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An Automatic Fusion Mechanism

for Variable-Length List Skeletons in SkeTo

Kento Emoto Kiminori Matsuzaki

Abstract

Skeletal parallel programming is a promising approach to easy parallel programming,
in which user programmers easily build their parallel programs by simply combining some
of a given set of ready-made parallel computation patterns called skeletons. In exchange
for the easiness, this approach has an efficiency problem caused by its compositional style
programming. Fusion transformation is a solution of this problem, which optimizes naively-
composed skeleton programs by eliminating redundant intermediate data structures. Several
parallel skeleton libraries have implement automatic fusion mechanisms. However, no auto-
matic fusion mechanism has been proposed for so-called variable-length list skeletons (VLL
skeletons for short), although VLL skeletons are useful for practical problems. The main
difficulty is that the previous fusion mechanisms are not applicable to VLL skeletons, which
cannot complete the fusion. In this paper, we propose a novel fusion mechanism for VLL
skeletons, which achieves both easy programming interface and the complete fusion. The
proposed mechanism has been implemented by using expression templates technique in our
skeleton library SkeTo, and shown to be very effective by experiment results.

1 Introduction

As parallel computers are widely spread, parallel programming has become important and
inevitable. However, parallel programming is much more difficult than sequential programing
in general, because programmers have to consider extra things such as complicated scheduling
of tasks, data distribution, communication and synchronization between processors, etc. This
situation calls for easy parallel programming.

Skeletal parallel programming has been proposed and studied as a promising approach to
easy parallel programming, in which user programmers build their parallel programs by combin-
ing some of a given set of ready-made parallel computation patterns called skeletons [8, 9, 11],
such as map to apply a function to every element of a list, and reduce to take a summation of
a list with a binary operator. For example, we can easily build a parallel program for comput-
ing the variance of list x with its average ave by using the skeletons with user-defined simple
functions plus, square and sub as follows.

double var = reduce(plus, map(square, map(sub(ave), x)));

In spite of the easiness of programming, skeleton programs suffer from inefficiency caused by
production of intermediate data structures between successive skeletons due to the compositional
style of programming. For example, the skeleton program above has three local loops for two
maps and the final reduce, and two intermediate lists are produced between successive loops,
although we can compute the variance sequentially in a single loop.

Fusion transformation has been studied and used to optimize skeleton programs by removing
redundant intermediate data structures, which dramatically improves the efficiency of naively-
composed skeleton programs. Indeed, optimization mechanisms based on fusion transformation

1



have been implemented in several skeleton libraries and systems [7, 8, 9] including our library
SkeTo1, and the fusion transformation has been shown to be actually effective. For example,
although the skeleton program above appears to have three loops, it is optimized into the
following single loop followed by the final global communication.

double r = 0.0;

for(int i = 0; i < x.local_size(); i++)

r = plus(r, square(sub(ave)(x.local_get(i))));

global_reduce(plus, r);

Variable-length list skeletons (VLL skeletons for short), such as concatmap to concatenate
the results of applying a function to every element, and filter to discard elements not satisfying
a given predicate, are useful in practice [13]. These skeletons generate lists of length different
from that of the input. For example, we can easily build a parallel program for the n-queen
problem [13] by using these two skeletons like below.

dist_list<board> x; x.push_back(emptyBoard);

for(int i = 0; i < n; i++)

x = filter(invalidBoard, concatmap(putNewQueen, x));

long answer = x.length();

Starting from an empty board, the program repeatedly generates a list of new valid boards by
putting one more queen in every board in the current list. In each iteration, it first generates
all possible boards by using concatmap with putNewQueen that generates a list of new boards,
each of which has a new queen in the top row of the given board. Then, it discards invalid
boards by using filter with invalidBoard that returns true if the given board contains no
collision of queens. Although this program is clear, it seems inefficient due to the intermediate
list generated between concatmap and filter. We hope that an automatic fusion mechanism can
improve the efficiency.

In spite of their usefulness, unfortunately no fusion mechanism has been proposed for these
VLL skeletons. This is mainly because the previous fusion mechanism for the fixed-length list
skeletons cannot be applied to VLL skeletons. Therefore, naively-composed programs with VLL
skeletons suffer from inefficiency caused by redundant intermediate data structures.

In this paper, we propose design and implementation of a novel fusion mechanism for VLL
skeletons, so that users can enjoy both VLL skeletons and automatic fusion transformations
to get efficient parallel programs for various problems in an easy way. Our main technical
contributions are as follows.

• We propose a novel design of collector-based fusion mechanism that brings both simple
programming interface and complete fusion results, which cannot be achieved by the
previous mechanisms.

• The new fusion mechanism is implemented by using expression templates [14], so that
users need only a C++ compiler to enjoy our proposing fusion.

• Our proposing mechanism can be used together with the previous fusion mechanism in
SkeTo. This means that the proposed mechanism strictly widens the application area of
fusion optimization.

