h x
h (x ++ [a]) = h x ⊗ a.

Corollary 2.2 ([16]). If functionh can be defined as both leftwards
and rightwards functions, and if there is functiong satisfyingh ◦
g ◦ h = h, then there exists an associative binary operator⊙ such
that the following equation holds.

h (x ++ y) = h x ⊙ h y
where a ⊙ b = h (g a ++ g b)

It is worth noting that the third homomorphism theorem only
shows the existence of a list homomorphism. We need an automatic
method to derive such list homomorphisms, which is the main topic
of this paper.

3. Weak Right Inverse
In this section, we introduce the basic concept ofweak right in-
verses, which play a very important role in construction of our par-
allelization algorithm in Section 4.

Definition 3.1 (Weak right inverse). Functiong is a weak right
inverse of functionf , if g satisfies

∀b ∈ range(f), g b = a ⇒ f a = b

whererange(f) denotes the range of the functionf .

Compared with the standard right inverse, the aboveg is weak
in the sense that the domain ofg can be larger than the range of
f . In other words,g is a right inverse off only if the domain of
g is within the range of the original functionf . Unlike inverses,
any function has one or many weak right inverses. Consider the
weak right inverse ofsum. Each function that returns a list whose
sum is equal to the input value is a weak right inverse ofsum. For
instance, each of the following functions is a weak right inverse of
sum.

g1 a = [a]
g2 a = [a − 1, 1]
g3 a = [1, 2, a − 3]
g4 a = [a/2, a/2].

While a function may have many weak right inverses, there
exists at least one weak right inverse for any function.

Lemma 3.1. At least one weak right inverse exists for any func-
tion.

Proof. Let f be a function. We define functiong by returning one
of thosex that satisfiesf x = y for an inputy. Thisg is obviously
a weak right inverse from the definition. Therefore, a weak right
inverse exists for any function.

For notational convenience, we writef◦ to denote a weak right
inverse of functionf . Below we give more examples, wheresort
is a function for sorting the elements of a list.

sum◦ a = [a]
sort◦ x = x
(map f)◦ x = map f◦ x

Weak right inverses are useful for parallelization, because of the
following lemma.

Lemma 3.2. Let f be a function. The following property holds for
a weak right inversef◦.

f ◦ f◦ ◦ f = f

Proof. By the definition of the weak right inverse, we know that for
any b in the range off , if f◦ b = a thenf a = b. So(f ◦ f◦) b
= f (f◦ b) = f a = b, and thusf ◦ f◦ ◦ f = f holds.

Recall Corollary 2.2, which says that an associative operator
for parallel computation can be derived if functiong satisfying
f ◦ g ◦ f = f exists. Now, by Corollary 2.2 and Lemma 3.2, we
have the following parallelization theorem.

Theorem 3.3(Parallelization with weak right inverse). If function
h is both leftwards and rightwards, then

h = ([f,⊙])
where f a = h [a]

a ⊙ b = h (h◦ a ++ h◦ b)

holds.

Theorem 3.3 shows that, when the functionh is leftwards and
rightwards, we can obtain the definition of the list homomorphism
of h, provided that we have a weak right inverse ofh.

Example 3.1. Let us see how Theorem 3.3 works. Functionsum
is leftwards and rightwards:

sum [a] = a
sum ([a] ++ x) = a + sum x
sum (x ++ [a]) = sum x + a

so sum can be defined in the form of the list homomorphism ac-
cording to the third homomorphism theorem. Unlike the thirdho-
momorphism theorem that helps little in deriving the list homomor-
phism forsum, Theorem 3.3 shows us a way to go. As seen before,
we have obtainedsum◦ a = [a], so we can derive the following
list homomorphism:

sum = ([f,⊙])
where f a = a

a ⊙ b = a + b

by two calculations,sum [a] = a andsum (sum◦ a++sum◦ b) =
sum ([a] ++ [b]) = a + b.

Example 3.2. As a more involved example, consider the maximum
prefix sum problem, which we introduced in the introduction.

We start with a quick but incorrect derivation of a list homomor-
phism formps. Noticing thatmps◦ a = [a], one may calculate as
follows:

a ⊙ b = mps (mps◦ a ++ mps◦ b)
= mps ([a] ++ [b])
= 0 ↑ a ↑ (a + b)

and conclude (see Theorem 3.3) thatmps (x ++ y) = mps x ⊙
mps y. This derived homomorphism is actually incorrect, because
mps [1,−2, 2, 1] should be2, butmps [1,−2] ⊙ mps [2, 1] gives
3. The problem in this derivation is in its wrong application of
Theorem 3.3; it did not check whether the function can be written
by both leftwards and rightwards functions, which is required by
the theorem. In fact,mps is leftwards:

mps ([a] ++ x) = 0 ↑ (a + mps x)

but it is not rightwards in the sense that there does not exist⊗ such
that mps (x ++ [a]) = mps x ⊗ a. However, it can be defined
rightwards if the auxiliary functionsum is allowed to be used:

mps (x ++ [a]) = mps x ↑ (sum x + a)

This suggest us to consider tupling of the two functions. In fact, the
tupled function(mps △ sum) is both leftwards and rightwards:

