
Parallel Computing 32 (2006) 590–603

www.elsevier.com/locate/parco
Parallel skeletons for manipulating general trees

Kiminori Matsuzaki *, Zhenjiang Hu, Masato Takeichi

Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan

Received 31 December 2005; received in revised form 20 May 2006; accepted 6 June 2006
Available online 4 August 2006
Abstract

Trees are important datatypes that are often used in representing structured data such as XML. Though trees are widely
used in sequential programming, it is hard to write efficient parallel programs manipulating trees, because of their irregular
and ill-balanced structures. In this paper, we propose a solution based on the skeletal approach. We formalize a set of skel-
etons (abstracted computational patterns) for rose trees (general trees of arbitrary shapes) based on the theory of Con-
structive Algorithmics. Our skeletons for rose trees are extensions of those proposed for lists and binary trees. We
show that we can implement the skeletons efficiently in parallel, by combining the parallel binary-tree skeletons for which
efficient parallel implementations are already known. As far as we are aware, we are the first who have formalized and
implemented a set of simple but expressive parallel skeletons for rose trees.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Trees are important datatypes that are often used in representing structured data such as XML. In recent
years, the growth of computational power enables us to store huge data in the form of trees. This calls for
methods and systems of manipulating huge trees efficiently, where parallel computing may potentially be a
solution. Though hardware environments for parallel computing are getting widely available (e.g., PC clus-
ters), parallel programming is still considered to be a hard task, especially for trees because of their ill-bal-
anced and irregular structures.

To resolve this problem, we adopt a novel paradigm of parallel programming called skeletal parallel-

ism,1 which was first proposed by Cole [1] and well discussed in [2]. In the skeletal parallelism, users build
parallel programs by combining ready-made components called parallel skeletons. These parallel skeletons
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provide parallelizable computational patterns in a concise way and conceal the complicated parallel imple-
mentations from users. The skeletal parallelism has several advantages: the two most important ones are
that users can build parallel programs as if they wrote sequential programs, and that the skeletal parallel
programs are not only efficient but also architecture independent. There have been many studies on par-
allel skeletons for lists or arrays [3–9] and for binary trees [9–15], but there were few studies for general
trees of arbitrary shapes.

This paper addresses parallel programming on rose trees [16], trees of arbitrary shapes. Many tree struc-
tures are straightforwardly formalized as rose trees, and many tree algorithms can be specified on these rose
trees. We start by formalizing seven basic computational patterns over rose trees (rose-tree skeletons) based on
the theory of Constructive Algorithmics [17–19]. Constructive Algorithmics was originally proposed for sys-
tematic development of sequential algorithms, and has also been applied to the specification of parallel skel-
etons for lists [5–9], matrices [20], and binary trees [9–11]. Our rose-tree skeletons are straightforward
extensions of binary-tree skeletons where two new skeletons are added to describe computational patterns
among siblings. We then show rose-tree skeletons can be implemented efficiently in parallel. We represent rose
trees in the form of binary trees, and provide a mapping from the computation on rose-tree skeletons to that
on binary trees specified with parallel binary-tree skeletons. Since the binary-tree skeletons can be imple-
mented efficiently in parallel [11–14], our rose-tree skeletons can also be implemented in parallel, and thus
we call them parallel rose-tree skeletons. We have implemented the rose-tree skeletons in C++ and MPI as
wrapper functions of the binary-tree skeletons on our parallel skeleton library, and have obtained nice exper-
imental results.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the notations and review the
parallel binary-tree skeletons. In Section 3, we formalize seven rose-tree skeletons with discussions about their
expressiveness, and show their efficient parallel implementation in Section 4. We report experimental results in
Section 5. Finally we discuss related work in Section 6, and make conclusion remarks in Section 7.
2. Preliminaries

In this section, after introducing important notational conventions used in this paper, we review parallel
binary-tree skeletons [10,11].
2.1. Notations

In this paper, we borrow the notation of Haskell [21,22]. In the following, we briefly review important nota-
tions and define data structures. Roughly speaking, the definitions in Haskell in this paper can be read as
mathematical function definition except for the function applications denoted by spaces.

2.1.1. Functions and operators

Function application is denoted by a space and the argument may be written without brackets. Thus f a

means f(a). Functions are curried, and the function application associates to the left. Thus f a b means
(f a) b. The function application binds stronger than any other operator, so f a�b means (f a)�b, but does
not f (a�b). Function composition is denoted by an infix operator �. By definition, we have (f � g) a = f (g a).
Function composition is associative and its unit is the identity function denoted by id.