1http://sketo.ipl-lab.org/
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The rest of this paper is organized as follows. Section 2 reviews the previous fusion mech-
anism for fixed-length list skeletons, and Section 3 reviews VLL skeletons, the target of our
proposing fusion mechanism. Section 4 discusses several approaches to a fusion mechanism for
VLL skeletons, and Section 5 shows and evaluates the implementation of the proposed mecha-
nism. Finally, Section 6 discusses related work, and Section 7 concludes this paper.

2 Preliminaries

In this section, after introducing notation for formal discussion, we briefly review the previous
fusion mechanism for fixed-length list skeletons.

The notation in this paper is reminiscent of Haskell [3]. Function application is denoted by
a space and the argument may be written without brackets, so that f a means f(a) in ordinary
notation. Functions are curried: they always take one argument and return a function or a
value, and the function application associates to the left and binds more strongly than any
other operator, so that f a b means (f a) b and f a⊗b means (f a)⊗b. Function composition is
denoted by ◦, and (f ◦ g) x = f (g x) according to its definition. Binary operators can be used
as functions by sectioning as follows: a ⊕ b = (a⊕) b = (⊕b) a = (⊕) a b. A list is denoted by
enclosing its elements by square brackets [ and ], e.g., [a] represents a singleton list of element
a, and [a, b, c] a list of elements a, b and c. The list concatenation operator is denoted by ++, so
that [a, b] ++ [c, d] = [a, b, c, d]. An empty list is denoted by [ ]. Function [·] creates a singleton
list of the given element, so that [·] a = [a].

2.1 Fixed-length List Skeletons

We briefly review a small subset of our fixed-length list skeletons (FLL skeletons for short) [9].
Their intuitive definitions are as follows.

map f [a1, . . . , an] = [f a1, . . . , f an]
reduce (⊕) [a1, . . . , an] = a1 ⊕ · · · ⊕ an
zip [a1, . . . , an] [b1, . . . , bn] = [(a1, b1), . . . , (an, bn)]
shiftl e [a1, . . . , an] = [a2, . . . , an, e]
shiftr e [a1, . . . , an] = [e, a1, . . . , an−1]

The skeleton map applies the given function f to every element ai of the given list [a1, . . . , an], to
produce the new list [f a1, . . . , f an]. The skeleton reduce takes an associative binary operator
⊕ and an input list [a1, . . . , an] to sum up its elements by using the operator. The skeleton zip
builds a list of pairs of corresponding elements of given two lists, and skeletons shiftl and shiftr
move elements to the left and right, respectively.

For example, if we want to take a summation of a given list after doubling its even numbers,
we can easily make a parallel program for this by combining these skeletons:

evenDblSum = reduce (+) ◦map evenDbl
where evenDbl a = if even a then a+ a else a

Here, map is used to double even numbers by applying user function evenDbl , and reduce is
used to take a summation of the results.

2.2 Fusion of FLL Skeletons

Our skeletons [9] have been designed based on a special recursive function called homomorphism,
to have good optimizability by fusion. Given an associative binary operator ⊕ and a function
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f , a homomorphism ([⊕, f ]) is defined as follows.

([⊕, f ]) (x++ y) = ([⊕, f ]) x⊕ ([⊕, f ]) y
([⊕, f ]) [a] = f a
([⊕, f ]) [ ] = ı⊕

Here, ı⊕ is the identity element of ⊕, i.e., a ⊕ ı⊕ = ı⊕ ⊕ a = a for any a. For example, the
skeleton map is defined as map f = ([++, [·] ◦ f ]), and the skeleton reduce as reduce (⊕) = ([⊕, id ]),
in which id is the identity function, i.e., id a = a for any a.

Homomorphisms have good fusability [2], and thus our skeletons have good fusability too.
For example, we have the following fusion rules for the skeletons above.

map f ◦map g = map (f ◦ g)
reduce (⊕) ◦map f = ([⊕, f ])

In each rule, the left hand side has two skeletons and thus an intermediate list between them,
while the right hand side has only one skeleton (homomorphism) and no intermediate list. Thus,
the right hand side is expected to be faster than the left hand side. Indeed, this has been shown
to be true by experiment results [9].

For example, from the example skeleton program evenDblSum = reduce (+) ◦map evenDbl ,
we can get a faster program evenDblSumopt = ([+, evenDbl ]) by using the second fusion rule.

2.3 Implementation of FLL Skeleton Fusion via Expression Templates

The fusion of skeletons has been implemented in our skeleton library SkeTo [9] by using expres-
sion templates (ET for short) [14] with an index-based access method. We briefly review the
mechanism.