(mps △ sum) [a] = (a ↑ 0, a)
(mps △ sum) ([a] ++ x) = a ⊕ (mps △ sum) x
(mps △ sum) (x ++ [a]) = (mps △ sum) x ⊗ a

where a ⊕ (p, s) = (0 ↑ (a + p), a + s)
(p, s) ⊗ a = (p ↑ (s + a), s + a)

To derive the list homomorphic form of(mps △ sum) by The-
orem 3.3, we need to find a weak right inverse of(mps △ sum),

1. unfolding functions
2. solving constraint equations
3. optimization
4. verification of domain

inverter

code generator

sequential programs

parallel programs

leftwards function &
rightwards function

weak right inverse

parallel skeletons

Figure 1. Parallelization framework.

namely(mps △ sum)◦, which should take a pair of two values
(p, s), and output a list whose maximum prefix sum must bep and
whose sum must bes. That is,

(mps △ sum)◦ (p, s) = x
such that mps x = p ∧ sum x = s .

Derivation of(mps △ sum)◦ is not obvious at all, which will be
studied in the next section.

4. Automatic Parallelization Algorithm
Theorem 3.3 indicates that in order to obtain a list homomorphism,
it is sufficient to derive its weak right inverse. In this section, we
propose a novel parallelization algorithm based on this observa-
tion. With our parallelization algorithm, users can obtainefficient
parallel programs for free, by focusing only on the development of
a pair of sequential programs.

4.1 Overview

Figure 1 shows the framework of our parallelization algorithm. It
accepts a sequential program as input, which may contain a list
of functions that are both leftwards and rightwards, derives weak
right inverses of the functions in the input, and generates aparallel
program composed by parallel skeletons.

Input: Sequential Programs

The input to our parallelization algorithm is a sequential program
that describes computation on lists. Different from the other paral-
lelizing tools, our algorithm requires each function in theinput to
be implemented by a pair of sequential functions that perform com-
putation by scanning lists leftwards and rightwards respectively.
This requirement is to guarantee the existence of parallel programs.

To see concretely what the input sequential programs look like,
consider again the maximum prefix sum problem. If the input isa
list with only a single element, easily we obtain

mps [a] = 0 ↑ a.

Otherwise, we hope to definemps by scanning the lists leftwards
and rightwards, that is, to findt1 andt2 such that

mps ([a] ++ x) = t1
mps (x ++ [a]) = t2.

The basic restriction on the termst1 andt2 is thatx must appear in
the form off x wheref is a function that is defined both leftwards
and rightwards. This restriction ensures the order of visiting the
elements of the list. As seen in Example 3.2, sucht1 andt2 exist

with an auxiliary functionsum that can be defined both leftwards
and rightwards.

To parallelize more general programs, we consider another ex-
ample. It is known that accumulation parameters are important in
designing efficient programs. Efficient programs often appear in the
following extended leftwards and rightwards forms:

f ([a] ++ x) c = t1
f (x ++ [a]) c = t2

where an accumulation parameterc is used. They seem out of the
scope discussed above, but it has been shown [1] that this kind of
programs can be decomposed into a combination of skeletons

g′
1 ◦ map f ′

1 ◦ inits
g′
2 ◦ map f ′

2 ◦ tails

wheref ′
1, f ′

2, g′
1, andg′

2 are sequential functions defined without
accumulation parameters. Our algorithm can deal with the latter
style of sequential programs, wheneverf ′

1, f ′
2, g′

1, and g′
2 are

defined leftwards and rightwards. As an example, consider the
prefix sum problem [7, 14, 15]: given a list, compute the sums of
all the prefix sublists. It can be sequentially described by

psum x = psum ′ x 0
psum ′ [a] c = [a + c]
psum ′ ([a] ++ x) c = [a + c] ++ psum ′ x (a + c)

which can be equivalently described by

psum = map sum ◦ inits

where sum can be sequentially implemented by both leftwards
and rightwards functions, and our algorithm can generate a parallel
program forpsum.

The syntax of the source language is summarized in Figure 2.
The sequential program, namely the input to our algorithm, is of
the following three forms:

• lrseqs : leftwards/rightwards programs;

• map lrseqs ◦ inits: leftwards accumulative programs;

• map lrseqs ◦ tails : rightwards accumulative programs.

The main functions are specified by the special identifiermain. The
language to define leftwards/rightwards programs will be discussed
in Section 4.2.

Parallelization Engine: Inverter and Code Generator

Our parallelization engine consists of two layers: The firstis the
inverter and the second is the code generator.

The first layer of our algorithm, namely the inverter, derives
a weak right inverse fromlrseqs . Let f1, f2, . . . , fn be all the
functions defined in thelrseqs . Then the inverter derives a weak
right inverse of the tupled function, that is(f1 △ f2 △ · · · △ fn)◦.
This layer is the main part of our parallelization engine, because
weak right inverses derive associative operators that are necessary
to construct list homomorphisms. We will show the automaticweak
right inversion algorithm in Section 4.3.

The second layer, namely the code generator, does three things.
Firstly, it derives list homomorphism forlrseqs based on Theo-
rem 3.3, from the weak right inverse generated by the inverter. Sec-
ondly, it transforms the sequential program defined in one ofthe
three basic forms into a skeletal parallel program by the following
rules.

