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Abstract

We have proposed a novel library called “GG Library” on Fortress in the previous report.
The library supports easy development of correct and efficient parallel programs, allowing
users to write naive generate-and-test programs easily and uniformly with generator-of-
generators that abstract generation of nested data structures. The library has an automatic
optimization mechanism by dispatching efficient implementation to a user program written
with generator-of-generators based on a collection of theories. To enrich the power of GG
library, we need to make collections of generator-of-generators and their theories for opti-
mization. This report collects generator-of-generators and their theories for optimization
with formal discussion, as well as their implementations in GG library.
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1 Introduction

In the previous report [EHK+08], we have proposed a novel library called “GG Library” (GG
stands for Generator-of-Generators) for parallel computation on Fortress [ACH+]. The library
supports easy development of correct and efficient parallel programs, and the library itself can
grow up to cover a wider range of problems and to achieve better optimization power. These
points match to the spirit of Fortress.

Features of the library are summarized as follows.

• Support for easy program development by generate-and-test specification
Users can write naive generate-and-test programs easily and uniformly with GGenera-
tors (generator-of-generators) that abstract generation of nested data structures. This
generate-and-test specification covers wide range of problems, and users can make their
programs by changing parameters of the specification, such as GGenerators, binary oper-
ators, functions and predicates to filter elements.

• Automatic optimization by dispatching correct and efficient implementation
The library automatically dispatches efficient implementation to a user program written
with GGenerators based on a collection of theories. Each GGenerator has its collection of
theories and accompanying efficient implementations. If the library detects that the given
user program satisfies conditions to apply some efficient implementation given by theories,
then the library dispatches the efficient implementation to the user program. Properties
of user programs such as distributivity of operators should be explicitly given by users
when user-defined functions and operators are used in their programs.

• Growing Library
The library grows in two directions: expressiveness and optimization power. The expres-
siveness of the library easily grows by extending the specification supported by the library.
For example, adding a new GGenerator we can extend the specification to cover a wider
range of problems. The power of optimization of the library easily grows by adding new
knowledge of theories.

To enrich the power of GG library, we need to make collections of GGenerators and their
theories for optimization.

This report collects GGenerators and their theories for optimization with formal discussion,
as well as their implementations in GG library. Section 2 shows an overview of GG library.
Section 3 shows a collection of GGenerators with some example problems. Section 4 formalizes
a collection of theories for optimization. Section 5 shows implementation of GGenerators and
knowledge of their theories in GG library, as well as the core of GG library. Finally, Section 6
concludes this report. Note that, in Section 3, Section 4 and Section 5, subsections of the
same subsection-number correspond to the same target. For example, for GGenerator inits,
Section 3.3, Section 4.3 and Section 5.3 give example problems, theories, and implementation
in GG library, respectively.
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2 Overview of GG Library

This section briefly reviews our proposed GG library [EHK+08].

2.1 Structure of GG Library

Figure 1 illustrates the structure of GG Library. There are two kinds of collections in the li-
brary. One is a collection of GGeneratorsthat are used to describe specification of problems.
Each GGeneratorabstracts generation of a nested data structure. The collection of GGenera-
torsprovides an interface for easy and uniform description of user programs. The collection of
GGeneratorswith their examples is shown in Section 3.

The other is a collection of theories and accompanying efficient implementations dispatched
to user programs. Basically, each GGenerator has its own collection of theories and efficient
implementations. Given a user program written with GGenerators, the library checks applicable
conditions of theories against the given program, and then if the program satisfies the condition,
the library dispatches the accompanying efficient implementation. The collection of theories is
shown in Section 4.

Besides those two specific collections, the library has a collection of traits to describe math-
ematical properties of user programs. Those traits are used to determine whether a given user
program satisfies applicable conditions of theories.

Figure 1 also illustrates how GG library grows in two directions: expressiveness and opti-
mization power. The expressiveness of the library grows by adding new GGenerators to support
a wider range of problem specifications. The power of optimization grows by adding new knowl-
edge of theories to dispatch more efficient implementation to more user programs.

2.2 Behavior of GG Library

Figure 2 shows the behavior of our GG Library with concrete examples for a program to solve
“Maximum Prefix Sum Problem” (Section 3.3.2.) The objective of the program is to find the
maximum sum of a prefix of the input sequence. The behavior of GG Library for dispatching
implementation to a user program is separated into the following two phases.

Phase 1. Desugaring a user program into invocations of method generate2 of GGenerators
In the first phase, the library desugars a user program written with for-loops or com-
prehensions into invocations of method generate2 of GGenerators (Section 5.1.1) used
in the program. Method generate2 performs nested reductions on generated nested
data structures.

Figure 2-(a) shows an example of such user programs written with comprehensions.
This program uses GGenerator inits (Sections 3.3, 4.3, 5.3) to generate prefix segments
of the input sequence x . The desugaring process transforms the user program into
the program shown in Figure 2-(b). Two reduction operators + and MAX are given
to method generate2 as its arguments enclosed in objects: SumReductionZZ32 and
MaxReductionZZ32. The other arguments of method generate2 are default values
such as IdFunction (Section 5.2.2) and TrueListPredicate (Section 5.2.3).

Phase 2. Dispatching implementation within the invocation of method generate2
After the desugaring process, the library dispatches implementation within the in-
vocation of generate2 . In this phase, the library checks whether properties of the
given arguments of method generate2 satisfy the applicable condition of each theory
of the GGenerator. And then, if it is found that the applicable condition is satisfied,
the library performs computation of the nested reductions by corresponding efficient
implementation.
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Figure 1: Structure of GG library

BIG MAX [
∑

[ a | a← y] | y ← inits x ]

(a) User program of nested reductions with comprehensions

mis xs = inits(x).generate2[[ MaxReductionZZ32, IdFunction[[Z32]],
SumReductionZZ32, IdFunction[[Z32]],
TrueListPredicate[[Z32]], Z32, Z32]]

(MaxReductionZZ32, IdFunction[[Z32]],
SumReductionZZ32, IdFunction[[Z32]],
TrueListPredicate[[Z32]])

(b) Desugared program

opr MPS(a, b) = do

(m1, s1) = a
(m2, s2) = b
(m1 MAX (s1 + m2), s1 + s2)

end

object MPSReduction extends Reduction[[(Number,Number)]]
empty(): (Number,Number) = (−infinity , 0)
join(a : (Number,Number), b : (Number,Number)): (Number,Number) = a MPS b

end

opr BIG MPS [[E]](g : (Reduction[[E]], E → E)→ E):E = g(MPSReduction, fn a⇒ a)

(r1, r2) = BIG MPS [ (a, a) | a← x]
r1

(c) Efficient implementation for distributive operators

Figure 2: Two-phase behavior of GG library (with examples for “Maximum Prefix Sum”)
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To tell properties of the arguments to the library, the operator/predicate/function
should extend a set of suitable traits when it has some mathematical properties. For
example, usual plus operator + has distributivity over the maximum operator MAX ,
so SumReduction should extend trait LeftDistributiveOver[[MaxReduction]] to tell its
distributivity (Section 5.2.1). Since properties of the given arguments are specified by
traits, checking of applicable conditions of theories are performed by checking types
of the arguments (Section 5.1.2).

For example, for the desugared program shown in Figure 2-(b), the library checks
whether the reduction operator has distributivity. In this case, the library finds
SumReductionZZ32 (operator +) distributes over MaxReductionZZ32 (operator MAX),
since SumReductionZZ32 extends LeftDistributiveOver[[MaxReductionZZ32]]. Thus,
the library uses the efficient implementation shown in Figure 2-(c) to perform the
nested reduction of the program. This efficient implementation is given by Theo-
rem 15 in Section 4.
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3 A Collection of GGenerators with Example Problems

This section gives a collection of GGenerators and their example applications. More examples
may be found in [Bir01,SHTO00,SHT01,Zha02,Zan92,Jeu93].

Notation in this section follows that of Haskell [Bir98].

Note that not all of GGenerators shown in this section are currently implemented in GG
library.

3.1 Preliminaries

In this section, some functions are defined to describe example problems, and a class of prob-
lem specifications called “generate-and-test” is introduced. Also, some predicates used in the
following examples are defined in this section.

3.1.1 Basic Functions

We use the following functions to define specification of problems.

map f [x1, x2, . . . , xn] = [f x1, f x2, . . . , f xn]
reduce (⊕) [x1, x2, . . . , xn] = x1 ⊕ x2 ⊕ · · · ⊕ xn

hom (⊕, f) [x1, x2, . . . , xn] = f x1 ⊕ f x2 ⊕ · · · ⊕ f xn

last [x1, x2, . . . , xn] = xn

head [x1, x2, . . . , xn] = x1

length [x1, x2, . . . , xn] = n
filter p [x1, x2, . . . , xn] = [xi1 , xi2 , . . . , xim ] where p (xij ) = True

Function map f applies the given function f to every element of the input list. Function
reduce (⊕) performs ‘summation’ of the input list with the given associative binary operator
⊕. Function hom (⊕, f) performs reduce (⊕) after map f , i.e., hom (⊕, f) = reduce (⊕) ◦map f .
Function last takes the last element of the input, while function head takes the head. Function
length returns the length of the input. Function filter p removes every element that does not
satisfy the given predicate p.

Maximum and minimum are denoted by the following arrows.

a ↑ b = a if a ≥ b
= b otherwise

a ↓ b = a if a ≤ b
= b otherwise

For a function f , ↑f and ↓f are defined as follows.

a ↑f b = a if f a ≥ f b
= b otherwise

a ↓f b = a if f a ≤ f b
= b otherwise

For a tuple of any length, projection functions πi are defined as follows.

πi (a1, . . . , ai, . . . , an) = ai

For instance, π1 (a, b) = a and π2 (a, b) = b.
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3.1.2 GGenerators and Generate-and-test Specification

A GGenerator is a function to generate a nested list. For example, inits shown in the next section
generates a nested list of which element is a prefix of an input list, as shown in Section 3.3 and
Section 4.3.1.

Fortress’ generator abstracts generation of a flat data structure, i.e., a flat list, and reduction
on the flat structure. Our GGenerator extends the generator to abstract generation of a nested
data structure, i.e., a list of lists, and nested reductions on the nested data structure. Of course,
Fortress’ generator can perform nested reductions by nested use of Generators. The advantage
of our GGenerator’s nested reductions is that a GGenerator can use relationship between the
pair of reductions to perform the reductions with specialized efficient implementation given by
a collection of theories on GGenerators.

We focus on problems described with generate-and-test specification. The general form of
the generate-and-test specification with GGenerators is shown below.

hom (⊕, f) ◦map (hom (⊗, g)) ◦ filter p ◦gg

Here, gg is one instance of GGenerators, which generates a nested list, and the generated nested
list is consumed by the nested reductions, hom (⊕, f) for the outer list and hom (⊗, g) for the
inner lists, after filtered with predicate p.