Here is an example user code implementing the example program evenDblSum, which uses
skeletons map and reduce with user-defined function object evenDbl and the STL plus operator.

int evenDblSum(dist_list<int> z) {

return reduce(plus<int>(), map(evenDbl, z));

}

The user function evenDbl is defined as a function object like below, in which it extends the
base class to tell its type to the library.

struct evenDbl_t : function_base<int(int)> {

int operator()(int a) const { return even(a) ? a + a : a; }

} evenDbl;

In the ET-based library, production of the resulting list of a skeleton is postponed and the
skeleton returns an expression object representing its computation, so that the computation can
be fused into successive computations. For example, the function map is defined to build an
object of MapObj that has two field f and x to represent the computation of map f x, as shown
in Figure 1. The object also has index-based access method local get that returns the result
of applying f to the ith element of x, which is the ith element of the resulting list computed by
this expression. This method is used to generate elements on demand, which can avoid storing
the intermediate results, to lead to the fusion.

A skeleton like reduce that does not produce a list receives an expression object built so far
and carries out the fusion in its computation. For example, the skeleton reduce is implemented
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template <typename F, typename X>

struct MapObj {

const F& f; const X x;

MapObj(const F& f, const X& x) : f(f), x(x) { }

typename F::result_type local_get(int i) const { return f(x.local_get(i)); }

int local_size() const { return x.local_size(); }

};

template <typename F, typename X>

MapObj<F, X> map(const F& f, const X& x) { return MapObj<F, X>(f, x); }

Figure 1: ET implementation of skeleton map, which returns an expression object MapObj.

template <typename OP, typename X>

typename OP::result_type reduce(const OP& op, const X& x) {

typename OP::argument_type r = identity_element<OP>::val;

for(int i = 0; i < x.local_size(); i++) r = op(r, x.local_get(i));

global_reduce(op, r);

return r;

}

Figure 2: ET implementation of skeleton reduce, which does fusion by using the index-based
access method local get.

by a single local loop followed by a global communication as shown in Figure 2. In the local loop,
it calls the method local get to get the ith element of the given expression x. For example,
in the program evenDblSum, the function reduce receives an object MapObj(evenDbl, z) built
by map(evenDbl, z), and thus the whole code becomes the following code.

int r = 0;

for(int i = 0; i < z.local_size(); i++)

r = plus<int>()(r, evenDbl(z.local_get(i)));

global_reduce(plus<int>(), r);

This code does not produce the intermediate list, i.e., the result of map evenDbl z. Indeed, it
implements the fused computation evenDblSumopt .

An important observation here is that the fused code uses the user-defined function object
evenDbl as is. Actually, this point makes the fusion mechanism quite simple so that it can be
implemented by the simple index-based access method. Unfortunately, this does not hold for
variable-length list skeletons.

3 Variable-Length List Skeletons

In this section, we introduce variable-length list skeletons (VLL skeletons for short) with their
examples and programming interface [13].
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dist_list<board> x; x.push_back(emptyBoard);

for(int i = 0; i < n; i++)

x = filter(invalidBoard, concatmap(putNewQueen, x));

long answer = x.length();

Figure 3: Examples use of VLL skeletons: n-queens problem.

dist_list<int> quicksort(const dist_list<int> &l)

{

if(l.get_global_size() < 2) return l;

int pv = list.get(0);

return append(quicksort(filter(less_than(pv), l))

append(filter(equal(pv), l),

quicksort(filter(greater_than(pv), l))));

}

Figure 4: Examples use of VLL skeletons: Quicksort.

3.1 Definition and Example Use of VLL Skeletons

Intuitive definitions of the VLL skeletons are given as follows.

concatmap f [a1, . . . , an] = f a1 ++ · · ·++ f an
filter p [a1, . . . , an] = [ai1 , . . . , aik ]

where (∀i, i 6∈ {i1, . . . , ik} ⇔ p ai = false) ∧ (∀j, ij < ij+1)
append x y = x++ y

The skeleton concatmap, taking a function f to produce a list from the given argument, applies
f to every element of the given list and concatenates the resulting lists. The skeleton filter,
taking a predicate (a function returning Boolean value) and a list, removes its elements not
satisfying the predicate. The skeleton append simply concatenates the given two lists.

The formal definition of concatmap is given by the homomorphism: concatmap f = ([++, f ]).
Then, based on this definition, filter is defined as filter p = concatmap (λa.if p a then [a] else [ ]).

VLL skeletons are useful in practice [13], widening the application area of skeletal parallel
programming. For example, we can easily build a parallel program for the n-queen problem
by using these two skeletons as shown in Figure 3. Here, given a board, function putNewQueen

generates a list of new boards, each of which has a new queen in the top row, and function
invalidBoard returns true if the given board contains no collision of queens. In general, by
using these skeletons we can easily implement a parallel breadth-first search.

Another important application of VLL skeletons is an irregular divide-and-conquer algo-
rithm, including the convex hull, the quicksort, etc. For example, the quicksort is implemented
by using filter and append as shown in Figure 4.

Interested readers may find other examples in the previous work [13].