([f,⊙]) = reduce (⊙) ◦ map f
map ([f,⊙]) ◦ inits = scanl (⊙) ◦ map f
map ([f,⊙]) ◦ tails = scanr (⊙) ◦ map f

Finally, it generates executable parallel code for the skeletal parallel
program. Our parallelization never fails whenever the derivation of
weak right inverses succeeds.

Output: Skeletal Parallel Programs

Our algorithm automatically generates parallel programs that are
defined with parallel skeletons, which can be executed efficiently
in parallel [27]. For instance, our algorithm generates thefollowing
skeletal parallel program formps :

mpspara = fst ◦ reduce (⊙) ◦ map f
where

fst (a, b) = a
f a = (a ↑ 0, a)
(px, sx) ⊙ (py, sy)

= (mps △ sum) ([px, sx − px] ++ [py , sy − py])

This program is anO(log n) parallel program formps wheren is
the length of the input list.

4.2 Language to Specify Leftwards/Rightwards Programs

We provide users with a language to write leftwards and rightwards
sequential programs, which are the input of the inverter. The lan-
guage captures a wide class of functions that accepts a list as input
and computes a numeric value. Leftwards and rightwards sequen-
tial programs are specified by the nonterminallrseqs in Figure 2.
The nonterminallrseqs consists of one or more function definitions
(def), which provide leftwards definitions and rightwards defini-
tions. The body of each definition is a linear termlterm , which
is constructed by additions of two linear terms, multiplications by
constants, applications of a function to the rest of the listx, values
of the element of the lista, constants, or conditional expressions.
Any function used inlterm must be defined in the program, and
the list elementa should appear in the definition body at least once.

As an example, recall the maximum prefix sum problem. We
can use the language to describe a sequential program as follows.
In the following program, the↑ operator is unfolded with the
conditional expression.

main = mps;
mps [a] = if (a <= 0) then 0 else a;
mps ([a]++x) = if (0 <= a + mps(x))

then a + mps(x)
else 0;

mps (x++[a]) = if (mps(x) <= sum(x) + a)
then sum(x) + a
else mps(x);

sum [a] = a;
sum ([a]++x) = a + sum(x);
sum (x++[a]) = sum(x) + a;

It is worth noting that we need to write the leftwards and rightwards
program ofsum, becausesum is necessary to write the rightwards
program ofmps . From this program, our inverter derives a weak
right inverse of(mps △ sum).

For successful and automatic derivation of a weak right inverse,
we impose some restriction on our language. This restriction ex-
cludes some functions that are necessary for parallel computation.
We can relax this restriction and deal with wider classes of func-
tions in our framework. We will discuss these extensions in Sec-
tion 6.

4.3 Automatic Weak Right Inversion for Parallelization

Now we consider how to derive a weak right inverse. Iflrseqs
consists of only one function, it is easy to derive its weak right
inverse, as seen in Example 3.1. But as seen in the Example 3.2, it is
hard to derive a weak right inverse of a tupled function. Since many

prog ::= main; lrseqs (program)
main ::= main = fun (main function)

| main = map(fun) . (inits | tails)

lrseqs ::= def +

def ::= fun [a] = lterm; (function definition)
fun ([a]++x) = lterm;
fun (x++[a]) = lterm;

lterm ::= lterm (+ | -) lterm (addition)
| lterm (* | /) Integer (multiplication)
| fun(x) (function application)
| a (element of the list)
| Integer (constant number)
| if(cond) then lterm else lterm

(condition)
cond ::= lterm (== | != | <= | >= | < | >) lterm

| cond (|| | &&) cond

Figure 2. The source language of our parallelization algorithm

functions are defined in terms of both leftwards and rightwards by
using other auxiliary functions, we will focus on the derivation of
a weak right inverse of such a function.

As shown in Figure 3, our derivation of a weak right inverse is
carried out by the following procedure. Firstly, we get the constraint
equations by unfolding the sequential functions for an input list
of fixed length. Secondly, we solve the constraint equationsand
get a weak right inverse that is correct but may be inefficient.
Next, we optimize the weak right inverse by eliminating redundant
conditional branches. Finally, we verify whether the domain of the
weak right inverse is correct with respect to our preconditions.
Figure 3 summarizes the four steps of the procedure. We explain
these four steps from Section 4.3.1 to Section 4.3.4, and after
that, we demonstrate how they work with a concrete example in
Section 4.3.5.

The inverter takes only one program, either leftwards or right-
wards, to derive a weak right inverse. Note that the inverterwith a
single program does not make up the correct parallelizationalgo-
rithm without the other one, since both sequential programsof the
pair are required to guarantee the existence of a parallel program as
stated in Theorem 3.3.

4.3.1 Unfolding Functions and Getting Constraint Equations

As the first step to obtain a weak right inverse, we unfold the origi-
nal functions to get relational expressions (constraints)that explic-
itly describe the relation between their input list and their output
values. Since the input list of the original functions corresponds to
the output of the objective weak right inverse, our objective is to
derive the computation that computes the input list from theoutput
values.