For example, simple nested reductions with two binary operators ⊕ and ⊗ for a GGenerator
gg can be described in the generate-and-test specification as follows.

reduce (⊕) ◦map (reduce (⊗)) ◦gg = hom (⊕, id) ◦map (hom (⊗, id)) ◦ filter true ◦gg

Here, true is the predicate returning always True. The equality of the left hand side (the
simple nested reductions) and the right hand side (the generate-and-test specification) is easily
shown. First, by the definition of reduce (⊕), we get hom (⊕, id) = reduce (⊕) and hom (⊗, id) =
reduce (⊗). Next, by the definition of filter p, filter true = id since true returns always True.

Examples shown in the following sections are instances of the generate-and-test specification
with GGenerators.

3.1.3 Predicates for Examples

The following predicates on lists are used in examples shown in the following sections.

Predicate ascending returns True if the given list is ascending (i.e., each element is smaller
than the following element). For example, applying ascending to a sorted list [−2, 4, 5] we get
ascending([−2, 4, 5]) = True, while ascending([3, 6, 2]) = False since 6 is not smaller than 2.

Predicate descending returns True if the given list is descending (i.e., each element is bigger
than the following element). For example, applying descending to a descendingly sorted list
[5, 3, 0] we get descending([5, 3, 0]) = True, while ascending([1, 9, 7]) = False since 1 is not bigger
than 9.

Predicate smoothc returns True if a difference between any successive elements in the given
list is less than or equal to c. For example, smooth2([6, 5, 7]) = True, since both of differences
1 = |6 − 5| and 2 = |5 − 7| are less than or equal to 2. But, smooth2([6, 5, 8]) = False because
the difference 3 = |5− 8| is greater than 2.

Predicate high returns True if the maximum element of the given list is greater than the
length of the list. For example, high([1, 4, 3]) = True, since the maximum element 4 is greater
than the length of the list, i.e., 3. But, high([1, 4, 3, 2]) = False because the maximum element
4 is not greater than the length of the list 4.
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3.3 GGenerator inits

GGenerator inits generates prefixes of an input list. For example, applying inits to [1, 3, 1,−7, 2, 4]
we get the following nested list.

inits [1, 3, 1,−7, 2, 4] = [[1], [1, 3], [1, 3, 1], [1, 3, 1,−7], [1, 3, 1,−7, 2], [1, 3, 1,−7, 2, 4]]

Here, each element of the resulting list is a prefix of the given list.

3.3.1 Prefix Sums

The most famous application of inits is prefix sums, which has many applications [Ble90]. The
statement is as follows.

Example 1 (Prefix Sums). Given a list and an associative binary operator, find sums for all
prefixes of the given list.

For example, prefix sums of [1, 3, 1,−7, 2, 4] with operator ⊕ is [1, 1 ⊕ 3, 1 ⊕ 3 ⊕ 1, 1 ⊕ 3 ⊕
1⊕−7, 1⊕ 3⊕ 1⊕−7⊕ 2, 1⊕ 3⊕ 1⊕−7⊕ 2⊕ 4]. Using inits, prefix sums are easily obtained
by applying reduction with ⊕ to all prefixes generated by inits.

map (reduce (⊕)) (inits [1, 3, 1,−7, 2, 4])
= map (reduce (⊕)) [[1], [1, 3], [1, 3, 1], [1, 3, 1,−7], [1, 3, 1,−7, 2], [1, 3, 1,−7, 2, 4]]
= [1, 1⊕ 3, 1⊕ 3⊕ 1, 1⊕ 3⊕ 1⊕−7, 1⊕ 3⊕ 1⊕−7⊕ 2, 1⊕ 3⊕ 1⊕−7⊕ 2⊕ 4]

Sample fortress code for prefix sums with the usual plus operator + is shown below.

x = 〈 1, 3, 1,−7, 2, 4 〉

prefix sums = 〈
∑

y | y ← inits x 〉

A related theory is found in Section 4.3.1. Related implementation on GG library is found in
Section 5.3.1.

3.3.2 Maximum Prefix Sum

The maximum prefix sum problem is one of optimization problems on sequences. Its statement
is as follows.

Example 2 (Maximum Prefix Sum). Given a list, find the maximum sum of a prefix of the
given list.

For example, the maximum prefix sum of [1, 3, 1,−7, 2, 4] is 5 since its prefix sums (with the
usual plus operator +) are [1, 4, 5,−2, 0, 4]. So, using inits we can get the maximum prefix sum
easily by applying reduction with the maximum operator ↑ for the prefix sums.

reduce (↑) (map (reduce (+)) (inits [1, 3, 1,−7, 2, 4]))
= reduce (↑) (map (reduce (+)) [[1], [1, 3], [1, 3, 1], [1, 3, 1,−7], [1, 3, 1,−7, 2], [1, 3, 1,−7, 2, 4]])
= reduce (↑) ([1, 1 + 3, 1 + 3 + 1, 1 + 3 + 1 +−7, 1 + 3 + 1 +−7 + 2, 1 + 3 + 1 +−7 + 2 + 4])
= 5

Sample fortress code for the maximum prefix sum is shown below.

x = 〈 1, 3, 1,−7, 2, 4 〉

(∗ with complemension ∗)
mis = BIG MAX 〈

∑

y | y ← inits x 〉

(∗ with for-loop ∗)
m : Z32 = −infinity
for y ← inits x do

s =
∑

y
atomic mMAX = s

end
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A related theory is found in Section 4.3.2. Related implementation on GG library is found in
Section 5.3.2.

3.3.3 Maximum p-Prefix Sum

This is a variant of the maximum prefix sum problem. The statement is as follows.

Example 3 (Maximum p-Prefix Sum). Given a list and a predicate p, find the maximum sum
of its prefix satisfying the given predicate p.

For example, the maximum ascending-prefix sum of [1, 3, 1,−7, 2, 4] is 4 since its ascending
prefixes are [1] and [1, 3]. Using inits and filter , we can get the maximum ascending-prefix sum
easily as follows.

reduce (↑) (map (reduce (+)) (filter ascending (inits [1, 3, 1,−7, 2, 4])))
= reduce (↑) (map (reduce (+)) (filter ascending [[1], [1, 3], [1, 3, 1], [1, 3, 1,−7],

[1, 3, 1,−7, 2], [1, 3, 1,−7, 2, 4]]))
= reduce (↑) (map (reduce (+)) [[1], [1, 3]])
= reduce (↑) [1, 1 + 3]
= 4

Sample fortress code for the maximum ascending-prefix sum is shown below.

x = 〈 1, 3, 1,−7, 2, 4 〉
mais = BIG MAX 〈

∑

y | y ← inits x, ascending(y) 〉

A related theory is found in Section 4.3.3. Related implementation on GG library is found in
Section 5.3.3.

3.4 GGenerator tails

GGenerator tails generates suffixes of an input list. For example, applying tails to [1, 3, 1,−7, 2, 4]
we get the following nested list.

tails [1, 3, 1,−7, 2, 4] = [[1, 3, 1,−7, 2, 4], [3, 1,−7, 2, 4], [1,−7, 2, 4], [−7, 2, 4], [2, 4], [4]]

Here, each element of the resulting list is a suffix of the given list.

3.4.1 Suffix Sums

The most famous application of tails is suffix sums, which is converse computation of prefix
sums shown in Section 3.3.1. The statement is as follows.

Example 4 (Suffix Sums). Given a list and an associative binary operator, find sums for all
suffixes of the given list.

For example, suffix sums of [1, 3, 1,−7, 2, 4] with operator ⊕ is [1⊕ 3⊕ 1⊕−7⊕ 2⊕ 4, 3⊕
1⊕−7⊕ 2⊕ 4, 1⊕−7⊕ 2⊕ 4,−7⊕ 2⊕ 4, 2⊕ 4, 4] . Using tails, we can get suffix sums easily
by applying reduction with ⊕ to all suffixes generated by tails.

map (reduce (⊕)) (tails [1, 3, 1,−7, 2, 4])
= map (reduce (⊕)) [[1, 3, 1,−7, 2, 4], [3, 1,−7, 2, 4], [1,−7, 2, 4], [−7, 2, 4], [2, 4], [4]]
= [1⊕ 3⊕ 1⊕−7⊕ 2⊕ 4, 3⊕ 1⊕−7⊕ 2⊕ 4, 1⊕−7⊕ 2⊕ 4,−7⊕ 2⊕ 4, 2⊕ 4, 4]

Sample fortress code for suffix sums with the usual plus operator + is shown below.

x = 〈 1, 3, 1,−7, 2, 4 〉

suffix sums = 〈
∑

y | y ← tails x 〉

A related theory is found in Section 4.4.1. Related implementation on GG library is found in
Section 5.4.1.
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3.4.2 Maximum Suffix Sum

The maximum suffix sum problem is one of optimization problems on sequences. Its statement
is as follows.

Example 5 (Maximum Suffix Sum). Given a list, find the maximum sum of a suffix of the
given list.

For example, the maximum suffix sum of [1, 3, 1,−7, 2, 4] is 6 since its suffix sums (with the
usual plus operator +) are [4, 3, 0,−1, 6, 4]. So, using tails we can get the maximum suffix sum
easily by applying reduction with the maximum operator ↑ for suffix sums.

reduce (↑) (map (reduce (+)) (tails [1, 3, 1,−7, 2, 4]))
= reduce (↑) (map (reduce (+)) [[1, 3, 1,−7, 2, 4], [3, 1,−7, 2, 4], [1,−7, 2, 4], [−7, 2, 4], [2, 4], [4]]
= reduce (↑) [1 + 3 + 1 +−7 + 2 + 4, 3 + 1 +−7 + 2 + 4, 1 +−7 + 2 + 4,−7 + 2 + 4, 2 + 4, 4]
= 6

Sample fortress code for the maximum suffix sum is shown below.

x = 〈 1, 3, 1,−7, 2, 4 〉

(∗ with complemension ∗)
mts = BIG MAX 〈

∑

y | y ← tails x 〉

(∗ with for-loop ∗)
m : Z32 = −infinity
for y ← tails x do

s =
∑

y
atomic mMAX = s

end

A related theory is found in Section 4.4.2. Related implementation on GG library is found in
Section 5.4.2.

3.4.3 Maximum p-Suffix Sum

This is a variant of the maximum suffix sum problem. The statement is as follows.

Example 6 (Maximum p-Suffix Sum). Given a list and a predicate p, find the maximum sum
of its suffix satisfying the given predicate p.