3.2 Programming Interface of Naively Implemented VLL Skeletons

We briefly review the programming interface of concatmap in the previous work [13], in which
the VLL skeletons are implemented naively without any fusion.

The interface of the skeleton concatmap is the following template function.
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struct evenDup_t {

vector<int> operator()(int a) const {

vector<int> v;

if(even(a)) { v.push_back(a); v.push_back(a) } else { v.push_back(a); };

return v;

}

} evenDup;

Figure 5: Vector-based implementation of evenDup a = if even a then [a, a] else [a].

template<typename F, typename T, typename S>

dist_list<T> concatmap(const F&f, const dist_list<S> &l);

Here, the function object f (of type F) is expected to return an instance of vector<T>, as
function f in concatmap f returns a list.

For example, if we want to duplicate every even number in a given list x, we can use
concatmap with user-defined function object evenDup (Figure 5) implementing a user function
evenDup a = if even a then [a, a] else [a] as follows.

x = concatmap(evenDup, x);

The function object evenDup implements the function evenDup straightforwardly in the func-
tional style: It simply returns a vector of one or two elements. Since the functional style has
been shown suitable for parallel programming [12, 8, 9, 11] and our skeletons are designed in
the functional style, we can say that this simple programming interface is good.

4 Fusion Mechanism for Variable-Length List Skeletons

In this section, we discuss three approaches to a fusion mechanism of the VLL skeletons, to
find the best one that achieves both good programability and good efficiency. Since filter is a
special case of concatmap, and append is simply concatenates the two lists, we focus on a fusion
mechanism for concatmap.

4.1 Target Fusion Transformation

First of all, we clarify our target fusion transformation of concatmap, by using the following
example program evenDupSum.

evenDupSum = reduce (+) ◦ concatmap evenDup
where evenDup a = if even a then [a, a] else [a]

Given a list, evenDupSum first duplicates every even number in the list by using concatmap
with evenDup, and then it takes a summation of the resulting list by using reduce. It is easily
seen that evenDupSum is equivalent to evenDblSum in Section 2.1.

Since the program evenDupSum above generates an intermediate data structure (list) be-
tween reduce and concatmap, it seems inefficient, and we want to fuse these skeletons to get
an efficient program. What should be the resulting program of fusion? Since evenDupSum is
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equivalent to evenDblSum, we expect the result of fusion to be the following evenDupSumopt ,
which is the same as evenDblSumopt that does not produce any intermediate list.

evenDupSumopt = ([+, evenDup′])

where evenDup′ a = if even a then a+ a else a

Actually, this can be obtained by using the fusion theorem of homomorphisms.
The goal of our fusion mechanism is to obtain the efficient evenDupSumopt from the naive

evenDupSum, but there is a difficulty that did not appear in the previous fusion (Section 2.2).
The difficult point is that in the fused program evenDupSumopt the user function evenDup is

not used as is, which means that a fusion mechanism needs to create the new function evenDup′

from the definition of evenDup and +. However, in many programming languages it is difficult
to get the body of a user function and create a new function from it, so that a fusion mechanism
has to use a user function as is. Therefore, we need a certain trick in defining a user function
to implement a fusion mechanism for VLL skeletons. This situation is quite different from that
of the FLL skeletons, in which the fusion mechanism can use a user function as is. This is one
of the reasons why the previous fusion mechanism is not applicable to VLL skeletons.

In the following sections, we will discuss three approaches to a fusion mechanism of VLL
skeletons, focusing on how users define their functions and what code a fusion mechanism can
produce, e.g., from the following main user code for evenDupSum.

int evenDupSum(dist_list<int> z) {

return reduce(plus<int>(), concatmap(evenDup, z));

}

4.2 Vector-based Approach

In this approach, a user function f used in concatmap f is implemented by a function object
f that returns a concrete vector, which is a straightforward implementation of f that returns
a list. For example, the user function evenDup is implemented as the function object evenDup

shown in Figure 5, in which it returns a concrete vector of one or two elements.
This approach has an advantage of good programability: It provides a simple functional

programming style for defining a user function. Actually, this style is the same as the previous
mechanism, and quite natural in programming with our skeletons that have functional style
definitions.

However, this approach has a big disadvantage: It suffers from incomplete fusion. Figure 6
shows the local loop of the fused program of evenDupSum in this approach. In the main loop, the
user-defined evenDup creates a small vector v at every iteration, and the inner loop runs on the
vector v to sum up its elements to the accumulator r. Since we cannot change the definition of
evenDup at compile time, this production of small vectors is not avoidable. Therefore, the fusion
is incomplete. Actually, the code implements not our goal evenDupSumopt but the following
incompletely-fused program evenDupSum ′′.

evenDupSum ′′ = ([+, evenDup′′])
where evenDup′′ a = reduce (+) (evenDup a)

At a glance, this program looks successfully fused because the composition of reduce and
concatmap has been replaced with the homomorphism ([+, evenDup′′]). However, the fusion
is incomplete in the sense that it creates intermediate data structures (lists) inside the new
function evenDup′′. This incompleteness raises a serious efficiency problem when a user func-
tion returns a big list.
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for(int i = 0; i < z.local_size(); i++) {

vector<int> v = evenDup(z.local_get(i));

for(int j = 0; j < v.size(); j++) r = plus<int>()(r, v[j]);

}

Figure 6: The main loop of the fused program of evenDupSum in the vector-based approach.

for(int i = 0; i < z.local_size(); i++) {

iterator<int> it = evenDup(z.local_get(i));

while(it.has_next()) r = plus<int>()(r, it.next());

}

Figure 7: The main loop of the fused program of evenDupSum in the iterator-based approach.