Infix binary operators will be denoted by �, �, etc., and their units are written as i�, i�, respectively. These
operators can be sectioned and be treated as functions, i.e. a�b = (a�) b = (�b) a = (�) a b holds.

In deriving parallel programs, algebraic rules on operators such as associativity or distributivity play
important roles. We introduce the following generalized rule of distributivity defined as a closure property.

Definition 1 (Extended distributivity [23]). Let � be an associative operator. The operator � is said to be
extended-distributive over operator �, if there existfunctions p1, p2, and p3 such that for any a, b, c, a 0, b 0, and
c 0, the following equation holds:
ðkx:a� ðb� x� cÞÞ � ðkx:a0 � ðb0 � x� c0ÞÞ ¼ kx:A� ðB� x� CÞ
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where
A ¼ p1ða; b; c; a0; b0; c0Þ; B ¼ p2ða; b; c; a0; b0; c0Þ; and C ¼ p3ða; b; c; a0; b0; c0Þ:

We call functions p1, p2, and p3 characteristic functions.

In fact, many pairs of operators satisfy this extended distributivity. For example, let � be an associative
operator, then it is also extended-distributive over � itself. If operators � and � are associative operators
and the operator � distributes over operator �, then of course the operator � is extended-distributive over
�. Several other pairs of operators satisfy this property even if distributivity does not hold on them [23].
2.1.2. Lists and list comprehension

Cons lists (or simply lists) are finite sequences of elements of the same type. A list is constructed either by an
empty list (Nil) or by adding an element to a list (Cons). The datatype of a list whose elements are of type a is
defined as follows:
data List a ¼ NiljCons a ðList aÞ:

We use abbreviations: [a] for List a, [ ] for Nil, and (a:as) for (Cons a as).

List comprehension is a syntax sugar for generation of lists. Expression [1..#ts] generates a list of increasing
integers from one to the number of elements in ts, and list comprehension [f tiji 2 [1..#ts]] generates a list by
applying function f to each element in ts. In this paper, we denote ti for the i-th element of list ts, and we use
similar notations for other lists too.

We introduce a notation for consumption of lists. Let � be an associative operator with its unit i�, then
P
�

denotes the reduction of a list with the operator �. Informally, the
P
� is defined as follows:
X

�
½ � ¼ i�

X

�
½a1; a2; . . . ; an� ¼ a1 � a2 � � � � � an
We introduce two functions called scans or prefix-sums. The scan operation on lists, scan, takes an associative
operator and a list, and accumulates values with the operator from left to right. Function scan 0 is a reversed
scan operation. Informally, these two functions are defined as follows:
scanð�Þ½a1; a2; . . . ; an� ¼ ½i�; a1; . . . ; a1 � � � � � an�1�
scan0ð�Þ½a1; a2; . . . ; an� ¼ ½a2 � � � � � an; a3 � � � � � an; . . . ; an; i��
2.1.3. Binary trees

Binary trees are trees whose internal nodes have exactly two children. The datatype of binary trees whose
internal nodes have values of type a and leaves have values of type b is defined as follows:
data BTree a b ¼ Leaf ajNode b ðBTree a bÞ ðBTree a bÞ:

We introduce two functions for manipulating binary trees. Function rootb returns the value of the root node,
and function setrootb takes a binary tree and a value, and replaces the value of the root node with the input
value. Note that we use _ to denote a do not care value.
rootb ðLeaf nÞ ¼ n setrootbðLeaf nÞa ¼ Leaf a

rootb ðNode n Þ ¼ n setrootb ðNode n l rÞ a¼ Node a l r
2.1.4. Rose trees

Rose trees (a term coined by Meertens [16]) are trees whose internal nodes have an arbitrary number of
children. In this paper we assume all the nodes in a rose tree have values of the same type. The datatype
of rose trees whose nodes have the values of type a is defined as follows using lists:
data RTree a ¼ RNode a ½RTree a�:



K. Matsuzaki et al. / Parallel Computing 32 (2006) 590–603 593
Similar to binary trees, we introduce two functions for manipulating rose trees. Function rootr returns the va-
lue of the root node, and function setrootr replaces the value of the root node with the input value.
rootr ðRNode a tsÞ ¼ a setrootr ðRNode a tsÞ b ¼ RNode b ts
2.2. Basic binary-tree skeletons