Taking the maximum prefix sum problem (Example 3.2) as an
example, we may assume that the weak right inverse(mps△sum)◦

takes(p, s) ∈ range(mps △ sum) and returns a singleton list[a]
as

(mps △ sum)◦ (p, s) = [a].

Then we get the following equation according to the definition of
the weak right inverse as

(p, s) = (mps △ sum) [a]

that is,
p = mps [a], s = sum [a].

By unfolding the functionsmps andsum, we get

p = if (a ≤ 0) then 0 else a, s = a

// function
// Inversion
// input
// funcSet :all functions included in the program
// output
// a weak right inverse of the tupled function

function Inversion (funcSet)
return Optimize(Solve(Unfold(funcSet)))

function Unfold (funcSet)
constraintEquation = funcSet.Unfold(funcSet)
return constraintEquation.EnumCond()

function Solve (constraintEquationSet)
foreach ((cond, eq)in constraintEquationSet)

exprs = eq.solve()
cond.Subst(exprs)
weakRightInverse.Add(cond, exprs)

return weakRightInverse

function Optimize (weakRightInverse)
foreach ((cond, exprs)in weakRightInverse)

if (!cond || weakRightInverse.Or())
then weakRightInverse.Remove(cond,exprs)

return weakRightInverse

// function
// Verification
// input
// preCond :the precondition that the functions satisfy
// weakRightInverse :a weak right inverse
// output
// whether the weak right inverse is valid

function Verification (preCond, weakRightInverse)
return (!preCond|| weakRightInverse.Or())

Figure 3. Algorithm to derive a weak right inverse

which can be expressed by the constraint equations with conditions
in the form ofC ⇒ E1, E2, . . . , En, whereC is a constraint and
eachEi is an equation:

{a ≤ 0} ⇒ p = 0, s = a
{a > 0} ⇒ p = a, s = a.

These two constraint equations imply that the weak right inverse
(mps △ sum)◦ (p, s) returns the singleton list[s] when (1)p is 0
ands is 0 or less, or (2)s is positive and equal top.

The result is not satisfactory: The result is a partial definition
of a weak right inverse and we know nothing about the case where
the weak right inverse should return a longer list. It is obviously
impossible to run the same algorithm for all the possible lengths of
the output lists, though it would derive a full definition of aweak
right inverse.

To resolve this problem, we assume that a weak right inverse
returns a list whose length is the same as the number of defined
functions. For example, we assume that(mps △ sum)◦ returns
a list of two elements. This assumption is problematic because
the assumption may narrow the domain of the derived weak right
inverse. We will discuss the correctness of the derived weakright
inverse in Section 4.3.4.

4.3.2 Solving Constraint Equations

After unfolding the functions, we get the simultaneous equations
that express the relation between the input variables and the output
list of the objective weak right inverse. We then solve theseequa-
tions using the constraint solver. If there are some variables we can-
not decide their values uniquely, we substitute an arbitrary value for
one of them. After that, we substitute the result of the simultane-
ous equations for the variables of the conditional expressions, and
derive a weak right inverse.

4.3.3 Optimization

In general, the weak right inverse derived by the above-mentioned
process is inefficient: If there aren functions withm conditional
branches, the number of constraints can be2m(n+1) in the worst
case. Since there usually exist many unnecessary branches,we can
improve the efficiency of the weak right inverse by eliminating
unnecessary branches. LetCi be theith conditional branch. If

Ci ⇒
_

i6=k

Ck (1)

holds, then the domain of the weak right inverse does not change
even if Ci is removed. Moreover, all the branches return a cor-
rect list as a weak right inverse if the input value is in the domain.
Therefore, the expression corresponding toCi is redundant and can
be removed. The expression (1) is in the form of Presburger arith-
metic [25], and we can compute it by quantifier elimination [10].

4.3.4 Verification

As mentioned in Section 4.3.1, the derived weak right inverse may
be a partial function. That is,

W

i
Ci = true may not hold, whereCi

denotes theith condition. However, it is sufficient for a weak right
inverse to return the value in the range of the original function. In
other words, if

P ⇒
_

i

Ci (2)

holds, whereP corresponds to the range of the original function,
then the weak right inverse meets the requirement of the definition.
Our algorithm works as follows. At first, the algorithm checks
whether

W

i
Ci = true holds. If not, the algorithm requires the

precondition that corresponds to the range of the original function,
and tries checking the condition (2). These checks can be also done
by quantifier elimination. If the verification fails, we failto derive
a weak right inverse.

4.3.5 Example: Inversion of Maximum Prefix Sum

Now let us demonstrate the whole process of inversion by deriving
a weak right inverse of(mps △ sum).