The main problem of this approach is that the fused program produces many vectors—some
of which are possibly big—inside the main loop, and we cannot avoid this as long as a user-
defined function object returns a concrete vector. To avoid this incompleteness of the fusion,
we need a user function not returning a concrete vector.

4.3 Iterator-based Approach

In this approach, to avoid the production of intermediate data structures (vectors) in the fused
program, a user implements a function object to return an iterator (an object that yields
elements one by one) instead of a concrete vector. Use of iterators to avoid intermediate data
structures is natural in practical C++ programming.

The advantage of this approach is that we can achieve the complete fusion, avoiding the
problem of the vector-based approach. Figure 7 shows the code of the fused program in this
approach, in which evenDup returns an iterator it instead of a concrete vector. The inner loop
sums up elements yielded by the method next of it while it has elements to be yielded. There
is no production of any intermediate data structure in the main loop, and this fused code can
successfully implement our goal program evenDupSumopt .

Although this approach can achieve the complete fusion, unfortunately it has two disadvan-
tages: difficulty of user programming and a chance of incomplete fusion.

The main disadvantage is the difficulty of user programming: Defining a user function to
return an iterator is much more difficult than returning a concrete vector. Figure 8 shows an
implementation of the user function evenDup, in which the function object evenDup returns an
iterator. Clearly, the code is much more complicated than the code (Figure 5) in the vector-
based approach: A new structure evenDup iterator is needed to implement the iterator, and
it needs some computation to count the number of elements yielded so far, which are not
required in the vector-approach. Even though the function evenDup is quite simple, we cannot
understand what the function object evenDup computes at a glance.

The other disadvantage is that this approach has a chance of incomplete fusion, mainly due
to the difficulty of user programming. Usually, implementing a new iterator is complicated and
difficult for user programmers, and they may take a simpler way to avoid such difficulty: creating
a vector and returning its iterator. Figure 9 shows a simple but problematic implementation of
evenDup in this style2. This code is simple, and easy to write and understand. However, the

2The code is simplified to make the problem clear: Please ignore problems related to temporary objects.
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struct evenDup_t {

struct evenDup_iterator {

const int a; int cnt;

evenDup_iterator(int a) : a(a), cnt(even(a) ? 2 : 1) { }

bool has_next() { return cnt > 0; }

int next() { cnt--; return a; }

};

evenDup_iterator operator()(int a) const {

return evenDup_iterator(a);

}

} evenDup;

Figure 8: Iterator-based implementation of user function evenDup.

struct evenDup_t {

iterator<int> operator()(int a) const {

vector<int> v;

if(even(a)) { v.push_back(a); v.push_back(a) } else { v.push_back(a); };

return v.begin();

}

} evenDup;

Figure 9: Simple but problematic implementation of user function evenDup in iterator-based
approach.

fused program using this function object produces many vectors implicitly inside the calls of
evenDup, which implements the incompletely-fused program evenDupSum ′′.

The main problem of this approach is the difficulty of the user programming, and this diffi-
culty is caused by adopting the functional style such that a function object returns something.
To avoid this difficulty and achieve both good programability and good efficiency, we need to
change our thinking from the functional style to a slightly imperative style.

4.4 Collector-based Approach

In this approach, adopting a slightly imperative style, a user function is implemented to receive
a collector (an object that receives elements one by one), which is a dual of the iterator-based
approach. This approach can achieve both good programability and good efficiency, as shown
below.

Figure 10 shows an implementation of the user function evenDup in this approach. The
function object evenDup receives a collector c, and puts elements into the collector by calling
c.push back(a). The code looks almost the same as the code in the vector-based approach
(Figure 5). The only difference is the place where the elements are emitted into: The former
puts elements into the given collector, while the latter puts elements into its created vector.
Therefore, the programability of this approach is as good as the vector-approach, and much
better than the iterator-approach. It is worth noting that this style of defining a user function
is also adopted in Hadoop [1], a practical implementation of the MapReduce model [6].