The basic parallel binary-tree skeletons [10,11] are the following five higher-order functions, which are cat-
egorized as follows:

• Nodewise computations: map and zipwith
• Bottom–up computations: reduce and upwards accumulate

• Top–down computation: downwards accumulate

The definition of the parallel binary-tree skeletons is given in Fig. 1. In this paper, we denote the parallel
skeletons for binary trees in the sans-serif font with a suffix b.
Fig. 1. Definition of binary-tree skeletons.
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Efficient implementations of these parallel skeletons have been studied [12–14] based on the tree contraction
algorithms [24,25]. The tree contraction algorithms are important parallel algorithms for manipulating binary
trees of arbitrary shapes efficiently.

The parallel skeleton mapb takes two functions kL and kN and a binary tree, and applies kL to each leaf and
kN to each internal node. The parallel skeleton zipwithb takes two functions kL and kN and two binary trees of
the same shape, and zips the trees up by applying kL to each pair of leaves and kN to each pair of internal
nodes.

The parallel skeleton reduceb takes a function k and a binary tree, and collapses the tree into a value by
applying the function k in a bottom–up manner. The parallel skeleton uAccb takes a function k and a binary
tree, and computes reduceb k for each subtree. In other words, this skeleton applies the function k in a bottom–
up manner, and returns a tree whose values are the results of bottom–up reduction. To guarantee existence of
an efficient parallel implementation of the reduceb and uAccb skeletons, we require the existence of functions /,
wL, wR, and G, satisfying the following equations:
k n x y ¼ G ð/ nÞ x y

G n l ðG n0 x yÞ ¼ G ðwL n l n0Þ x y

G n ðG n0 x yÞ r ¼ G ðwR n r n0Þ x y
We denote the function k satisfying the condition above as k = h/,wL,wR,Gi. When these functions exist we
can implement the reduceb and uAccb skeletons based on the tree contraction algorithms [10,14].

The parallel skeleton dAccb takes an associative operator �, two functions gl and gr, and a binary tree. This
skeleton computes in a top–own manner by updating accumulative parameter c, whose initial value is the unit
of the operator, i�. The accumulative parameter is updated with � and gl for the left child, and with � and gr

for the right child. The condition for efficient parallel computation is the associativity of the operator �.
We briefly remark on the parallel computation cost of the skeletons. In the discussion of parallel compu-

tation cost, N indicates the number of nodes in a tree, and P the number of processors. The parallel compu-
tation cost of mapb kL kN and zipwithb kL kN is O(N/P) if the functions kL and kN are computed in constant
time. When there exist constant-cost functions satisfying the condition of reduceb k and uAccb k, then these
skeletons can be computed in O(N/P + logP) parallel time using the tree contraction techniques. The parallel
computation cost of dAccb (�) gl gr is also O(N/P + logP), if the operator � and the functions gl and gr are
computed in constant time.

2.3. Specialized binary-tree skeletons

We define two communication skeletons for reasons of readability and efficiency. The parallel skeleton
getchlb takes a value and a binary tree, and puts the left child’s value for each internal node and the input value
for each leaf. In other words, this skeleton shifts each left child’s value to its parent. The parallel skeleton
getchrb is symmetric to the getchlb skeleton: this skeleton takes a value and a binary tree, and put the right
child’s value for each internal node and the input value for each leaf.

In fact we can express them with the mapb and uAccb skeletons. We can furthermore implement the getchlb
and getchrb skeletons to run in O(N/P) parallel time, since the dependency in these skeletons is local.

3. Rose-tree skeletons

In this section, we formalize computational patterns on rose trees based on the theory of Constructive
Algorithmics [17–19], and illustrate how we can develop programs with these skeletons.

3.1. Specification of rose-tree skeletons

The key idea of Constructive Algorithmics is that the computation structure of algorithms should be deriv-
able from the data structures the algorithms manipulate. We have defined rose trees as trees whose internal
node has a list of children, and thus, we specify computational patterns on rose trees by extending those
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on binary trees with computations on lists. We formalize seven skeletons on rose trees, which are categorized
into the following four groups:

• Nodewise computations: map and zipwith,
• Bottom–up computations: reduce and upwards accumulate,
• Top–down computation: downwards accumulate, and
• Intra-siblings computations: rightwards accumulate and leftwards accumulate.