Because the number of defined function is two, we assume that
a weak right inverse of(mps △sum) returns a list of two elements:

(mps △ sum)◦ (p, s) = [a, b]

where(p, s) ∈ range(mps △ sum). This equation is equivalent to
the following equation:

(p, s) = (mps △ sum) [a, b]

By unfolding the definitions of△, sum, and mps, we get the
following equations:

p = if (b ≤ 0)
then if (0 ≤ a) then a else 0
else if (0 ≤ a + b) then a + b else 0

s = a + b

Let us solve these simultaneous equations fora andb to get a weak
right inverse. To solve these simultaneous equations, we enumerate

all conditional branches and get a set of constraint equations with
conditions as follows:

{b ≤ 0 ∧ 0 ≤ a} ⇒ p = a, s = a + b
{b ≤ 0 ∧ 0 > a} ⇒ p = 0, s = a + b
{b > 0 ∧ 0 ≤ a + b} ⇒ p = a + b, s = a + b
{b > 0 ∧ 0 > a + b} ⇒ p = 0, s = a + b

Solving the equations gives the following result. Two things are
worth noting. Firstly, we cannot uniquely decide the valuesof a
andb in the second, third and fourth equations, so leta be0 here.
Secondly, there is a dependency betweenp ands in the first and
second equations, and we add it to the conditional part:

{b ≤ 0 ∧ 0 ≤ a} ⇒ a = p, b = s − p
{b ≤ 0 ∧ 0 > 0 ∧ p = 0} ⇒ a = 0, b = s
{b > 0 ∧ 0 ≤ b ∧ p = s} ⇒ a = 0, b = s
{b > 0 ∧ 0 > b ∧ p = 0} ⇒ a = 0, b = s

Removing clearly unreachable branches and replacinga andb in
the conditions by their solution yield the following equations:

{s ≤ p ∧ 0 ≤ p} ⇒ a = p, b = s − p
{s > 0 ∧ p = s} ⇒ a = 0, b = s

Therefore we get the following program of(mps △sum)◦, because
(mps △ sum)◦ (p, s) = [a, b]:

(mps △ sum)◦(p, s)
= if (s ≤ p ∧ 0 ≤ p) then [p, s − p]

else if (s > 0 ∧ p = s) then [0, s]

Next, we optimize this weak right inverse. Since the condition
{s ≤ p∧0 ≤ p} includes{s > 0∧p = s}, our optimizer removes
the branch and yields the following result:

(mps △ sum)◦(p, s)
= if (s ≤ p ∧ 0 ≤ p) then [p, s − p]

Finally, we verify the weak right inverse. While the weak right
inverse is not a total function, it is correct, because the condition (2)
holds;s ≤ p ∧ 0 ≤ p holds for all listx, where(mps △ sum) x =
(p, s), because the return value of the functionmps is larger than
or equal to that ofsum. To verify the correctness, users specify
s ≤ p ∧ 0 ≤ p when our algorithm requires the precondition of
(mps △ sum).

Now that we have got a weak right inverse of(mps △ sum),
Theorem 3.3 soon gives a parallel program seen in Section 4.1.

4.4 Properties

Two remarks are worth making on the properties of our paralleliza-
tion algorithm.

First, our inversion procedure always terminates, and moreover,
the derived weak right inverse is always correct provided that the
verification step succeeds.

Second, our derived parallel programs are guaranteed to be
efficient in the sense that they useO(log n) parallel time, wheren
is the length of the input list. This is because the weak rightinverse
returns a list of constant length, and thus the computation of ⊙ in
Theorem 3.3 uses constant time.

5. Implementation and Experiments
We have implemented an automatic parallel code generator onthe
parallelization algorithm in C++. Two major issues in our imple-
mentation are the speedup of the optimization step and the genera-
tion of architecture-independent parallel programs.

In the optimization step (Section 4.3.3), we need computation
on a large number of constraint equations, which occupies most of
the time in our parallelization algorithm. To resolve this problem,
we note that all the expressions in the optimization step arein the

form of Presburger arithmetic, and we used the Omega librarythat
solves truth judgments in the Presburger arithmetic fast based on
theomega testmethod [26]. The use of the Omega library enables
our parallel code generator to work in practical time.

The generation of architecture-independent executable parallel
programs is another implementation issue. We need to take into
account the architecture of parallel computers to generateefficient
parallel programs, but there are so many parallel architectures from
shared-memory ones to distributed-memory ones that architecture-
specific implementation is almost impossible. Our approachis to
generate parallel programs that can be combined with the SkeTo li-
brary [24], which provides not onlymap andreduce but alsoscanl
andscanr as parallel primitives based on the MPI environments.
Our parallelization system generates C++ code of the main routine
and the function objects used with the parallel primitives.

In the rest of this section, we demonstrate the ability of ourpar-
allelization tools with two more examples, and give experimental
results on the efficiency of our system.

5.1 Maximum Segment Sum Problem

To show the power of our system, we consider the maximum
segment sum problem, which computes the maximum of the sums
for all the segments (contiguous sublists) of a list. It is aninstance
of the maximum weight-sum problems [29] that capture many
dynamic-programming problems. Our system can automatically
parallelize all the problems on lists in [29]. As an example,we show
automatic parallelization of the maximum segment sum problem.