Figure 11 shows the fused program of evenDupSum in this approach. The fused program
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struct evenDup_t {

void operator()(int a, Collector &c) const {

if(even(a)) { c.push_back(a); c.push_back(a) } else { c.push_back(a); };

}

} evenDup;

Figure 10: Collector-based implementation of user function evenDup.

struct ReduceCollector {

int &r;

ReduceCollector(int &r) : r(r) { }

void push_back(int a) { r = plus<int>()(r, a); }

};

int r = 0;

ReduceCollector c(r);

for(int i = 0; i < z.local_size(); i++) evenDup(z.local_get(i), c);

Figure 11: The main loop of the fused program of evenDupSum in the collector-based approach.

uses a collector defined as a new structure ReduceCollector, of which method push back

adds the given element a into its accumulator variable r. In each iteration of the main loop,
the user function evenDup receives the collector c as well as the ith element z.local get(i)

of the input list z, and puts one or two copies of the element into the collector. Since the
collector immediately adds the given element into the accumulator, there is no production of
intermediate vectors in this code. Therefore, this code successfully implements our goal program
evenDupSumopt .

This approach can fuse multiple concatmaps. To explain this, we use the following program
with two concatmaps, which computes a doubled summation of even numbers only.

evenDupNoOddSum = reduce (+) ◦ concatmap noOdd ◦ concatmap evenDup
where noOdd a = if even a then [a] else [ ]

Figure 12 shows a collector-based implementation of the user function noOdd . Our desired
fused program is basically the following program.

evenDupNoOddSumopt = ([+, evenDupNoOdd ])

where evenDupNoOdd a = if even a then a+ a else 0

What we need to do to fuse multiple concatmaps is just to build new collectors from user
functions. We use a new structure Collector shown in Figure 13, which has two fields to hold
a user function f and another collector c. The method push back of Collector simply supplies
the given element a and the collector c to the user function f.

Figure 14 shows the main loop of the fused program of evenDupNoOddSum, which simply
supplies elements to the new collector built from the user functions. Figure 15 shows the
computation flow of the new collector, in which zi corresponds to z.local get(i) in the
main loop. When zi is an even number (the solid line), by definition, c2.push back(zi)

calls evenDup(zi, c1) once, and the call of evenDup makes two calls of c1.push back(zi).
Each call of c1.push back(zi) invokes noOdd(zi, c) once, and this noOdd makes one call of
c.push back(zi). Therefore, when zi is even, zi is added to the accumulator r twice. On the
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struct noOdd_t {

void operator()(int a, Collector &c) const {

if(even(a)) { c.push_back(a) };

}

} noOdd;

Figure 12: Collector-based implementation of user function noOdd .

template<typename NextCollector, typename F>

struct Collector {

NextCollector c; const F f;

Collector(const F&f, NextCollector &c) : f(f), c(c) {}

void push_back(const int& a) { f(a, c); }

};

Figure 13: Structure of combined collectors for fusing multiple concatmaps.

other hand, when zi is an odd number (the dashed line), the call of evenDup makes one call of
c1.push back(zi), and it invokes noOdd(zi, c) once. Since noOdd(zi, c) does nothing when
zi is odd, the accumulator r is kept unchanged in this case. Clearly, the main loop implements
our desired fused program.

Now, we have got a good design of a fusion mechanism to achieve both easy programming
interface and the complete fusion. Its concrete implementation will be explained in Section 5.1.

5 Implementation and Evaluation

We have implemented the fusion mechanism for VLL skeletons in our library SkeTo [9] by using
expression templates technique [14]. We briefly explain it and report some experiment results
to show the impact of the fusion mechanism.

5.1 Implementation of the Fusion Mechanism for VLL Skeletons

Figure 16 shows the implementation of the fusion mechanism of the collector-based approach. In
the explanation below, we use as an example the following code implementing evenDupNoOddSum.

int sum = reduce(plus<int>(), concatmap(noOdd, concatmap(evenDup, z)));

The skeleton function concatmap returns an expression object of CMapObj, to postpone its
computation to have a chance of fusion. The object has two fields: a user function f and
an expression object x that represents its target list. It also has several methods and type
declaration, which will be explained later. For example, concatmaps in the example program
create an object CMapObj(noOdd, CMapObj(evenDup, z)).

The skeleton function reduce receives a CMapObj object that represents its target list, as well
as an associative binary operator op. Before executing the main loop, it asks the object to find
the initial list in the chain of concatmaps and build a combined collector from the initial collector
ic of the generalized ReduceCollector that accumulates given elements to the accumulator res
by op. For example, the initial list of the example above is z, and the combined collector is
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int r = 0; ReduceCollector c(r);

Collector<ReduceCollector, noOdd_t> c1(noOdd, c);

Collector<Collector<ReduceCollector, noOdd_t>, evenDup_t> c2(evenDup, c1);

for(int i = 0; i < z.local_size(); i++) c2.push_back(z.local_get(i));

Figure 14: The main loop of the fused program of evenDupNoOddSum.

c2.push back(zi);

c2::push back(int zi) { evenDup(zi, c1); }

evenDup(int zi, Collector c1){ c1.push back(zi); if(even(zi)) c1.push back(zi); }

c1::push back(int zi) { noOdd(zi, c); }

noOdd(int zi, Collector c) { if(even(zi)) c.push back(zi); }

c::push back(int zi) { r = plus<int>()(r, zi); }

even
odd

Figure 15: The call chain of collectors inside the fused program of evenDupNoOddSum.