We shall denote the rose-tree skeletons in the sans-serif font with a suffix r. In this paper, we give an intu-
itive specification of them using list comprehensions (Fig. 2). Their formal definition specified as mutual recur-
sive functions is summarized in the technical report [26].

We define nodewise computations similar to those on binary trees. Rose-tree skeleton mapr takes a func-
tion k and a rose tree, and applies the function to each node. Rose-tree skeleton zipwithr takes a function k
Fig. 2. Definition of rose-tree skeleton.
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and two rose trees of the same shape, and zips them up by applying the function to each pair of correspond-
ing nodes.

Since rose trees are defined with lists, we specify rose-tree skeleton reducer with two operators: one for fold-
ing the list of children, and the other for merging the result of children with their parent. Thus, rose-tree skel-
eton reducer takes two operators and a rose tree, and collapses the tree into a value in a bottom–up manner.
By definition, the operator � should be associative. For efficient parallel implementations, we furthermore
require some conditions on the two operators. We provide the following two sufficient conditions.

• The operators � and � form an algebraic semi-ring, that is, both � and � are associative with their units,
and � is distributive over �.

• The operator � is extended-distributive over �.

This computational pattern is also called homomorphism on rose trees, and was discussed in our previous
paper [23] under the second condition.

We then define another bottom–up computational pattern. Rose-tree skeleton uAccr (upwards accumulate)
takes two operators and a rose tree, and applies the reducer skeleton for each subtree. Thus, this skeleton
returns a rose-tree of the same shape as the input tree. For efficient implementations of the uAccr skeleton,
we require the same conditions as the reducer skeleton.

Rose-tree skeleton dAccr (downwards accumulate) is a top–down computational pattern. By Constructive
Algorithmics, we consider that the dAccr skeleton applies list-consuming operation

P
� to each path from the

root. Similar to the dAccb skeleton on binary trees, we define the dAccr skeleton with an accumulative param-
eter c as follows. Note that we omit the function applied to each node, since we can use the mapr skeleton
instead.

The five rose-tree skeletons above are extensions of those on binary trees. We add two skeletons that are
specific to rose trees by formalizing computations among siblings. Rose-tree skeleton rAccr (rightwards accu-
mulate) takes an associative operator � and a rose tree, and applies the list-consuming operation to the list of
the left-siblings for each node. We specify this skeleton to apply the scan operation to each list of siblings.
Rose-tree skeleton lAccr (leftwards accumulate) is symmetric to the rAccr skeleton. This skeleton applies the
reversed scan operation to each list of siblings. Note that ri indicates the i-th element of the rs in the definition
in Fig. 2.

3.2. Example: preorder numbering problem

To see how we can use these rose-tree skeletons for manipulating general trees, we develop a skeletal pro-
gram for the preorder numbering problem on rose trees. For a given rose tree, we want to assign a number for
each node in the order of the preorder traversal. In the preorder numbering, the number of a leftmost child is
larger than that of its parent by one, and the number of another child is larger than its left sibling by the num-
ber of nodes in the left-sibling’s subtree. We can give a recursive algorithm for the preorder numbering prob-
lem as follows with auxiliary function size that counts the number of nodes in a tree.
pre t ¼ pre0 0 t

pre0 c ðRNode a tsÞ ¼ RNode c ½pre0 ðcþ 1þ liÞ tiji 2 ½1::#ts��
where li ¼

X

þ
½size tjjj 2 ½1::i� 1��

size ðRNode a tsÞ ¼ 1þ
X

þ
½size tiji 2 ½1::#ts��
We can compute the results of size by a bottom–up computation using the uAccr and mapr skeletons. We then
apply the rAccr skeleton to accumulate the results from left to right. Finally, we compute the results of pre-
order numbering by a top–down computation with the mapr, dAccr, and zipwithr skeletons. Therefore, we
can give a skeletal program for the preorder numbering problem as follows. For the detailed derivation of
the skeletal program, see our technical report [26].
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pre t ¼ let lt ¼ rAccr ðþÞ ðuAccr ðþÞ ðþÞ ðmapr ðkx:1Þ tÞÞ
gt ¼ setrootr 0 ðmapr ðkl:1þ lÞ ltÞ
dt ¼ dAccr ðþÞ gt

in zipwithr ðþÞ dt gt
4. Parallelizing rose-tree skeletons with binary-tree skeletons

In this section, we show a parallel implementation for the rose-tree skeletons. The main idea is to represent
rose trees by binary trees and to implement the rose-tree skeletons by the binary-tree skeletons. Since we can
implement the binary-tree skeletons efficiently in parallel [12–14], we can implement the rose-tree skeletons
efficiently as well.