The input sequential programs for the maximum segment sum
is given as follows:

main = mss

mss [a] = max(a, 0);
mss ([a]++x) = max(a + mps(x), mss(x));
mss (x++[a]) = max(mss(x), mts(x) + a);

mps [a] = max(a, 0);
mps ([a]++x) = max(0, a + mps(x));
mps (x++[a]) = max(mps(x), sum(x) + a);

mts [a] = max(a, 0);
mts ([a]++x) = max(mts(x), a + sum(x));
mts (x++[a]) = max(mts(x) + a, 0);

sum [a] = a;
sum ([a]++x) = a + sum(x);
sum (x++[a]) = sum(x) + a;

wheremax is a macro and defined as follows:

max(x, y) ⇒ if (x>=y) then x else y

and mts is a function to compute the maximum sum of all the
postfix sublists. From this input source code, our parallelization
system generates the following weak right inverse for the function
(mss △ mps △ mts △ sum).

weakinv(mss & mps & mts & sum) (m, p, t, s)
= if(0 <= p <= m && 0 <= t <= m && s+m <= t+p)

then [p, -p-t+s, m, -m+t]

And based on the Theorem 3.3 with this weak right inverse, our
code generator generates the parallel program for the SkeTolibrary
as shown in Figure 4.

5.2 Line-of-Sight Problem

Given an observation point and a list of buildings along a line (see
Figure 5), the line-of-sight problem is to find which buildings are
visible originating at the observation point [7]. Let each building
be represented by the vertical angle from the observation point to
the top of the building. Then, a building on the line is visible if and

struct mss_tuple_t {
int m, p, t, s;
mss_tuple_t(int m_, int p_, int t_, int s_) {

m = m_; p = p_; t = t_; s = s_; }
mss_tuple_t(){}

};

struct func_t : public skeleton::unary_function
<int, mss_tuple_t> {

mss_tuple_t operator()(int a) const {
return mss_tuple_t(max(a, 0), max(a, 0),

max(a, 0), a); }
} func;

inline mss_tuple_t fwd(int *ar, int n) {
if (n == 1) {

return mss_tuple_t(max(*ar, 0), max(*ar, 0),
max(*ar, 0), *ar);

} else {
mss_tuple_t x = fwd(ar + 1, n - 1);
return mss_tuple_t(max(*ar + x.p, x.m),
max(0, *ar + x.p),max(x.t, *ar + x.s), *ar + x.s);

}
}

inline void bwd(const mss_tuple_t &x, int* ar) {
ar[0] = x.p; ar[1] = -x.p - x.t + x.s;
ar[2] = x.m; ar[3] = -x.m + x.t;

}

struct odot_t : public skeleton::binary_function
<mss_tuple_t, mss_tuple_t, mss_tuple_t> {

mss_tuple_t operator()(const mss_tuple_t &x,
const mss_tuple_t &y) const {

int ar[4*2]; bwd(x, ar); bwd(y, ar+4);
return fwd(ar, 4*2);

}
} odot;

...
/* main routine */
dist_list<mss_tuple_t> *list1

= list_skeletons::map(func, data);
mss_tuple_t result

= list_skeletons::reduce(odot, list1);
return result.m;

Figure 4. The generated parallel program for the maximum seg-
ment sum problem. Thebwd function is the implementation of the
weak right inverse andfunc andodot are function objects that are
used in calling skeletal primitives.

only if no other building between it and the observation point has a
greater vertical angle.

We start by solving this problem sequentially. Since we haveto
compute on each point, it is natural to use the form ofmap f ◦inits
as discussed in Section 4.1.

main = map(visible) . inits;

visible [a] = 1;
visible ([a]++x) = if (a <= amax(x) && visible(x) == 1)

then 1 else 0;
visible (x++[a]) = if (amax(x) <= a) then 1 else 0;

amax [a] = a;
amax ([a]++x) = max(a, amax(x));
amax (x++[a]) = max(amax(x), a);

From this source code the system automatically generates a
weak right inverse for the function(visible △ amax).

weakinv(visible & amax) (v,m)
= if(v == 1 && 0 <= m) then [0, m]

else if(v == 0 && 0 <= m) then [m, 0]

Finally, based on this weak right inverse, the system generates
parallel code using skeletal primitives,map andscanl . Note that

1 2 3 4 5 6 7 8

Figure 5. Line-of-sight problem. This figure shows the sequence
of buildings. There is no obstacle to see the bldg-7, so the bldg-7 is
visible. In this case, the answer is[1, 1, 0, 0, 1, 0, 1, 0].

Table 1. Execution time (in seconds) for inversion.
Branches Execution time

Max. prefix sum 4 0.021
Max. segment sum 70 0.209
Line of sight 2 0.021

Table 2. Execution time (in seconds) for generated parallel pro-
grams.

Processors 1 4 16 32
Max. prefix sum 3.30 0.845 0.212 0.126
Max. segment sum 6.25 1.58 0.401 0.236
Line of sight 6.53 1.70 0.445 0.250

the following equation holds for the main program:

los = map visible ◦ inits
= map (fst ◦ (visible △ amax)) ◦ inits
= map fst ◦ map (visible △ amax) ◦ inits
= map fst ◦ scanl (⊙)

wherefst is a function that returns the first value of the pair and⊙
is the associative operator derived from the weak right inverse of
(visible △ amax).

5.3 Experimental Results

To verify the efficiency of our parallelization algorithm and the gen-
erated parallel programs, we have made the following experiments.