(equivalent to) the one explained in the last of Section 4.4. The extraction of the initial list
and construction of the combined collector can be implemented by simple recursive methods
getCollector and getInitialList on expression objects. Then, the main loop supplies each
element of the initial list to the combined collector.

The above mechanism implements our desired fusion for concatmaps.
It is easily seen that we can use the previous fusion mechanism for FLL skeletons in the

main loop of the fused program, because it uses the index-based access method local get. This
means that we can fuse FLL skeletons followed by a chain of VLL skeletons into one loop.

Finally, it should be noted that a resulting list of a chain of concatmap can be computed
efficiently with fusion in a similar way. We can simply use a vector as an initial collector
instead of ReduceCollector.

5.2 Experiment Results

To evaluate the implemented fusion mechanism, we measured execution time of skeleton pro-
grams for three problems evenDupSum, n-queens and sumOfPeaks with and without the fusion.
Table 1 shows measured execution time on a cluster consisting of 32 nodes, each of which has
Intel(R) Xeon(R) CPU E5645 and 12GB memory, and is connected to Gigabit Ethernet. The
programs were compiled with GCC 4.6.3. An empty cell means that the program was not run
due to the shortage of the memory. The size means the number of elements of the input list,
or the size n of boards for n-queens problem. We used one core per a node. Basically, skeleton
programs show good scalability regardless of the fusion.

The measured execution time of fused evenDupSum compared with that of non-fused version
shows the basic impact of the proposed fusion mechanism: The fusion improves the efficiency
dramatically, achieving 30× speedup. The fused program achieves the absolute speed slightly
faster than the fused version of evenDblSum, which is fused by the previous fusion mechanism,
and evenDupSumHand that is the following hand-written single sequential loop.

for(i=0; i < n; i++) r += (x[i]&1) ? x[i] : x[i] + x[i];
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template <typename F, typename X>

struct CMapObj {

const F f; const X x;

CMapObj(const F &f, const X &x) : f(f), x(x) { }

typedef typename X::InitialType InitialType;

const InitialType &getInitialList() const { return x.getInitialList(); }

template <typename NextCollector>

/∗ omit the type ∗/
getCollector(NextCollector &c) const {

return x.getCollector(Collector<NextCollector>(f, c));

}

};

template <typename F, typename X>

CMapObj<F, X> concatmap(const F& f, const X& x){ return CMapObj<F, X>(f, x); }

template <typename OP, typename A>

struct ReduceCollector {

const OP& op; A &r;

ReduceCollector(const OP&op, A &r) : op(op), r(r) { }

void push_back(const A& a) { r = op(r, a); }

};

template <typename OP, typename F, typename X>

typename OP::result_type

reduce(const OP &op, const CMapObj<F, X> &cmobj) {

const typename X::InitialType &l = cmobj.getInitialList();

typename OP::result_type res = get_identity<OP>();

ReduceCollector<OP, typename OP::result_type> ic(op, res);

/∗ omit the type ∗/ c = cmobj.getCollector(ic);

for(int i = 0; i < l.local_size(); i++) c.push_back(l.local_get(i));

global_reduce(op, res);

return res;

}

Figure 16: Expression templates implementation of the collector-based fusion mechanism
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typedef pair<uint, pair<uint, uint> > triple;

struct peak : public functions::base <bool (triple)> {

bool operator()(const triple &x) const {

return (x.first < x.second.first) && (x.second.first > x.second.second);

}

};

struct peak_m : public functions::base <triple (triple)> {

triple operator()(const triple &x) const {

return (x.first < x.second.first) && (x.second.first > x.second.second) ?

x : triple_zero;

}

};

uint sumOfPeaks = reduce(plus<uint>(), map(fst, map(snd,

filter(peak, zip(shiftr(0U, x),zip(x, shiftl(0U, x)))))));

uint sumOfPeaks_m = reduce(plus<uint>(), map(fst, map(snd,

map(peak_m, zip(shiftr(0U, x),zip(x, shiftl(0U, x)))))));

Figure 17: Concrete programs of sumOfPeaks and sumOfPeaksm.

The difference between the compiled code of fused evenDupSum and that of evenDupSumHand is
that the former uses a conditional branch instruction while the latter uses a conditional move
instruction. This compiler’s different choice of instructions made the difference of execution
time. Anyway, the results show that the proposed fusion mechanism produces truly efficient
code comparable with hand-written code.

Comparison of the measured times of nqueen with and without fusion shows the impact of
the fusion on practical programs: It achieves more than 2× speedup for the practical program.