4.1. Binary-tree representation of rose trees

Many researchers have studied the parallel manipulations of binary trees based on the parallel tree contrac-
tion algorithms [24,25,27,28], and we can implement the binary-tree skeletons based on the tree contraction
algorithms [12,13]. To utilize these parallel implementations, we represent the rose trees in the forms of binary
trees as shown in Fig. 3. This binary-tree representation is one of the widely-used representations [29], but for
parallel programming this representation was rarely used. In this representation, every internal node comes
from a node in the original rose tree, and all leaves are dummy nodes. The left child of a node in the binary
tree is its leftmost child in the original rose tree, and the right child of a node in the binary tree is its next sib-
ling in the rose tree. Let n be the number of nodes of the original rose tree, then the number of nodes of the
binary tree turns out to be 2n + 1. This guarantees the asymptotic cost when we utilize the parallel binary-tree
skeletons on this binary-tree representation.

To formalize the binary-tree representation, we define functions r2b that transforms a rose tree into its bin-
ary-tree representation, and b2r that restores a rose tree from its binary-tree representation. The definition of
these two functions is shown in Fig. 4. Note that b2r�r2b = id holds.
Fig. 3. The binary-tree representation of rose trees.

Fig. 4. Definition of functions r2b and b2r.
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4.2. Parallelization of rose-tree skeletons with binary-tree skeletons

We implement the rose-tree skeletons on the binary-tree representation using the parallel binary-tree
skeletons. Generally speaking, our implementation of a rose-tree skeleton consists of three steps: (1) apply-
ing the function r2b to transform a rose tree to a binary tree; (2) applying binary-tree skeletons to per-
form the computation of the skeleton; and (3) applying the function b2r to restore the rose-tree structure
if necessary.

Since every node in a rose tree is an internal node in the binary-tree representation, and there are no depen-
dencies in the computation of the mapr skeleton, we can implement the mapr skeleton by simply using the mapb

skeleton to apply the function to each internal node. Here, we do not care the function for leaves. Similarly, we
can also implement the zipwithr skeleton.
mapr k ¼ b2r � ðmapb kÞ � r2b

zipwithr k t t0 ¼ b2r ðzipwithb k ðr2b tÞ ðr2b t0ÞÞ
The computation of the reducer skeleton is also a bottom–up one on the binary-tree representation, and thus
we can implement it with the mapb and reduceb skeletons as follows. Note that we need not to apply the b2r

function since the reducer skeleton returns a value not a tree.
reducer ð�Þ ¼ ðreduceb kÞ � ðmapb ðkx:i�Þ idÞ � r2b

where k n l r ¼ ðn� lÞ � r
For the parallel implementation, the function k above should satisfy the condition of the reduceb skeleton.
Though it is hard to give a general derivation method, we show that we can derive functions under the two
sufficient conditions. We follow the derivation method in [10], where the main idea is to introduce a param-
etrized function closed under nested calls. Let G[a] be a parametrized binary-function with parameter a, and
we call it closed under nested calls if the following two equations hold.
G½n� l ðG½rn� rl rrÞ ¼ G½wL n l rn� rl rr

G½n� ðG½ln� ll lrÞ r ¼ G½wR n r ln� ll lr
In the following, we show the parametrized functions and the results of the parallel implementation of the
reducer skeleton.