First, we give the experimental result of the parallelization algo-
rithm. It is worth remarking that formss , nine if-statements implied
in the functionmax cause 70 branches in total before optimization.
But due to the use of the Omega library, it takes only 0.209 s in
deriving the weak right inverse. Table 1 shows the executiontimes
of computing weak right inverses for three examples.

Next we show the experimental result of the generated parallel
programs. We used our PC-clusters that consists of uniform PCs
with Pentium 4 Xeon 2.4 GHz CPU and 2 GB of memory con-
nected Gigabit Ethernet. The OS is Linux 2.4 and the C++ com-
piler and the base MPI library used in SkeTo library are gcc 4.1.1
and mpich 1.2.7 respectively. We executed three parallel programs
for the maximum prefix sum problem, the maximum segment sum
problem, and the line-of-sight problem using an array of 64M(al-
most 67 million) elements using up to 32 processors. The execution
times are given in Table 2 and the relative speedups against each
programs executed on one processor are given in Figure 6. With
these results, we can confirm the efficiency of the parallel programs
generated by our system.

6. Discussion and Related Work
In this section, we discuss most related work in addition to that
in the introduction, and highlight limitations and extensions of our
parallelization system.

 4

 8

 12

 16

 20

 24

 28

 32

 32 24 16 12 8 4 2 1

S
pe

ed
up

s

Number of Processors

max. prefix sum
max. segment sum

line of sight
linear

Figure 6. Speedups for the three programs

6.1 Derivation of List Homomorphism

The research on parallelization via derivation of list homomor-
phisms has gained great interest, and there have been many
approaches, such as the third homomorphism theorem based
method [15, 19], function composition based method [14], matrix
multiplication based method [31] and recurrence equation based
method [2]. Our approach is unique in its use of weak right in-
verse in derivation of parallel programs. One of the advantages of
our approach is that our parallelization framework works well for
any function, if we have a way to obtain a weak right inverse. We
used the Omega library to solve truth judgments in the Presburger
arithmetic. We would derive the more parallel programs fromse-
quential programs if we use the more powerful constraint solvers.
In addition, it might be possible to extend our approach to other
data structures such as trees, but this could be difficult with the
other approaches.

6.2 Inversion and Parallelization

We have reduced parallelization process to derivation of a weak
right inverse, and thus our approach is related to researches on au-
tomatic inversion [12,13,17,18,20,23]. Different from the inverse
that does not always exist for a given function, our weak right in-
verse always exists for any function. To guarantee the efficiency of
the weak right inverse, as in Section 4, we impose some restric-
tion on our objective functions and obtain a weak right inverse
by solving linear equations. Though it may look restrictive, our
framework is powerful enough to solve many practical examples
including most recurrence equations, and to generate efficient par-
allel programs within the framework of Presburger arithmetics. It
will be interesting to see if we can make better use of techniques
on inversion to parallelize more functions.

6.3 Generalization

We have an assumption (as in Section 4.3.1) that the output list of a
weak right inverse is of constant length. This assumption excludes
many functions that are necessary for parallel computation. One
example is the functionlength , which computes the length of a list.
Our algorithm cannot derive a weak right inverse oflength though
length is both leftwards and rightwards.

length [a] = 1
length ([a] ++ x) = 1 + length x
length (x ++ [a]) = length x + 1

This is because variablea does not appear in the definition body,
which is required by our system. This problem may be solved by
generalization: generalizing constant1 to variablea. This general-
ization would splitlength into two functions,length ′ andmap, as
follows:

length = length
′ ◦ map one

length ′ [a] = a
length ′ ([a] ++ x) = a + length ′ x
length ′ (x ++ [a]) = length ′ x + a

whereone is the function which always returns1 for any input.
Now we can derive a parallel program oflength because our
inversion algorithm can deal withlength ′. (In fact,length ′ is sum.)

7. Conclusion
In this paper, we have introduced a new concept calledweak right
inverse, proposed a novel parallelization framework based on the
third homomorphism theorem and derivation of a weak right in-
verse, and implemented a parallelization system that can automat-
ically generate efficient parallel programs suitable for the divide-
and-conquer paradigm. The experimental results show promise of
the approach.

We are now looking into how to formalize and automate the
generalization step discussed in Section 6. In addition, weare
considering using more powerful constraint solvers in our system
so that more involved constraint equations can be solved andmore
sequential programs can be parallelized. Extending our approach to
other data structures such as trees is interesting future work.

Acknowledgments
The authors would like to thank Isao Sasano and Shin-Cheng Mu
for valuable discussions with them, and the anonymous referees for
their variable advice. This work was partially supported byJapan
Society for the Promotion of Science, Grant-in-Aid for Scientific
Research (B) 17300005, and the Ministry of Education, Culture,
Sports, Science and Technology, Grant-in-Aid for Young Scientists
(B) 18700021.

References
[1] J. Ahn and T. Han. An analytical method for parallelization of

recursive functions.Parallel Processing Letters, 10(1):87–98, 2000.

[2] Y. Ben-Asher and G. Haber. Parallel solutions of simple indexed
recurrence equations.IEEE Transactions on Parallel and Distributed
Systems, 12(1):22–40, 2001.