Finally, we compare fused programs of the following equivalent programs, each of which
computes a summation of elements bigger than their immediate neighbors. Here, sumOfPeaks
uses both FLL and VLL skeletons, while sumOfPeaksm uses only FLL skeleton.

sumOfPeaks x = reduce (+) (map fst (map snd
(filter peak (zip (shiftr 0 x) (zip x (shiftl 0 x))))))

where peak (p, (c, s)) = p < c ∧ c > s
sumOfPeaksm x = reduce (+) (map fst (map snd

(map peak ′ (zip (shiftr 0 x) (zip x (shiftl 0 x))))))
where peak ′ (p, (c, s)) = if p < c ∧ c > s then (p, (c, s))

else (0, (0, 0))

Figure 17 shows concrete implementation of these programs, in which trivial definitions of user
functions are omitted. The implementation of skeleton function filter is given in Figure 18,
which implements its formal definition in Section 3. The proposed fusion mechanism combined
with the previous one successfully optimizes the mixed skeleton program sumOfPeaks, to achieve
the same performance as the fused code of sumOfPeaksm produced by the previous fusion. This
shows that the proposed fusion mechanism works well together with the previous one.
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template <typename P>

struct FilterFunction {

const P p; FilterFunction(const P&p) : p(p) { }

template <typename Collector>

void operator()(const typename P::argument_type &a, Collector c) {

if(p(a)) { c.push_back(a); }

}

};

template <typename P, typename X>

CMapObj<FilterFunction<P>, X> filter(const P&p, const X&x)

{

return concatmap(FilterFunction<P>(p), x);

}

Figure 18: Implementation of filter by concatmap

Table 1: Measured execution time (seconds) of skeleton programs

#processes
program fusion size 1 2 4 8 16 32

evenDupSum w/o 400M 14.47 4.60 2.30 1.17 0.61 0.35
w/ 400M 0.50 0.27 0.15 0.10 0.07 0.09
w/ 2G 0.67 0.35 0.20 0.15

evenDblSum w/ 400M 0.59 0.32 0.18 0.12 0.10 0.09
w/ 2G 0.80 0.40 0.28 0.16

evenDblSumHand w/ 2G 0.59 — — — — —

nqueen w/o 14 44.34 22.05 12.22
w/ 14 123.22 61.85 36.51 18.77 9.63 5.55

sumOfPeaks w/ 400M 2.73 1.36 0.70 0.37 0.20 0.12
w/ 2G 3.44 1.72 0.98 0.46

sumOfPeaks m w/ 400M 2.73 1.38 0.70 0.37 0.20 0.12
w/ 2G 3.44 1.74 1.09 0.46
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6 Related Work

Skeletal parallel programming was first proposed by Cole [5] and a number of systems (libraries)
have been proposed so far. Among them, OSL [8] and SaC [7] as well as our library SkeTo [9] are
ones equipped with fusion mechanisms to optimize skeleton programs. OSL is a skeleton library
based on the BSP model implemented by using MPI and C++, and its fusion mechanism is
implemented by using expression templates technique [14]. The set of its fusion rules is almost
the same as our previous fusion mechanism [9]. SaC is an array programming language mainly
suited for application areas such as numerically intensive applications and signal processing.
It has the with-loop fusion mechanism that combines high-level program specifications with
runtime efficiency similar to that of hand-optimized low-level specifications. Unfortunately, none
of them provides VLL skeletons with a fusion mechanism. Data Parallel Haskell [4] provides
parallel treatment of nested lists, and we can enjoy various parallel operations including our
VLL skeletons thanks to the nature of Haskell [3], a powerful functional programming language.
However, it only targets shared-memory multiprocessor environments.

7 Conclusion

We proposed a novel fusion mechanism for variable-length list skeletons (VLL skeletons for
short), adopting the collector-based design for defining user functions. The proposed mechanism
achieves both good programability and good performance. In addition, it can be used together
with the previous fusion mechanism, so that a wide variety of skeleton programs can enjoy our
fusion optimizations. The new fusion mechanism has been implemented by using expression
templates technique in our skeleton library SkeTo, and its impact on efficiency has been shown
by experiment results.

A VLL skeleton may cause an ill-balance of distributed data, and in such a case we need
rebalancing of data before executing the following skeletons, to achieve the best performance.
However, the fusion may remove the chance of rebalancing, though it can remove the redundant
intermediate data structures. Therefore, we need to control this trade-off for the best parallel
performance. Currently, a user can control the range of fusion by hand, and he can find the
best setting by trial and error. Automatic control of fusion in such a case is one direction
of our future work. In addition, it will be interesting to study shape-changing skeletons on
other data structures, such as trees and matrices, by extending the results on VLL skeletons.
In a practical direction, it will be an important task to reimplement the fusion mechanisms
by using a sophisticated expression templates library like Boost.Proto [10], which will improve
maintainability of libraries and raise a chance of stronger transformations.
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