Firstly, let � and � form an algebraic semi-ring. In this case, we choose the parametrized function with
three parameters a, b, and c as
G½ða; b; cÞ� ¼ klr:ða� lÞ � ðb� rÞ � c:
From this parametrized function we derive the functions /, wL, and wR for the reduceb skeleton, and we suc-
cessfully obtain an equivalent definition of the reducer skeleton on the binary-tree representation as follows:
reducer ð�Þ ð�Þ ¼ ðreduceb h/;wL;wR;GiÞ � ðmapb ðkx:i�Þ idÞ � r2b

where / n ¼ ðn; i�; i�Þ
wL ða; b; cÞ l0 ða0; b0; c0Þ ¼ ðb� a0; b� b0; ða� l0Þ � ðb� c0Þ � cÞ
wR ða; b; cÞ r0 ða0; b0; c0Þ ¼ ða� a0; a� b0; ða� c0Þ � ðb� r0Þ � cÞ
G ða; b; cÞ l r ¼ ða� lÞ � ðb� rÞ � c
Secondly, let the operator � be extended-distributive over � with characteristic functions p1, p2, and p3. Here,
we choose the parametrized function with four parameters a, b, c, and d as
G½ða; b; c; dÞ� ¼ kl r:a� ðb� ðc� lÞ � r � dÞ:

From this parametrized function we derive the functions /, wL, and wR for the reduceb skeleton, and we obtain
the following parallel implementation of the reducer skeleton as follows:
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reducer ð�Þ ð�Þ ¼ ðreduceb ½/;wL;wR;G�Þ � ðmapbðkx:i�Þ idÞ � r2b

where / n ¼ ði�; i�; n; i�Þ
wL ða; b; c; dÞ l0 ða0; b0; c0; d 0Þ
¼ let tup ¼ ða; b� ðc� l0Þ; d; a0; b0; d 0Þ

in ðp1 tup; p2 tup; c0; p3 tupÞ
wR ða; b; c; dÞ r0 ða0; b0; c0; d 0Þ
¼ let tup0 ¼ ðc; i�; i�; a0; b0; d 0Þ

tup ¼ ða; b; r0 � d; p1 tup0; p2 tup0; p3 tup0Þ
in ðp1 tup; p2 tup; c0; p3 tupÞ

G ða; b; c; dÞ l r ¼ a� ðb� ðc� lÞ � r � dÞ
Since the uAccr skeleton is similar to the reducer skeleton, first let us consider applying the mapb and uAccb

skeletons with the same functions used in parallelizing the reducer skeleton.
b2r � ðuAccb kÞ � ðmapb ðk x:i�Þ idÞ � r2b

where k n l r ¼ ðn� lÞ � r
Unfortunately, the results are not what we want for the uAccr skeleton. Since an internal node in the binary-
tree representation has a right-child that was a sibling in the original rose tree, the result of the program above
includes the siblings’ values. To obtain the desired result, we need to compute (n�l 0) again for each internal
node where n is the original node’s value and l 0 is the left-child’s value in the result of the uAccb skeleton above.
We realize this computation by the getchlb and zipwithb skeletons.

Therefore, the equivalent definition of the uAccr skeleton under the binary-tree representation is given as
follows. Note that the four functions for the parallel implementation of the uAccb skeleton, /, wL, wR, and
G, are the same as those derived for implementing the reducer skeleton.
uAccr ð�Þ ð�Þ t ¼ let bt ¼ r2b t

bt0 ¼ uAccb h/;wL;wR;Gi ðmapb ðkx:i�Þ id btÞ
in b2r ðzipwithb ðkn l0:n� l0Þ bt ðgetchlb bt0ÞÞ
The dAccr skeleton is a top–down computational pattern on the binary-tree representation. By introducing a
recursive function with an accumulative parameter, we can specify the dAccr skeleton.
dAccr ð�Þ ¼ b2r � ðf i�Þ � r2b

where f c ðLeaf Þ ¼ Leaf

f c ðNode n l rÞ ¼ Node c ðf ðc� nÞ lÞ ðf c rÞ
Noting that we can compute the accumulative parameter for the right child as c = c � i� = c � (k x Æ i�) n, we
can implement the function f with the dAccb skeleton. Therefore, a parallel implementation of the dAccr skel-
eton is as follows:
dAccr ð�Þ ¼ b2r � ðdAccb ð�Þ id ðkx:i�ÞÞ � r2b
The skeleton rAccr traverses the siblings from left to right on rose trees, which corresponds to a top–down
traversal on binary trees. Thus, we implement the rAccr skeleton on the binary-tree representation with the
following recursive function f:
rAccr ð�Þ ¼ b2r � ðf i�Þ � r2b