For example, the maximum ascending-suffix sum of [1, 3, 1,−7, 2, 4] is 6 since its ascending
suffixes are [−7, 2, 4], [2, 4] and [4]. Using tails and filter , we can get the maximum ascending-
suffix sum easily as follows.

reduce (↑) (map (reduce (+)) (filter ascending (tails [1, 3, 1,−7, 2, 4])))
= reduce (↑) (map (reduce (+)) (filter ascending [[1, 3, 1,−7, 2, 4], [3, 1,−7, 2, 4],

[1,−7, 2, 4], [−7, 2, 4], [2, 4], [4]]))
= reduce (↑) (map (reduce (+)) [[−7, 2, 4][2, 4], [4], ])
= reduce (↑) [−7 + 2 + 4, 2 + 4, 4]
= 6

Sample fortress code for the maximum ascending-suffix sum is shown below.

x = 〈 1, 3, 1,−7, 2, 4 〉
mats = BIG MAX 〈

∑

y | y ← tails x, ascending(y) 〉

A related theory is found in Section 4.4.3. Related implementation on GG library is found in
Section 5.4.3.
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3.5 GGenerator segs

GGenerator segs generates segments (continuous subsequences) of an input list. The segments
are listed in the lexicographic order. For example, applying segs to [3, 2,−7, 4, 2] we get the
following nested list.

segs [3, 2,−7, 4, 2] = [[3], [3, 2], [3, 2,−7], [3, 2,−7, 4], [3, 2,−7, 4, 2], [2], [2,−7],
[2,−7, 4], [2,−7, 4, 2], [−7], [−7, 4], [−7, 4, 2], [4], [4, 2], [2]]

3.5.2 Maximum Segment Sum

The most famous application of segs is maximum segment sum problem [Bir87,Jeu93,SHTO00],
which is one of optimization problems on sequences. The statement is as follows.

Example 7 (Maximum Segment Sum). Given a list, find the maximum sum of a segment of
the given list.

For example, the maximum segment sum of [3, 2,−7, 4, 2] is 6 that is the sum of its segment
[4, 2]. We can get the maximum segment sum of the given list using segs as follows. First, we
generate all segments of the given list by segs. Then, we apply reduction with the usual plus
operator + to generated segments to get all segment sums. Finally, applying reduction with
maximum-operator to those segment sums, we get the maximum segment sum of the given list.

reduce (↑) (map (reduce (+)) (segs [3, 2,−7, 4, 2]))
= reduce (↑) (map (reduce (+)) [[3], [3, 2], [3, 2,−7], [3, 2,−7, 4], [3, 2,−7, 4, 2], [2], [2,−7],

[2,−7, 4], [2,−7, 4, 2], [−7], [−7, 4], [−7, 4, 2], [4], [4, 2], [2]])
= reduce (↑) [3, 5,−2, 2, 4, 2,−5,−1, 1,−7,−3,−1, 4, 6, 2]
= 6

Sample fortress code for the maximum prefix sum is shown below.

x = 〈 3, 2,−7, 4, 2 〉

(∗ with complemension ∗)
mss = BIG MAX 〈

∑

y | y ← segs x 〉

(∗ with for-loop ∗)
m : Z32 = −infinity
for y ← segs x do

s =
∑

y
atomic mMAX = s

end

A related theory is found in Section 4.5.2. Related implementation on GG library is found
in Section 5.5.2.

3.5.3 Maximum p-Segment Sum

This is a variant of the maximum segment sum problem. The statement is as follows.

Example 8 (Maximum p-Segment Sum). Given a list and a predicate p, find the maximum
sum of its segment satisfying the given predicate p.

For example, the maximum ascending-segment sum of [3, 2,−7, 4, 2] is 4 since its ascending-
segments are all singletons. The maximum descending-segment sum of [3, 2,−7, 4, 2] is 6 since
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its descending-segments are [3, 2], [3, 2,−7], [2,−7], [4, 2] and singletons. Using segs and filter ,
we can get the maximum descending-segment sum easily as follows.

reduce (↑) (map (reduce (+)) (filter descending (segs [3, 2,−7, 4, 2])))
= reduce (↑) (map (reduce (+)) (filter descending [[3], [3, 2], [3, 2,−7], [3, 2,−7, 4], [3, 2,−7, 4, 2],

[2], [2,−7], [2,−7, 4], [2,−7, 4, 2], [−7], [−7, 4],
[−7, 4, 2], [4], [4, 2], [2]]))

= reduce (↑) (map (reduce (+)) [[3], [3, 2], [3, 2,−7], [2], [2,−7], [−7], [4], [4, 2], [2]])
= reduce (↑) [3, 5,−2, 2,−5,−7, 4, 6, 2]
= 6

Sample fortress code for the maximum descending-segment sum is shown below.

x = 〈 3, 2,−7, 4, 2 〉
mdss = BIG MAX 〈

∑

y | y ← segs x, descending(y) 〉

A related theory is found in Section 4.5.3. Related implementation on GG library is found in
Section 5.5.3.

3.5.4 Longest-p Segment

Longest-p segment problem [Zan92] is also one of optimization problems on sequences. Its
statement is as follows.

Example 9 (Longest-p Segment). Given a list and a predicate, find the longest segment (con-
tinuous subsequence) of the list that satisfies the predicate.

For example, the longest-ascending segment of [3, 2,−7, 4, 2] is [−7, 4], while the longest-
descending segment is [3, 2,−7]. There are many instances of longest-p segment for various
predicates. The longest segment satisfying a given predicate p is obtained by using segs and
filtering. Some instances are shown below.

The longest ascending segment of an input list is obtained by using the predicate ascending .

reduce (↑length) (filter ascending (segs [3, 2,−7, 4, 2]))
= reduce (↑length) (filter ascending (segs [[3], [3, 2], [3, 2,−7], [3, 2,−7, 4], [3, 2,−7, 4, 2],

[2], [2,−7], [2,−7, 4], [2,−7, 4, 2], [−7], [−7, 4],
[−7, 4, 2], [4], [4, 2], [2]]))

= reduce (↑length) [[3], [2], [−7], [−7, 4], [4], [2]]
= [2, 5]

The longest smooth segment of an input list is obtained by using the predicate smoothc.

reduce (↑length) (filter smooth4 (segs [3, 2,−7, 4, 2]))
= reduce (↑length) (filter smooth4 (segs [[3], [3, 2], [3, 2,−7], [3, 2,−7, 4], [3, 2,−7, 4, 2],

[2], [2,−7], [2,−7, 4], [2,−7, 4, 2], [−7], [−7, 4],
[−7, 4, 2], [4], [4, 2], [2]]))

= reduce (↑length) [[3], [3, 2], [2], [−7], [4], [4, 2], [2]]
= [3, 2]

The longest high segment of an input list is obtained by using predicate high.

reduce (↑length) (filter high (segs [3, 2,−7, 4, 2]))
= reduce (↑length) (filter high (segs [[3], [3, 2], [3, 2,−7], [3, 2,−7, 4], [3, 2,−7, 4, 2], [2], [2,−7],

[2,−7, 4], [2,−7, 4, 2], [−7], [−7, 4], [−7, 4, 2], [4], [4, 2], [2]]))
= reduce (↑length) [[3], [3, 2], [2], [4], [4, 2], [2]]
= [3, 2]

Sample fortress code for the longest p-segment is shown below. The code computes the
longest p-segment with its length.
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x = 〈 3, 2,−7, 4, 2 〉
las = BIG MAX 〈 (length y, y) | y ← segs x, ascending(y) 〉
lss = BIG MAX 〈 (length y, y) | y ← segs x, smooth(4, y) 〉
lhs = BIG MAX 〈 (length y, y) | y ← segs x, high y 〉

3.6 GGenerator subs

GGenerator subs generates all subsequences (sub-lists) of an input list. Generated subsequences
are listed in the lexicographic order. For example, applying subs to [2, 5,−3, 4] we get the
following nested list.

subs [2, 3,−3, 4] = [[2], [2, 3], [2, 3,−3], [2, 3,−3, 4], [2, 3, 4], [2,−3], [2,−3, 4], [2, 4],

[3], [3,−3], [3,−3, 4], [3, 4], [−3], [−3, 4], [4]]

3.6.1 Longest-p Subsequence

Longest-p subsequence problem is one of optimization problems on sequences [Jeu93].

Example 10 (Longest-p Subsequence). Given a list and a predicate, find the longest subse-
quence of the list that satisfies the predicate.

For example, the longest-ascending subsequnce of [2, 3,−3, 4] is [2, 3, 4], while the longest-
descending subsequnce is [2,−3]. There are many instances of longest-p subsequnce for various
predicates. The longest subsequnce satisfying a given predicate p is obtained by using subs and
filter . Some instances are shown blow.

The longest ascending subsequence of an input list is obtained by using subs and the predicate
ascending .

reduce (↑length) (filter ascending (subs [2, 3,−3, 4]))
reduce (↑length) (filter ascending [[2], [2, 3], [2, 3,−3], [2, 3,−3, 4], [2, 3, 4], [2,−3], [2,−3, 4], [2, 4],

[3], [3,−3], [3,−3, 4], [3, 4], [−3], [−3, 4], [4]])
= reduce (↑length) [[2], [2, 3], [2, 3, 4], [2, 4], [3], [3, 4], [−3], [−3, 4], [4]]
= [2, 3, 4]

The longest descending subsequence of an input list is obtained by using subs and the predicate
descending .

reduce (↑length) (filter descending (subs [2, 3,−3, 4]))
reduce (↑length) (filter descending [[2], [2, 3], [2, 3,−3], [2, 3,−3, 4], [2, 3, 4], [2,−3], [2,−3, 4],

[2, 4], [3], [3,−3], [3,−3, 4], [3, 4], [−3], [−3, 4], [4]])
= reduce (↑length) [[2], [2,−3], [3], [3,−3], [−3], [4]]
= [2,−3]

Sample fortress code for longest-ascending subsequence is shown below. The code computes
the longest p-subsequence with its length.

x = 〈2, 5,−3, 4 〉
las = BIG MAX 〈 (length y, y) | y ← subs x, ascending y 〉
lds = BIG MAX 〈 (length y, y) | y ← subs x, descending y 〉

3.6.2 0-1 Knapsack Problem

Example 11 (0-1 Knapsack Problem). Given a list of items (pairs of value and weight) and a
knapsack of fixed capacity, find a subset of items that has the maximum sum of values and its
sum of weight is less than or equals to the capacity.
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For example, given four items [(2, 1), (5, 3), (1, 1), (4, 2)] (first element of a pair is value and
the second is weight) and a knapsack of capacity 4, the solution (a set of items to be put
into the knapsack) is [(2, 1), (5, 3)]. This solution is given as follows. First, we generate every
combination of items by subs. Then, using filtering, we throw away combinations of which
weight is greater than the capacity. Finally, we take the combination that have the maximum
sum of values.

reduce (↑reduce (+) ◦map π1
) (filter ((≤4)◦(reduce (+))◦(map π2)) (subs [(2, 1), (5, 3), (1, 1), (4, 2)]))

= reduce (↑reduce (+) ◦map π1
) [[(2, 1)], [(2, 1), (5, 3)], [(2, 1), (1, 1)], [(2, 1), (1, 1), (4, 2)],

[(2, 1), (4, 2)], [(5, 3)], [(5, 3), (1, 1)], [(1, 1)], [(1, 1), (4, 2)], [(4, 2)]]
= [(2, 1), (5, 3)]

Sample fortress code for 0-1 knapsack problem is shown below.

x = 〈(2, 1), (5, 3), (1, 1), (4, 2)〉
capa = 4
pf = BIG MAX 〈 (

∑

〈first a | a← y〉, y) | y ← subs x,
∑

〈 second a | a← y〉 ≤ capa〉

3.7 GGenerator parts

GGenerator parts generates all partitions of an input list. For example, applying parts to
[2, 5,−3] we get the following nested list.

parts [2, 5,−3] = [[[2, 5,−3]], [[2, 5], [−3]], [[2], [5,−3]], [[2], [5], [−3]]]

3.7.1 Smallest All Ascending Partition

Example 12 (Smallest All Ascending Partition). Given a list, find the smallest partition in
which each part is ascending.