[3] J. Bentley. Algorithm design techniques. InProgramming Pearls,
Column 7, pages 69–80. Addison-Wesley, 1986.

[4] R. S. Bird. An introduction to the theory of lists. InLogic of
Programming and Calculi of Discrete Design, NATO ASI Series F36,
pages 5–42. 1987.

[5] R. S. Bird. Introduction to Functional Programming using Haskell.
Prentice Hall, 1998.

[6] G. E. Blelloch. Scans as primitive operations.IEEE Transactions on
Computers, 38(11):1526–1538, 1989.

[7] G. E. Blelloch. Prefix sums and their applications. Technical Report
CMU-CS-90-190, School of Computer Science, Carnegie Mellon
University, 1990.

[8] M. Cole. Algorithmic skeletons : A structured approach to the
management of parallel computation. Research Monographs in
Parallel and Distributed Computing, 1989.

[9] M. Cole. Parallel programming with list homomorphisms.Parallel
Processing Letters, 5(2):191–203, 1995.

[10] D. C. Cooper. Theorem proving in arithmetic without multiplication.
Machine Intelligence, 7:91–99, 1972.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. In6th Symposium on Operating System Design and
Implementation (OSDI 2004), pages 137–150, 2004.

[12] E. W. Dijkstra. Program inversion. InProgram Construction, LNCS
69, pages 54–57. 1978.

[13] D. Eppstein. A heuristic approach to program inversion. In
Proceedings of the 9th International Joint Conferences on Artificial
Intelligence, pages 219–221, 1985.

[14] A. L. Fisher and A. M. Ghuloum. Parallelizing complex scans and
reductions. InProceedings of the ACM SIGPLAN ’94 Conference
on Programming Language Design and Implementation (PLDI ’94),
pages 135–146, 1994.

[15] A. Geser and S. Gorlatch. Parallelizing functional programs by
generalization. InAlgebraic and Logic Programming (ALP’97),
LNCS1298, pages 46–60. 1997.

[16] J. Gibbons. The third homomorphism theorem.Journal of Functional
Programming, 6(4):657–665, 1996.

[17] R. Glück and M. Kawabe. A program inverter for a functional
language with equality and constructors. InProgramming Languages
and Systems. Proceedings, LNCS2895, pages 246–264. 2003.

[18] R. Glück and M. Kawabe. Derivation of deterministic inverse pro-
grams based on LR parsing. InFunctional and Logic Programming,
7th International Symposium (FLOPS 2004), Proceedings, LNCS
2998, pages 291–306. 2004.

[19] S. Gorlatch. Systematic extraction and implementation of divide-and-
conquer parallelism. InProgramming languages: Implementation,
Logics and Programs. PLILP’96, LNCS1140, pages 274–288. 1996.

[20] D. Gries. Inverting programs. InThe Science of Programming,
chapter 21, pages 265–274. 1981.

[21] Z. Hu, H. Iwasaki, and M. Takeichi. Formal derivation ofefficient
parallel programs by construction of list homomorphisms.ACM
Transactions on Programming Languages and Systems, 19(3):444–
461, 1997.

[22] Z. Hu, M. Takeichi, and W. N. Chin. Parallelization in calculational
forms. In 25th ACM Symposium on Principles of Programming
Languages (POPL ’98), pages 316–328, 1998.

[23] R. E. Korf. Inversion of applicative programs. InProceedings of the
7th International Conferences on Artificial Intelligence (IC-AI ’81),
pages 1007–1009, 1981.

[24] K. Matsuzaki, K. Emoto, H. Iwasaki, and Z. Hu. A library of
constructive skeletons for sequential style of parallel programming
(invited paper). In1st International Conference on Scalable
Information Systems (InfoScale 2006), 2006.

[25] M. Presburger. Uber die vollstandigkeit eines gewissen systems
der arithmetik ganzer zahlen, in welchem die addition als einzige
operation hervorstritt.Sprawozdanie z I Kongresu Matematikow
Krajow Slowcanskich Warszawa, pages 92–101, 1929.

[26] W. Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. InProceedings of the 1991
ACM/IEEE conference on Supercomputing, pages 4–13, 1991.

[27] F. Rabhi and S. Gorlatch.Patterns and Skeletons for Parallel and
Distributed Computing. 2002.

[28] R. Rugina and M. C. Rinard. Automatic parallelization of divide
and conquer algorithms. InProceedings of the 7th ACM Symposium
on Principles Practice of Parallel Programming (PPoPP ’99), pages
72–83, 1999.

[29] I. Sasano, Z. Hu, M. Takeichi, and M. Ogawa. Make it practical:
A generic linear time algorithm for solving maximum-weightsum
problems. InProceedings of the 5th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’00), pages 137–149.
2000.

[30] G. Steele. Parallel programming and parallel abstractions in fortress.
In Functional and Logic Programming, 8th International Symposium
(FLOPS 2006), Proceedings, LNCS3945, page 1. 2006.

[31] D. N. Xu, S. C. Khoo, and Z. Hu. PType system: A featherweight
parallelizability detector. InProceedings of 2nd Asian Symposium on
Programming Languages and Systems (APLAS 2004), LNCS3302,
pages 197–212. 2004.