where f c ðLeaf Þ ¼ Leaf

f c ðNode n l rÞ ¼ Node c ðf i� lÞðf ðc� nÞ rÞ
Though this function f is a top–down computation on the binary-tree representation, in fact we cannot simply
describe it with the dAccb skeleton. This is because we cannot find a function for the left-child, gl, such that for
any n, i� = c�gl n holds. Therefore, we need to derive another suitable function with an associative operator.
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To derive such an associative operator, we utilize the context preservation technique [4], which derives an
associative operator from a parametrized function closed under function composition. Here, we choose a
parametrized function defined with three parameters p, a, and b, as follows:
kx:if p then x� a else b:
Based on this parametrized function, we derive an associative operator � defined as follows.
ðTrue; p; a; bÞ � ðTrue; p0; a0; b0Þ ¼ ðTrue; p0 ^ p; a� a0; if p0 then b� a0 else b0Þ
ðTrue; p; a; bÞ � ðFalse; ; ; Þ ¼ ðTrue; p; a; bÞ
ðFalse; ; ; Þ � ðflag; p; a; bÞ ¼ ðflag; p; a; bÞ
Here, the unit of � is i� = (False, True, i�, _). We introduce the first value of the tuple to represent the left-
unit of �. Using this operator, we successfully derive a parallel implementation of the rAccr skeleton.
rAccrð�Þ ¼ b2r � ðmapb kÞ � ðdAccr ð�Þ gl grÞ � r2b

where gl x ¼ ðTrue; False; ; i�Þ
gr x ¼ ðTrue; True; x; Þ
kð ; p; a; bÞ ¼ if p then a else b
The skeleton lAccr traverses the siblings from right to left, which corresponds to a bottom–up traversal on the
binary-tree representation. Therefore, an implementation of the lAccr skeleton on the binary-tree representa-
tion may have a call of the uAccb skeleton. We first consider the following composition of the uAccb and mapb

skeletons.
b2r � ðuAccb kÞ � ðmapb ðkx:i�Þ idÞ � r2b

where k n l r ¼ n� r
The results of this computation are slightly different from what we want for the lAccr skeleton: the results
should be shifted to the left by one on the rose tree. We resolve this problem by applying the getchrb skeleton
before restoring the rose-tree structure with the b2r function.

For the parallel implementation, we next show the function k satisfies the condition of the uAccb skeleton.
For the function k above, we introduce a parametrized function with three parameters p, a, and b as
G½ðp; a; bÞ� ¼ kl r:if p then a� r else b
Based on this function, we successfully obtain an parallel implementation of the lAccr skeleton as follows.
lAccrð�Þ ¼ b2r � ðgetchrb Þ � ðuAccbh/;wL;wR;GiÞ � ðmapb ðkx:i�Þ idÞ � r2b

where / n ¼ ðTrue; n; Þ
wLðp; a; bÞ l0 ðp0; a0; b0Þ ¼ ðp ^ p0; a� a0; if p then a� b0 else bÞ
wR ðp; a; bÞ r0 ðp0; a0; b0Þ ¼ ðFalse; ; if p then a� r0 else bÞ
G ðp; a; bÞ l r ¼ if p then a� r else b
Now we briefly discuss the efficiency of our parallel implementation of the skeletons. We used two functions
r2b and b2r for specifying the computation on the binary-tree representation. However, we can remove these
two functions away if two rose-tree skeletons are successively called. Thus we give the parallel cost of the rose-
tree skeletons without these two functions. The parallel cost of the mapr and zipwithr skeletons are O(N/P),
and the parallel cost of the other five skeletons are O(N/P + logP), where N denotes the number of nodes
of the rose trees, and P the number of processors. Note that the implementation of the rose-tree skeletons
is cost optimal.

We may develop more involved implementations of the rose-tree skeletons by removing unnecessary inter-
mediate structures and optimizing sequential parts. To develop such an implementation is our future work.
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We summarize this section with the following theorem.

Theorem 1. The seven parallel skeletons for rose trees defined in Fig. 2 can be implemented in parallel based on

the binary-tree representation with the parallel binary-tree skeletons.

Proof. The correctness of the implementation of the rose-tree skeletons is almost self-evident from the deri-
vation so far. For more detailed derivation, see our technical report [26]. h
5. Experiments

We have implemented the rose-tree skeletons as wrapper functions of the binary-tree skeletons in our skel-
eton library, SkeTo [30,31].2 To see the efficiency of the skeletons, we have made experiments with the preor-
der numbering problem in Section 3.