For example, smallest all ascending partition of [2, 5,−3] is [[2, 5], [−3]]. This solution is
obtained by using parts and filter as shown below.

reduce (↓length) (filter ((reduce (∧)) ◦ (map ascending)) (parts [2, 5,−3]))
reduce (↓length) (filter ((reduce (∧)) ◦ (map ascending)) [[[2, 5,−3]], [[2, 5], [−3]], [[2], [5,−3]],

[[2], [5], [−3]]])
= reduce (↓length) [[[2, 5], [−3]], [[2], [5], [−3]]]
= [[2, 5], [−3]]

Sample fortress code for all ascending partition is shown below. The code computes shortest-
partition with its length.

x = 〈2, 5,−3〉
las = BIG MIN 〈 (length y, y) | y ← parts x, BIG ∧ 〈 ascending a | a← y 〉 〉

3.7.2 Paragraph Formatting

Example 13 (Paragraph Formatting). Given a list of lengths of words and a length of a line,
find the minimum partition of the list so that a sum of each part is less or equals to the given
length of a line.

For example, lengths of words are [2, 5, 3, 4] and the length of the line is 7, the minimum
partition is [[2, 5], [3, 4]], where sum of each part is equal to 7. This solution is obtained by using
parts, filtering and reduction.

reduce (↓length) (filter ((≤ 7) ◦ (reduce (+)) (parts [2, 5, 3, 4]))
= reduce (↓length) [[[2, 5], [3, 4]], [[2, 5], [3], [4]], [[2], [5], [3, 4]], [[2], [5], [3], [4]]]
= [[2, 5], [3, 4]]

Sample fortress code for paragraph formatting is shown below.
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x = 〈2, 5, 3, 4〉
line width = 7
pf = BIG MIN 〈 (length y, y) | y ← parts x, BIG ∧ 〈

∑

a ≤ line width | a← y 〉 〉

3.8 GGenerator perm

GGenerator perm generates all permutations of an input list. For example, applying perm to
[2, 5,−3] we get the following nested list.

perm [2, 5,−3] = [[2, 5,−3], [2,−3, 5], [5, 2,−3], [5,−3, 2], [−3, 2, 5], [−3, 5, 2]]

3.8.1 Sorting

Sorting can be performed by using perm as follows.

head (filter ascending (perm [2, 5,−3]))
= head (filter ascending [[2, 5,−3], [2,−3, 5], [5, 2,−3], [5,−3, 2], [−3, 2, 5], [−3, 5, 2]])
= head [[−3, 2, 5]]
= [−3, 2, 5]

The program head ◦ filter ascending ◦perm describes clearly the specification of sorting, although
this program is, of course, extremely inefficient by naive execution.

Sample fortress code for the sorting is shown below.

x = 〈2, 5,−3〉
sorted x = head〈 ys | ys ← perms x, ascending ys 〉
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4 A Collection of Theories

Theories given in this section are used to dispatch efficient implementation against user programs
of the generate-and-test specification. Preliminaries for formal discussion of theories are shown
at the beginning of this section. The collection of theories of GGeneratorsfollows it.

Notation in this section follows that of Haskell [Bir98] and BMF (Bird-Meertens formal-
ism) [Bir87,Ski90].

4.1 Preliminaries

This section gives formal definitions and concise notations of functions for formal manipulation
of specifications. Intuitive definitions of those functions are found in Section 3.1, in which some
of them have more human-readable names.

We assume that binary operators in this section, such as ⊕ and ⊗, are associative, unless
otherwise noted. The identity of binary operator ⊕ is denoted by ı⊕.

A list is a sequence of elements a1, a2, . . . , an denoted by [a1, a2, . . . , an]. Function [·] takes
an element to make a singleton list, i.e., [·] a = [a]. Concatenation of two lists is denoted by
binary operator ++. An empty list, which is the identity of ++, is denoted by [ ].

Binary operators ≫ and ≪ used in the following sections are defined as follows.

a≫ b = b, a≪ b = a

4.1.1 Homomorphism and Auxiliary Functions

Homomorphisms are basic functions defined on lists as follows.

([⊕, f ]) (x ++ y) = ([⊕, f ]) x⊕ ([⊕, f ]) y
([⊕, f ]) [a] = f a

Homomorphism ([⊕, f ]) applies the given function f to every element of the input list, and then
combines the results using the given associative binary operator ⊕. Since a homomorphism
is completely specified by function f and associative binary operator ⊕, a homomorphism is
denoted by ([⊕, f ]). Homomorphism is the basis of parallel computation, since associativity of
the operator ⊕ gives us correct balanced divide-and-conquer parallel computation of homomor-
phism.

Intuitive definition of homomorphism ([⊕, f ]) is shown below.

([⊕, f ]) [x1, x2, . . . , xn] = f x1 ⊕ f x2 ⊕ · · · ⊕ f xn

Since⊕ has associativity, the above result of the homomorphism can be obtained by the following
computation. First, the input list [x1, x2, . . . , xn] is divided into two parts [x1, x2, . . . , xn/2] and
[xn/2+1, xn/2+2, . . . , xn]. Next, the homomorphism ([⊕, f ]) is applied to each of the parts to
compute in parallel the partial results f x1 ⊕ f x2 ⊕ · · · ⊕ f xn/2 and f xn/2+1 ⊕ f xn/2+2 ⊕
· · · ⊕ f xn. Then, those partial results are combined by the operator ⊕ to get the result for the
whole input. Repeatedly applying the above division and combination to computation of the
partial results, we get balanced divide-and-conquer parallel computation of the homomorphism
([⊕, f ]).

Two basic specializations of homomorphism are f∗ and ⊕/ defined below.

f∗ = ([++, [·] ◦ f ])
⊕/ = ([⊕, id])

Function f∗ applies the given function f to every element of the given list. Function ⊕/ performs
‘summation’ of the given list with the given associative binary operator ⊕. One of the most
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important relations between these specializations and homomorphism is the following equation,
which shows that homomorphism ([⊕, f ]) can be decomposed into f∗ and ⊕/.

([⊕, f ]) = ⊕/ ◦ f∗

Intuitive definitions of f∗ and ⊕/ are shown below.

f∗ [x1, x2, . . . , xn] = [f x1, f x2, . . . , f xn]
⊕/ [x1, x2, . . . , xn] = x1 ⊕ x2 ⊕ · · · ⊕ xn

Some functions are defined with homomorphism.

last = ([≫, id])
head = ([≪, id])
p ⊳ = ([++, f ]) where f x = if p x then [x] else [ ]

Function last takes the last element of the given list, while function head takes the head of the
given list. Function p ⊳ filters the given list so that the resulting list contains only elements
satisfying the given predicate p. Intuitive definitions of the above function are given as follows.

last [x1, x2, . . . , xn] = xn

head [x1, x2, . . . , xn] = x1

p ⊳ [x1, x2, . . . , xn] = [xi1 , xi2 , . . . , xim ] where p (xij ) = True

Correspondence between the above functions and those in Section 3.1 is shown below.

map f = f∗, reduce (⊕) = ⊕/, hom (⊕, f) = ([⊕, f ]), filter p = p ⊳

For a tuple of any length, projection functions πn are defined as follows.

πi (a1, . . . , ai, . . . , an) = ai

For instance, π1 (a, b) = a and π2 (a, b) = b.

4.1.2 GGenerators and Generate-and-test Specification

A GGenerator is a function to generate a nested list. For example, inits generates a nested list
of which element is a prefix of a given list, as shown in Section 3.3 and Section 4.3.1.

We focus on problems described with generate-and-test specification. The general form of
the generate-and-test specification is shown below.

([⊕, f ]) ◦ ([⊗, g])∗ ◦ p ⊳ ◦gg

Here, gg is one instance of GGenerators, which generates a nested list, and the generated nested
list is consumed by the nested reductions, ([⊕, f ]) for the outer list and ([⊗, g]) for the inner lists,
after filtered with predicate p.

For example, simple nested reductions ⊕/ ◦⊗/∗ for a GGenerator gg can be described in
the generate-and-test specification as follows.

⊕/ ◦⊗/∗ ◦ gg = ([⊕, id]) ◦ ([⊗, id])∗ ◦ true ⊳ ◦gg

Here, true is the predicate returning always True. The equality of the left hand side and the right
hand side is easily shown. First, by the definition of ⊕/, we get ([⊕, id]) = ⊕/ and ([⊗, id]) = ⊗/.
Next, by the definition of p ⊳, true ⊳ = id since true returns always True.

Theories shown in the following sections give efficient implementations of subclasses of the
generate-and-test specification.

Related implementation on GG library is found in Section 5.1.1.
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4.2 Properties on Reduction Operators and Predicates

This section defines properties on operators and predicates for deriving efficient implementation.

4.2.1 Properties on Reduction Operators

Associativity is the basis of parallel computation of homomorphism since it guarantees correct-
ness of balanced divide-and-conquer parallel computation of homomorphism.

Definition 1 (Associativity). Binary operator ⊕ is said to be associative if the following equa-
tion holds for all a, b and c.

a⊕ (b⊕ c) = (a⊕ b)⊕ c

Distributivity plays an important role in deriving efficient implementation for nested reduc-
tions. Basically, distributivity guarantees efficient reuse of partial results.

Definition 2 (Left-Distributivity). Binary operator ⊗ is said to be left-distributive over ⊕ if
the following equation holds for all a, b and c.

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

Definition 3 (Right-Distributivity). Binary operator ⊗ is said to be right-distributive over ⊕
if the following equation holds for all a, b and c.

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

Definition 4 (Distributivity). Binary operator ⊗ is said to be distributive over ⊕ if ⊗ is left-
and right-distributive over ⊕, i.e. the following equations hold for all a, b and c.

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

Commutativity is used to change the order of computation to achieve good efficiency, as
well as distributivity.

Definition 5 (Commutativity). Binary operator ⊕ is said to be commutative if the following
equation holds for all a and b.

a⊕ b = b⊕ a

For example, well-known binary operators + (plus), × (times), ↑ (maximum), and ↓ (mini-
mum) are all associative and commutative. Moreover, × distributes over +, and + distributes
over ↑ or ↓. Concatenation operator ++ is associative, but not commutative. Function f∗ is
left-distributive over ++, since f∗ (x ++ y) = (f∗x) ++ (f∗ y). Distributivity of f∗ is often used
in the following derivations of efficient implementations.

Related implementation on GG library is found in Section 5.2.1.

4.2.2 Properties on Predicates

The following closure properties are defined on predicates for deriving efficient implementa-
tion [Zan92,Jeu93].

Definition 6 (Prefix-Closed). Predicate p is said to be prefix-closed if the following equation
holds for all x and y.

p (x ++ y)⇒ p (x)
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Definition 7 (Suffix-Closed). Predicate p is said to be suffix-closed if the following equation
holds for all x and y.

p (x ++ y)⇒ p (y)

Definition 8 (Segment-Closed). Predicate p is said to be segment-closed if p is prefix- and
suffix closed, i.e. the following equation holds for all x, y and z.

p (x ++ y ++ z)⇒ p (y)

Definition 9 (Overlap-Closed). Predicate p is said to be overlap-closed if the following equation
holds for all x, y and z.

p (x ++ y) ∧ p (y ++ z) ∧ y 6= [ ]⇒ p (x ++ y ++ z)

Prefix-closed property plays the most important role in derivation of efficient sequential im-
plementation of segment problems [Zan92, Jeu93]. Other properties are used as auxiliary tools
to improve the derived implementation. However, in derivation of efficient parallel implementa-
tion, the pair of segment-closed property and overlap-closed property plays the most important
role, as shown in the following sections.

A candidate of segment-closed and overlap-closed predicates is given by a relation [Zan92].

Definition 10 (Relational Predicate). Given a relation R, relational predicate pR is defined as
follows.

pR (x) =
∧

{aRb | [a, b] ∈ segments x}

Here, segments x returns a set of segments (contiguous subsequences) of x, i.e., segments x =
{ y | u ++ y ++ v = x }. Note that [a, b] ∈ segments x means that a and b are successive elements
in x, since segments x generates all contiguous subsequences of x and [a, b] ∈ segments x takes
such subsequences of length two. Relational predicate pR is true for the given list x, if all
successive elements a and b in x satisfy the relation R, i.e. aRb = True.

Zantema [Zan92] shows that a relational predicate pR is segment-closed and overlap-closed,
but we can also show the converse, i.e., a segment-closed and overlap-closed predicate is a
relational predicate. The following lemma shows the relation between relational predicates and
segment-closed and overlap-closed predicates.

Lemma 11 (Relational Predicate). Given predicate p that is true for all singletons and empty
list, the following statements are equivalent.

1. p is segment-closed and overlap-closed.

2. p is relational.

Proof. 2⇒ 1) Since p is relational, there exists a relation R and the following equation holds.

p (x) =
∧

{aRb | [a, b] ∈ segments x}

First, we show that p is segment-closed.

p (x ++ y ++ z)
= { unfolding p }

∧

{aRb | [a, b] ∈ segments (x ++ y ++ z)}
⇒ { segments y ⊆ segments (x ++ y ++ z) }

∧

{aRb | [a, b] ∈ segments y}
= { folding p }

p (y)
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Next, we show that p is overlap-closed.

p (x ++ y) ∧ p (y ++ z) ∧ y 6= [ ]
= { unfolding p }

∧

{aRb | [a, b] ∈ segments (x ++ y)} ∧
∧

{aRb | [a, b] ∈ segments (y ++ z)} ∧ y 6= [ ]

⇒







y 6= [ ]⇒
{[a, b] | [a, b] ∈ segments (x ++ y)} ∪ {[a, b] | [a, b] ∈ segments (y ++ z)}

= {[a, b] | [a, b] ∈ segments (x ++ y ++ z)}







∧

{aRb | [a, b] ∈ segments (x ++ y ++ z)}
= { folding p }

p (x ++ y ++ z)

1⇒ 2) Letting R = {(a, b) | p ([a, b])}, we show p = pR by induction.

For base cases, we have p ([ ]) = p ([a]) = pR ([]) = pR ([a]) = True by assumption.

For induction case, we have p ([a] ++ x) = pR ([a] ++ x) by the following calculation.

p ([a] ++ x)
= { segment-closed and overlap-closed }

p (x) ∧ p ([a] ++ [head x])
= { induction hypothesis and definition of R }

pR (x) ∧ aR(head x)
= { definition of pR }

pR ([a] ++ x)

Thus, p = pR and p is relational.

In the above lemma, we assumed that the predicate p is true for all singletons and empty list
for simplicity. However, we can remove this assumption by letting values of relational predicate
pR in the proof be those of the given predicate p.

Examples of relational predicates are shown below.

ascending (x) = p< (x)
descending (x) = p> (x)
flat (x) = p= (x)
smoothc (x) = pRc

(x) where aRcb = |a− b| ≤ c

Predicate ascending is true when the given list is ascendingly sorted, while descending is true
for descendingly sorted lists. Predicate flat is true if the all elements in the given list are the
same. Predicate smoothc is true if the maximum of differences of successive elements is less
than or equal to c. Especially, flat = smooth0.

It is worth mentioning about composition of predicates [Zan92]. Each closure property of
prefix-closed, suffix-closed, segment-closed and overlap-closed is closed under disjunction. Each
closure property of prefix-closed, suffix-closed, and segment-closed is closed also under conjunc-
tion, but overlap-closed property is not closed under conjunction. For example, ascending and
descending are both overlap-closed, but ascending ∨ descending is not overlap-closed since we
can make a counterexample: ascending(x ++ y) ∧ descending(y ++ z) ∧ y 6= [ ] implies neither
ascending(x ++ y ++ z) nor descending(x ++ y ++ z).

Related implementation on GG library is found in Section 5.2.3. Related examples are found
in Section 3.1.3.

4.3 Theory of inits

This section gives formal definition and theory of GGenerator inits.
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4.3.1 Formal Definition and Basic Lemmas

First of all, we give a formal definition of inits.

Definition 12 (GGenerator Inits). GGenerator inits is defined with homomorphism as follows.

inits = ([⊕, [·] ◦ [·]]) where x⊕ y = x ++ ((last x)++)∗ y

The operator ⊕ in the above definition makes a list of initial segments of a list u ++ v from
lists (x and y in the above equation) of initial segments of u and v. Since each initial segment
of u is also an initial segment of u ++ v, x remains in the result. Since each initial segment of
v need to be concatenated with u to become an initial segment of u ++ v, the operator maps
((last x)++) (u is the last element of x) to y.

The following two lemmas are well-known lemmas of inits [Bir87].

Lemma 13 (Scan). For any associative binary operator ⊕, the following equation holds.

scan (⊕) = ⊕/∗ ◦ inits

Lemma 14 (Inits-Map Promotion). For function f , the following equation holds.

f∗∗ ◦ inits = inits ◦ f∗

First lemma gives us a way to compute prefix sums by inits. The second lemma gives us a way
to promote the application of function f through inits. The number of applications of function
f on the left hand side is n(n + 1)/2, while that on the right hand side is n. So, transformation
from the left hand side to the right hand side improves the efficiency. Also, the lemma enables
us to ignore a function g in the generate-and-test specification ([⊕, f ]) ◦ ([⊗, g])∗ ◦ p ⊳ ◦inits, since
we can replace g with the identity function id and apply g to the input of inits beforehand (of
course, we need some tricks to through p ⊳).

A related example problem is found in Section 3.3.1. Related implementation on GG library
is found in Section 5.3.1.

4.3.2 Theorem for Reduction with Distributive Operators

The following theorem gives efficient parallel implementation of nested reductions for inits when
two reductions have distributivity. One of the most famous problems for which this theorem
is applicable is maximum initial-segment sum problem (also known as maximum prefix sum
problem), which is an instance of maximum marking problems [SHTO00, Bir01]. A related
example problem is found in Section 3.3.2. Related implementation on GG library is found in
Section 5.3.2.

Theorem 15 (Maximum Initial-segment Sum). Provided that ⊕ is associative, and ⊗ is asso-
ciative and left-distributive over ⊕, the following equation holds.

⊕/ ◦ ⊗/∗ ◦ inits = π1 ◦ ([⊙, pair ]) where (i1, s1)⊙ (i2, s2) = (i1 ⊕ (s1 ⊗ i2), s1 ⊗ s2)
pair a = (a, a)

Proof. We show the theorem by induction.
For base case, we have LHS [a] = RHS [a] by the following calculation.

LHS [a]
= { LHS }

(⊕/ ◦ ⊗/∗ ◦ inits) [a]
= { definition of inits, ∗, / }

a
= { definition of π1, ([, ]), pair }

(π1 ◦ ([⊙, pair ])) [a]
= { RHS }

RHS [a]
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For induction case, we have LHS (x ++ y) = RHS (x ++ y) by the following calculation.

LHS (x ++ y)
= { LHS }

(⊕/ ◦ ⊗/∗ ◦ inits) (x ++ y)
= { definition of function composition, unfolding inits, last (inits x) = x }

(⊕/ ◦ ⊗/∗) (inits x ++ (x++)∗ (inits y))
= { definition of function composition, ∗ and / }
⊕/ (⊗/∗ (inits x))⊕⊕/ ((⊗/ x⊗)∗(⊗/∗ (inits y)))

= { distributivity of ⊗ }
⊕/ (⊗/∗ (inits x))⊕ (⊗/ x⊗⊕/ (⊗/∗ (inits y)))

= { induction hypothesis }
(π1 ◦ ([⊙, pair ])) x⊕ (⊗/ x⊗ (π1 ◦ ([⊙, pair ])) y)

= { ⊗/ x = π2 (([⊙, pair ])x) (shown below) }
(π1 ◦ ([⊙, pair ])) x⊕ ((π2 (([⊙, pair ]) x))⊗ (π1 ◦ ([⊙, pair ])) y)

= { definition of ⊙ }
π1 (([⊙, pair ])x⊙ ([⊙, pair ]) y)

= { definition of ([, ]), function composition }
(π1 ◦ ([⊙, pair ])) (x ++ y)

= { RHS }
RHS (x ++ y)

Finally, we show that ⊗/ x = π2 (([⊙, pair ])x). For base case, we have

LHS [a]
= { LHS }
⊗/[a]

= { definition of / }
a

= { definition of π2, ([, ]), pair }
π2 (([⊙, pair ]) [a])

= { RHS }
RHS [a]

For induction case, we have

LHS (x ++ y)
= { LHS }
⊗/ (x ++ y)

= { definition of / }
⊗/ x⊗⊗/ y

= { induction hypothesis }
π2 (([⊙, pair ])x)⊗ π2 (([⊙, pair ]) y)

= { definition of ⊙ }
π2 (([⊙, pair ])x⊙ ([⊙, pair ]) y)

= { definition of ([, ]) }
π2 (([⊙, pair ]) (x ++ y))

= { RHS }
RHS (x ++ y)

Similar proof is also shown in [Gor97].
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The resulting program (the right hand side) of the theorem uses only one reduction with
the new operator ⊙, while the original program (the left hand side) uses two nested reductions
with inits. The cost of the new operator is proportional to the cost of operators in the original
reductions. So, the resulting program is more efficient than the original program.