The environment is our PC cluster that consists of sixteen uniform PCs connected with Gigabit Ethernet.
Each PC has a CPU of Pentium4 3.0 GHz (Hyper Threading ON) and 1GB memory. The OS, the C++ com-
piler, and the MPI library are Linux 2.6.8, gcc 2.95, and mpich 1.2.6, respectively. We executed the skeletal
program with varying number of CPUs used for two trees of 222 � 1 nodes (almost four million). The first
tree is a perfect binary tree, and the second tree is a randomly generated tree whose height is seven (this height
comes from the average height of XML trees [32]).

The experimental results are shown in Fig. 5. The execution times do not include initial transformation/dis-
tribution and final gathering. The execution times for the binary tree are 13.0 s with one processor and 0.87 s
with sixteen processors, and the execution times for the random tree are 12.5 s with one processor and 1.41 s
with sixteen processors. For both data, the skeletal program scaled well, in particular, the speedup is 14.9 with
sixteen processors for the binary tree. In some points the execution times are a little worse (e.g., with seven
processors for the binary tree), but this is due to the ill-balanced partitioning of trees (in terms of the size
of partitioned segments) on our implementation of the binary-tree skeletons.

You can see the experimental results for another problem called party planning problem in [31].

6. Related work

6.1. Parallel tree skeletons

Though trees are important data structures, writing general and efficient parallel programs manipulating
trees is made hard by their irregular structures. This calls for helpful methods for parallel programming
on trees and here the skeletal approach is a promising paradigm. As domain-specific skeletons, Deldari
et al. [15] designed and implemented parallel skeletons for Constructive Solid Geometry (CSG). For
2 You can download the source code of the binary-tree skeletons and the rose-tree skeletons from our project’s website.
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general-purpose tree skeletons, Skillicorn [11] first formalized a set of binary-tree skeletons based on Con-
structive Algorithmics [17–19]. The implementations of these binary-tree skeletons have been developed
[12–14] based on the tree contraction algorithms [24,25].

For general trees or general recursive types, Skillicorn [11] and Ahn et al. [33] have given specifications of
skeletons. However, the former lacks expressiveness whereas the latter did not give parallel implementations.
We have tackled these problems and proposed a new set of rose-tree skeletons with efficient implementation.
We believe our rose-tree skeletons are not only theoretically simple but also practically expressive.

6.2. Parallel computation on rose trees and nested lists

Parallel tree contraction algorithms are now the bases for efficient parallel computations on trees. Though
the original idea proposed by Miller and Reif [25] did not limit the shapes of trees as binary trees, many
researchers have developed more efficient tree contraction algorithms based on the assumption of binary trees
[24,27,28,34]. Thus, according to the efficient tree contraction algorithms on binary trees, several studies devel-
oped parallel algorithms after representing the rose trees as binary trees. Cole and Vishkin [34], Diks and Hag-
erup [35], Skillicorn [11] and our previous paper [23] represented rose trees as binary trees by inserting dummy
nodes to expand internal nodes. Though these representations suit specifying bottom–up and top–down com-
putations, they are poor at specifying intra-siblings computations. In this paper, we adopt another binary-tree
representation [29], and this enables us to formalize and implement intra-siblings computations as well. As we
see in the example of the preorder numbering problem, these intra-siblings computations play important roles
in the manipulation of rose trees.

Several researchers have studied hard the parallel manipulations of nested lists. NESL [36] provides com-
putational patterns for nested computations, and Palmer et al. discussed how nested computations can be
compiled on this paradigm [37]. We can consider nested lists as a subset of rose trees, and the idea of
intra-siblings computations comes from these nested lists.

7. Conclusion

In this paper, we have proposed a set of parallel rose-tree skeletons. We designed these skeletons as simple
as possible based on Constructive Algorithmics, and showed a parallel implementation based on the binary-
tree representation. Our rose-tree skeletons are natural extensions of the binary-tree skeletons proposed so far,
and we have added two computational patterns to denote computations among siblings. We have made a pro-
totype implementation of our parallel rose-tree skeletons on our binary-tree skeleton library. Despite the rapid
development, the skeletons have shown good scalability.

We hope that our rose-tree skeletons provide a basis for not only designing but also implementing parallel
tree programs. Our future work is to extend our skeletons with more involved computational patterns on rose
trees. One of them is a tree manipulation with the sorting of siblings discussed by Diks and Hagerup [35].
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