The new operator ⊙ is applied to tuples. The first element of a tuple is equal to the result
of the original program. The second element of the tuple is equal to the reduction of the same
input with operator ⊗, which is used to improve efficiency of the program by reusing the partial
results effectively.

4.3.3 Theorem for Filtering with Relational Predicates

The following theorem extends Theorem 15 by allowing filtering with the given predicate. It
gives efficient parallel implementation of nested reductions for inits when two reductions have
distributivity and the predicate is relational. Derivation of efficient sequential implementations
for those programs with filtering is shown in [Zan92,Jeu93]. A related example problem is found
in Section 3.3.3. Related implementation on GG library is found in Section 5.3.3.

Theorem 16 (Maximum p-Initial-segment Sum). Provided that ⊕ is associative, ⊗ is associa-
tive and left-distributive over ⊕, and predicate p is relational, the following equation holds.

⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦ inits = π1 ◦ ([⊡, pentuple])
where

(i1, s1, h1, l1, p1) ⊡ (i2, s2, h2, l2, p2) = (i, s1 ⊗ s2, h1 ≪ h2, l1 ≫ l2, p1 ∧ p2 ∧ p ([l1, h2]))
where i = i1 ⊕ if p1 ∧ p ([l1, h2]) then s1 ⊗ i2 else ı⊕

pentuple a = (a, a, a, a, T )

Proof. We show the theorem by induction.
For base case, we have

LHS [a]
= { LHS }

(⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦ inits) [a]
= { definition of inits, ∗, / and ⊳, p is true for singleton }

a
= { definition of π1, ([, ]), and pentuple }

(π1 ◦ ([⊡, pentuple])) [a]
= { RHS }

RHS [a]

For induction case, we have the following calculation.

LHS (x ++ y)
= { LHS }

(⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦ inits) (x ++ y)
= { definition of inits }

(⊕/ ◦ ⊗/∗ ◦ p ⊳) (inits x ++ ((x++)∗ (inits y)))
= { definition of ⊳, /, and ∗ }

(⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦ inits) x⊕ (⊕/ ◦ ⊗/∗ ◦ p ⊳) ((x++)∗ (inits y))

To proceed more, we calculate a part of the above equation p ⊳ ((x++)∗ (inits y)) as follows.

p ⊳ ((x++)∗ (inits y))
= { p is relational: p (x ++ y)⇒ p (y) }

p ⊳ ((x++)∗ (p ⊳ (inits y)))
= { p is relational: p (x ++ y) = p (y) ∧ p (x) ∧ p ([last x, head y]) }

if p (x) ∧ p ([last x, head y]) then (x++)∗ (p ⊳ (inits y)) else [ ]
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Using this result, we proceed a wider part of the above equation (⊕/ ◦⊗/∗ ◦ p ⊳) ((x++)∗ (inits y))
as follows.

(⊕/ ◦ ⊗/∗ ◦ p ⊳) ((x++)∗ (inits y))
= { above calculation }

(⊕/ ◦ ⊗/∗) (if p (x) ∧ p ([last x, head y]) then (x++)∗ (p ⊳ (inits y)) else [ ])
= { distributivity of if-then-else, definition of ∗ and / }

if p (x) ∧ p ([last x, head y]) then ⊕/ ((⊗/ x⊗)∗ (⊗/∗ (p ⊳ (inits y))))) else ı⊕
= { distributivity of ⊗ }

if p (x) ∧ p ([last x, head y]) then ⊗/ x⊗⊕/ (⊗/∗ (p ⊳ (inits y))) else ı⊕

Now, we resume the suspended calculation for induction case.

LHS (x ++ y)
= { resume }

(⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦ inits) x⊕ (⊕/ ◦ ⊗/∗ ◦ p ⊳) ((x++)∗ (inits y))
= { above calculation }

(⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦ inits) x
⊗ if p (x) ∧ p ([last x, head y]) then ⊗/ x⊗⊕/ (⊗/∗ (p ⊳ (inits y))) else ı⊕

= { induction hypothesis }
(π1 ◦ ([⊡, pentuple])) x
⊗ if p (x) ∧ p ([last x, head y]) then ⊗/ x⊗ (π1 ◦ ([⊡, pentuple])) y else ı⊕

= { ( ,⊗/ x, head x, last x, p (x)) = ([⊡, pentuple]) x (shown below) }
(π1 ◦ ([⊡, pentuple])) x
⊗ if (π5 ◦ ([⊡, pentuple])) x ∧ p ([(π4 ◦ ([⊡, pentuple])) x, (π3 ◦ ([⊡, pentuple])) y])

then (π2 ◦ ([⊡, pentuple])) x⊗ (π1 ◦ ([⊡, pentuple])) y else ı⊕
= { definition of ⊡ }

(π1 ◦ ([⊡, pentuple])) (x ++ y)
= { RHS }

RHS (x ++ y)

Finally, we show ( ,⊗/ x, head x, last x, p (x)) = ([⊡, pentuple])x. For base case, we have

( ,⊗/ [a], head [a], last [a], p ([a]))

= { definition of each function, p is relational }

( , a, a, a, T )

= { definition of ([, ]) and pentuple }

([⊡, pentuple]) [a]

For induction case, we have

( ,⊗/ (x ++ y), head (x ++ y), last (x ++ y), p (x ++ y))

= { definition of each function, p is relational }

( ,⊗/ x⊗⊗/ y, head x≪ head y, last x≫ head y, p x ∧ p y ∧ p ([head x, last y]))

= { definition of ⊡ }

( ,⊗/ x, head x, last x, p x) ⊡ ( ,⊗/ y, head y, last y, p y)

= { induction hypothesis }

([⊡, pentuple])x ⊡ ([⊡, pentuple]) y

= { definition of ([, ]) }

([⊡, pentuple]) (x ++ y)

Thus, we have ( ,⊗/ x, head x, last x, p (x)) = ([⊡, pentuple]) x.
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The resulting program (the right hand side) of the theorem uses only one reduction with
the new operator ⊡, while the original program (the left hand side) uses two nested reductions
with inits. The cost of the new operator is proportional to the cost of operators in the original
reductions and the application of p. So, the resulting program is more efficient than the original
program.

The new operator ⊡ is applied to pentuples. The first element of a pentuple is equal to the
result of the original program. The second element of the pentuple is equal to the reduction of
the same input with operator ⊗, which is used to improve efficiency of the program by reusing
the partial results effectively. The third and forth elements are the edge elements of the input.
Those edge elements are used to check whether results from two recursions in divide-and-conquer
computation can be connected to make a better solution. Since the predicate p is relational, we
can check the connectability by using only elements on the edge. The fifth element is a Boolean
value that is the result of p applied to the input.

Here, we want to reduce the size of pentuples by eliminating the fifth element (it corresponds
to p (x)) for simplicity. To do so, we use an assumption that ı⊗ is the zero of ⊗, i.e. ı⊕ ⊗ a = ı⊕.

Corollary 17 (Maximum p-Initial-segment Sum (Simplified)). Provided that ⊕ is associative,
⊗ is associative and left-distributive over ⊕, the identity ı⊕ is the zero of ⊗, and predicate p is
relational, the following equation holds.

⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦ inits = π1 ◦ ([⊠, quadruple])
where

(i1, s1, h1, l1) ⊠ (i2, s2, h2, l2) = (i1 ⊕ (s1 ⊗ i2)l1,h2
, (s1 ⊗ s2)l1,h2

, h1 ≪ h2, l1 ≫ l2)
quadruple a = (a, a, a, a)
(a)l,h = if p ([l, h]) then a else ı⊕

Proof. To simplify the result of the theorem, we add an invariant to the result of Theorem 16.
The invariant added to the pentuple (i, s, h, t, p) is ¬p ⇒ s = ı⊕. In the following calculation,
we derive a operator slightly changed from that of Theorem 16.

i
= { definition }

i1 ⊕ if p1 ∧ p ([l1, h2]) then s1 ⊗ i2 else ı⊕
= { splitting condition }

i1 ⊕ if p ([l1, h2]) then (if p1 then (s1 ⊗ i2) else ı⊕) else ı⊕
= { assumption: ı⊕ is the zero }

i1 ⊕ if p ([l1, h2]) then ((if p1 then s1 else ı⊕)⊗ i2) else ı⊕
= { s′1 = if p1 then s1 else ı⊕ }

i1 ⊕ if p ([l1, h2]) then (s′1 ⊗ i2) else ı⊕
= { definition of (a)t,h }

i1 ⊕ (s′1 ⊗ i2)l1,h2

Computation of s′ = if p then s else ı⊕ is as follows.

s′

= { definition }
if p then s else ı⊕

= { computation of s and p }
if p1 ∧ p2 ∧ p ([l1, h2]) then s1 ⊗ s2 else ı⊕

= { splitting condition }
if p ([l1, h2]) then (if p1 then s1 else ı⊕)⊗ (if p1 then s2 else ı⊕) else ı⊕

= { definition of s’ }
if p ([l1, h2]) then s′1 ⊗ s′2 else ı⊕

= { definition of (a)t,h }
(s′1 ⊗ s′2)l1,h2
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Now, we can use s′ instead of s and p in the pentuple (i, s, h, t, p), since p and s are not used
by computation of other parts. Thus, replacing s and p in the pentuple with s′ and rename s′

as s, we get the reduced operator ⊠.

The resulting program (the right hand side) uses the new reduction operator ⊠ that is
applied on quadruples. The difference from the result of Theorem 16 is that the second element
becomes the identity ı⊕ of ⊕ when the input does not satisfy the predicate p.

A sufficient condition of the assumption that ı⊕ is the zero of ⊗ is that ⊗ distributes over
⊕. So, we will use this condition in implementation of the library.

4.4 Theory of tails

This section gives formal definition and theory of GGenerator tails.

4.4.1 Formal Definition and Basic Lemmas

First of all, we give a formal definition of tails.

Definition 18 (GGenerator Tails). GGenerator tails is defined with homomorphism as follows.

tails = ([⊕, [·] ◦ [·]]) where x⊕ y = (++(head y))∗x ++ y

The operator ⊕ in the above definition makes a list of tail segments of a list u ++ v from
lists (x and y in the above equation) of tail segments of u and v. Since each tail segment of v
is also a tail segment of u ++ v, y remains in the result. Since each tail segment of u need to be
concatenated with v to become a tail segment of u ++ v, the operator maps (++(head y)) (v is
the head element of y) to x.

The following two lemmas are well-known lemmas of tails [Bir87].

Lemma 19 (Scanr). For any associative binary operator ⊕, the following equation holds.

scanr (⊕) = ⊕/∗ ◦ tails

Lemma 20 (Tails-Map Promotion). For function f , the following equation holds.

f∗∗ ◦ tails = tails ◦ f∗

First lemma gives us a way to compute suffix sums by tails. The second lemma gives us a way
to promote the application of function f through tails. The number of applications of function
f on the left hand side is n(n + 1)/2, while that on the right hand side is n. So, transformation
from the left hand side to the right hand side improves the efficiency. Also, the lemma enables
us to ignore a function g in the generate-and-test specification ([⊕, f ]) ◦ ([⊗, g])∗ ◦ p ⊳ ◦tails, since
we can replace g with the identity function id and apply g to the input of tails beforehand (of
course, we need some tricks to through p ⊳).

A related example problem is found in Section 3.4.1. Related implementation on GG library
is found in Section 5.4.1.

4.4.2 Theorem for Reduction with Distributive Operators

The following theorem gives efficient parallel implementation of nested reductions for tails when
two reductions have distributivity. One of the most famous problems for which this theo-
rem is applicable is maximum tail-segment sum problem (also known as maximum suffix sum
problem), which is an instance of maximum marking problems [SHTO00, Bir01]. A related
example problem is found in Section 3.4.2. Related implementation on GG library is found in
Section 5.4.2.
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Theorem 21 (Maximum Tail-segment Sum). Provided that ⊕ is associative, and ⊗ is associa-
tive and right-distributive over ⊕, the following equation holds.

⊕/ ◦ ⊗/∗ ◦ tails = π1 ◦ ([⊛, pair ]) where (t1, s1) ⊛ (t2, s2) = ((t1 ⊗ s2)⊕ t2, s1 ⊗ s2)
pair a = (a, a)

Proof. Similar to the proof of Theorem 15 in Section 4.3.2.

The resulting program (the right hand side) of the theorem uses only one reduction with
the new operator ⊛, while the original program (the left hand side) uses two nested reductions
with tails. The cost of the new operator is proportional to the cost of operators in the original
reductions. So, the resulting program is more efficient than the original program.

The new operator ⊛ is applied to tuples. The first element of a tuple is equal to the result
of the original program. The second element of the tuple is equal to the reduction of the same
input with operator ⊗, which is used to improve efficiency of the program by reusing the partial
results effectively.

4.4.3 Theorem for Filtering with Relational Predicates

The following theorem extends Theorem 21 by allowing filtering with the given predicate. It
gives efficient parallel implementation of nested reductions for tails when two reductions have
distributivity and the predicate is relational. Derivation of efficient sequential implementations
for those programs with filtering is shown in [Zan92,Jeu93]. A related example problem is found
in Section 3.4.3. Related implementation on GG library is found in Section 5.4.3.

Theorem 22 (Maximum p-Tail-segment Sum). Provided that ⊕ is associative, ⊗ is associative
and right-distributive over ⊕, and predicate p is relational, the following equation holds.

⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦ tails = π1 ◦ ([⊡∗ , pentuple])
where

(t1, s1, h1, l1, p1) ⊡∗ (t2, s2, h2, l2, p2) = (t, s1 ⊗ s2, h1 ≪ h2, l1 ≫ l2, p1 ∧ p2 ∧ p ([l1, h2]))
where i = (if p1 ∧ p ([l1, h2]) then t1 ⊗ s2 else ı⊕)⊕ t2

pentuple a = (a, a, a, a, T )

Proof. Similar to the proof of Theorem 16 in Section 4.3.3.

The resulting program (the right hand side) of the theorem uses only one reduction with
the new operator ⊡∗ , while the original program (the left hand side) uses two nested reductions
with tails. The cost of the new operator is proportional to the cost of operators in the original
reductions and the application of p. So, the resulting program is more efficient than the original
program.

The new operator ⊡∗ is applied to pentuples. The first element of a pentuple is equal to the
result of the original program. The second element of the pentuple is equal to the reduction of
the same input with operator ⊗, which is used to improve efficiency of the program by reusing
the partial results effectively. The third and forth elements are the edge elements of the input.
Those edge elements are used to check whether results from two recursions in divide-and-conquer
computation can be connected to make a better solution. Since the predicate p is relational, we
can check the connectability by using only elements on the edge. The fifth element is a Boolean
value that is the result of p applied to the input.

Here, we want to reduce the size of pentuples by eliminating the fifth element (it corresponds
to p (x)) for simplicity. To do so, we use an assumption that ı⊗ is the zero of ⊗, i.e. a⊗ ı⊕ = ı⊕.
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Corollary 23 (Maximum p-Tail-segment Sum (Simplified)). Provided that ⊕ is associative, ⊗
is associative and right-distributive over ⊕, the identity ı⊕ is the zero of ⊗, and predicate p is
relational, the following equation holds.

⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦ tails = π1 ◦ ([⊠⊞, quadruple])
where

(t1, s1, h1, l1) ⊠⊞ (t2, s2, h2, l2) = ((t1 ⊗ s2)l1,h2
⊕ t2, (s1 ⊗ s2)l1,h2

, h1 ≪ h2, l1 ≫ l2)
quadruple a = (a, a, a, a)
(a)l,h = if p ([l, h]) then a else ı⊕

Proof. Similar to the proof of Corollary 17 in Section 4.3.3.

The resulting program (the right hand side) uses the new reduction operator ⊠⊞ that is
applied on quadruples. The difference from the result of Theorem 22 is that the second element
becomes the identity ı⊕ of ⊕ when the input does not satisfy the predicate p.

A sufficient condition of the assumption that ı⊕ is the zero of ⊗ is that ⊗ distributes over
⊕. So, we will use this condition in implementation of the library.

4.5 Theory of segs

This section gives formal definition and theory of GGenerator segs.

4.5.1 Formal Definition and Basic Lemmas

First of all, we give a formal definition of segs using inits and tails.

Definition 24 (GGenerator Segs). GGenerator segs is defined with homomorphism as follows.

segs = ++/ ◦ inits∗ ◦ tails

This definition is based on the fact that a segment of a list is a prefix of a suffix of the list.

The following lemma is well-known lemma of segs [Bir87].

Lemma 25 (Segs-Map Promotion). For function f , the following equation holds.

f∗∗ ◦ segs = segs ◦ f∗

The lemma gives us a way to promote the application of function f through segs. The
number of applications of function f on the left hand side is O(n3), while that on the right
hand side is n. So, transformation from the left hand side to the right hand side improves
the efficiency. Also, the lemma enables us to ignore a function g in the generate-and-test
specification ([⊕, f ]) ◦ ([⊗, g])∗ ◦ p ⊳ ◦segs, since we can replace g with the identity function id and
apply g to the input of segs beforehand (of course, we need some tricks to through p ⊳).

A related example problem is found in Section 3.5. Related implementation on GG library
is found in Section 5.5.1.

4.5.2 Theorem for Reduction with Distributive Operators

The following theorem gives efficient parallel implementation of nested reductions for segs when
two reductions have distributivity. One of the most famous problems for which this theorem
is applicable is maximum segment sum problem [Bir87], which is an instance of maximum
marking problems [SHTO00, Bir01]. A related example problem is found in Section 3.5.2.
Related implementation on GG library is found in Section 5.5.2.
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Theorem 26 (Maximum Segment Sum). Provided that ⊕ is associative and commutative, and
⊗ is associative and distributive over ⊕, the following equation holds.

⊕/ ◦ ⊗/∗ ◦ segs = π1 ◦ ([⊚, quadruple])
where

(m1, t1, i1, s1) ⊚ (m2, t2, i2, s2) = (m1 ⊕m2 ⊕ (t1 ⊗ i2), (t1 ⊗ s2)⊕ t2, i1 ⊕ (s1 ⊗ i2), s1 ⊗ s2)
quadruple a = (a, a, a, a)

Proof. We can prove the theorem by the following calculation.

LHS
= { LHS }
⊕/ ◦ ⊗/∗ ◦ segs

= { definition of segs }
⊕/ ◦ ⊗/∗ ◦++/ ◦ inits∗ ◦ tails

= { promotion of ∗ }
⊕/ ◦++/ ◦ ⊗/∗∗ ◦ inits∗ ◦ tails

= { promotion of / }
⊕/ ◦ ⊕/∗ ◦ ⊗/∗∗ ◦ inits∗ ◦ tails

= { distributivity of ∗ }
⊕/ ◦ (⊕/ ◦⊗/∗ ◦ inits)∗ ◦ tails

= { Theorem 15 }
⊕/ ◦ (π1 ◦ ([⊙, pair ]))∗ ◦ tails

= { making ⊕′ so that (a1, b1)⊕
′ (a2, b2) = (a1 ⊕ a2, b1 ⊕ b2), Lemma 20 }

π1 ◦ ⊕
′/ ◦ ⊙/∗ ◦ tails ◦ pair∗

= { Theorem 21 (commutativity of ⊕ guarantees distributivity of ⊙ over ⊕′) }
π1 ◦ π1 ◦ ([⊛, pair ]) ◦pair∗

= { fusing two π1s, and two pairs }
π1 ◦ ([⊚, quadruple])

= { RHS }
RHS

Definition of ⊛ in the above calculation is given as follows.

((m1, t1), (i1, s1)) ⊛ ((m2, t2), (i2, s2))

= { definition of ⊛ in Theorem 21 }

(((m1, t1)⊙ (i2, s2))⊕
′ (m2, t2), (i1, s1)⊙ (i2, s2))

= { definition of ⊙ in Theorem 15 }

((m1 ⊕ (t1 ⊗ i2), t1 ⊗ s2)⊕
′ (m2, t2), (i1 ⊕ (s1 ⊗ i− 2), s1 ⊗ s2))

= { definition of ⊕′ shown above }

((m1 ⊕ (t1 ⊗ i2)⊕m2, (t1 ⊗ s2)⊕ t2), (i1 ⊕ (s1 ⊗ i− 2), s1 ⊗ s2))

Flattening the nested pair into quadruple, we get the definition of ⊚.

The resulting program (the right hand side) of the theorem uses only one reduction with
the new operator ⊚, while the original program (the left hand side) uses two nested reductions
with segs. The cost of the new operator is proportional to the cost of operators in the original
reductions. So, the resulting program is more efficient than the original program.

The new operator ⊚ is applied to quadruples. The first element of a tuple is equal to the
result of the original program. The second and the third elements are results of the original
nested reductions with tails and inits. The last element is equal to the reduction of the same
input with operator ⊗. These extra elements are used to improve efficiency of the program by
reusing the partial results effectively.
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4.5.3 Theorem for Filtering with Relational Predicates

The following theorem extends Theorem 26 by allowing filtering with the given predicate. It
gives efficient parallel implementation of nested reductions for segs when two reductions have
distributivity and the predicate is relational. Derivation of efficient sequential implementations
for those programs with filtering is shown in [Zan92,Jeu93]. A related example problem is found
in Section 3.5.3. Related implementation on GG library is found in Section 5.5.3.

Theorem 27 (Maximum p-Segment Sum). Provided that ⊕ is associative and commutative, ⊗
is associative and distributive over ⊕, and predicate p is relational, the following equation holds.

⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦ segs = π1 ◦ ([�◦ , hextuple])
where (m1, t1, i1, s1, h1, l1) �◦ (m2, t2, i2, s2, h2, l2)

= ( m1 ⊕m2 ⊕ (t1 ⊗ i2)l1,h2
,

(t1 ⊗ s2)l1,h2
⊕ t2,

i1 ⊕ (s1 ⊗ i2)l1,h2
,

(s1 ⊗ s2)l1,h2
,

h1 ≪ h2, l1 ≫ l2)
hextuple a = (a, a, a, a, a, a)
(a)l,h = if p ([l, h]) then a else ı⊕

Proof. We can prove the theorem by the following calculation.

LHS
= { LHS }
⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦ segs

= { definition of segs }
⊕/ ◦ ⊗/∗ ◦ p ⊳ ◦++/ ◦ inits∗ ◦ tails

= { promotion of ⊳, ∗ and / }
⊕/ ◦ ⊕/∗ ◦ ⊗/∗ ◦ p ⊳∗ ◦ inits∗ ◦ tails

= { ∗ distributivity }
⊕/ ◦ (⊕/ ◦ ⊗/ ◦ p ⊳ ◦ inits)∗ ◦ tails

= { Theorem 17 }
⊕/ ◦ (π1 ◦ ([⊠, quadruple]))∗ ◦ tails

=

{

making ⊕′ such that
(i1, s1, h1, l1)⊕

′ (i2, s2, h2, l2) = (i1 ⊕ i2, s1 ⊕ s2, h1 ≪ h2, l1 ≫ l2)

}

π1 ◦ ⊕
′/ ◦⊠/∗ ◦ tails ◦ quadruple∗

= { Theorem 21 (⊠ distributes over ⊕′) }
π1 ◦ π1 ◦ ([⊛, pair ]) ◦quadruple∗

= { fusing two π1s, fusing pair and quadruple, removing duplicated parts }
π1 ◦ ([�◦ , hextuple])

= { RHS }
RHS

Note that distributivity of ⊠ over ⊕′ is guaranteed for quadruples (i1, s1, h1, l1) and (i2, s2, h2, l2)
of operands of ⊕′ when l1 = l2. Condition l1 = l2 holds in the above calculation since l1 and l2
are the last element of tail-segments of the same list.
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Definition of ⊛ in the above calculation is given as follows.

((m1, t1, h1, l1), (i1, s1, k1, n1)) ⊛ ((m2, t2, h2, l2), (i2, s2, k2, n2))

= { definition of ⊛ in Theorem 21 }

(((m1, t1, h1, l1) ⊠ (i2, s2, k2, n2))⊕
′ (m2, t2, h2, l2), (i1, s1, k1, n1) ⊠ (i2, s2, k2, n2))

= { definition of ⊠ in Theorem 17 }

((m1 ⊕ (t1 ⊗ i2)l1,k2
, (t1 ⊗ s2)l1,k2

, h1 ≪ k2, l1 ≫ n2)⊕
′ (m2, t2, h2, l2),

(i1 ⊕ (s1 ⊗ i2)n1,k2
, (s1 ⊗ s2)n1,k2

, k1 ≪ k2, n1 ≫ n2)

= { definition of ⊕′ shown above }

((m1 ⊕m2 ⊕ (t1 ⊗ i2)l1,k2
, (t1 ⊗ s2)l1,k2

⊕ t2, h1 ≪ k2 ≪ h2, l1 ≫ n2 ≫ l2),

(i1 ⊕ (s1 ⊗ i2)n1,k2
, (s1 ⊗ s2)n1,k2

, k1 ≪ k2, n1 ≫ n2)

If h1 = k1, l1 = n1, h2 = k2 and l2 = n2, then we have h1 ≪ k2 ≪ h2 = k1 ≪ k2 and
l1 ≫ n2 ≫ l2 = n1 ≫ n2. So, for octuple ((m, t, h, l), (i, s, k, n)), we have invariant h = k and
l = n. Using this invariant, we can eliminate k and n from octuples and we get computation
using hextuples. Finally, flattening the hextuples, we get the definition of ⊚.

The resulting program (the right hand side) of the theorem uses only one reduction with
the new operator �◦ , while the original program (the left hand side) uses two nested reductions
with segs. The cost of the new operator is proportional to the cost of operators in the original
reductions. So, the resulting program is more efficient than the original program.

The new operator �◦ is applied to hextuples. The first element of a tuple is equal to the result
of the original program. The second and the third elements are results of the original program
in which segs is replaced with tails and inits. The fourth element is equal to the reduction of
the same input with operator ⊗. The fifth and the sixth elements are the edge elements of the
input. Those edge elements are used to check whether results from two recursions in divide-
and-conquer computation can be connected to make a better solution. Since the predicate p
is relational, we can check the connectability by using only elements on the edge. These extra
elements are used to improve efficiency of the program by reusing the partial results effectively.

4.6 Related Work

4.6.1 Maximum Marking Problem

Maximum marking problem is one of optimization problems on sequences. The objective of
maximum marking problem is to find a marking of the input sequence that gives the maxi-
mum weight sum. We can produce many instances of maximum marking problem by changing
the rule of marking on the input sequence. For example, maximum prefix sum problem (Sec-
tion 3.3.2), maximum suffix sum problem (Section 3.4.2), and maximum segment sum problem
(Section 3.5.2) are instances of maximum marking problem.

Derivation of efficient sequential programs for maximum marking problem was studied by
Sasano et al. [SHTO00, SHT01] and Bird [Bir01]. They showed systematic construction of ef-
ficient sequential programs when rules of marking are given as recursive functions of a certain
class. Since marking of a prefix/suffix/segment is given as a recursive function of the class, an
efficient sequential program for maximum prefix/suffix/segment problem is obtained systemat-
ically by their results.

4.6.2 Longest Segment Problems

The objective of longest segment problems is to find the longest segment that satisfies a given
predicate. Derivation of efficient sequential programs for longest segment problems were stud-
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ied by Zatema [Zan92], Jeuring [Jeu93] and Zhao [Zha02]. Zatema [Zan92] and Jeuring [Jeu93]
showed derivation of efficient sequential programs for various predicates. Zhao [Zha02] stud-
ied derivation of efficient sequential programs for predicates constructed as a combination of
primitive predicates. She applied it for data mining to make a querying system that supports
efficient querying of combined predicates.
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trait GGenerator[[E]] extends List[[ List[[E ]] ]]
getter list() : List[[E ]]
getter defaultImplementation() : List[[E ]]→ List[[ List[[E ]] ]]

generate2[[R,F,M,N, P, Z, Y ]](r : R, f : F,mr : M,mf : N, p : P ) : Z
= defaultgeneration[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

defaultgeneration[[R,F,M,N, P, Z, Y ]](r : R, f : F,mr : M,mf : N, p : P ) : Z =
actualList().filter(fn (e : List[[E]]) : Boolean⇒ p.judge(e))

.generate[[Z]](r, (fn a⇒ f.apply(a))◦
(fn (x)⇒ x.generate[[Y ]](mr , (fn a⇒ mf .apply(a)))))

actualList() : List[[ List[[E ]] ]] = defaultImplementation()(list())
end

Figure 3: Base trait of GGenerators

5 Implementation of GG Library

This section gives implementation of GG library. First, implementation of the core of GG
library is given in Section 5.1. Then, a collection of traits to describe properties is given in
Section 5.2. After that, a collection of implementations for various GGenerators follows.

5.1 Core Implementation of GG Library

The core of GG Library is trait GGenerator (Section 5.1.1), which is the base of all GGener-
ators, and function dispatching (Section 5.1.2), which acts as a dispatching table of efficient
implementations. Intuitive interpretation of GGenerators is found in Section 3.1.2. Formal
discussion of GGenerators is found in Section 4.1.2

Besides the above two constructs, auxiliary functions and object to define GGenerators
are shown in Section 5.1.3, and desugaring of user programs for GG library is discussed in
Section 5.1.4.

5.1.1 Trait GGenerator

Trait GGenerator is the base trait of all GGenerators. Figure 3 shows the definition of trait
GGenerator (the figure contains only essential fields).

Currently, GGenerator[[E ]] is defined as a subtrait of trait List[[List[[E ]]]], which is a subtrait of
Fortress’s Generator. The core of trait Generator is method generate that generates elements of
type E , passes each of them to the function body , and combines the results using the reduction
r .

Trait GGenerator extends the existing Generator as follows. First, GGenerator itself can
work as Generator to generate elements of type List[[E ]], since GGenerator is a subtrait of
Generator. Next, method generate2 of GGenerator is an extension of method generate of
Generator. Method generate2 takes two pairs of operators and body functions, namely the
pair (r , f ) and the pair (mr ,mf ), for nested reductions so that it can use relationship between
the given pairs to perform the reductions efficiently, while generate takes a pair of an operator
and a function to perform a single reduction, performing nested reductions individually. Of
course, if the nested reductions use the same operator for each reduction, both generate2 and
nested use of generate result in the same computation.

The rest of this section explains methods of trait GGenerator.

Getter list () returns the original list given to the GGenerator. Basically, values in the
generated nested lists are taken from this original list.
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Getter defaultImplementation () returns implementation to generate the actual nested data
structures. Basically, an efficient implementation does not generate such actual nested data
structures. Implementation given by defaultImplementation is used to perform the nested
reductions naively as the default of dispatching.

Method generate2 is the most important method of trait GGenerator that is an inter-
face of dispatching implementation to the nested reductions. Meaning of an invocation of
generate2 (r , f ,mr ,mf , p) of GGenerator gg is the same as the following nested comprehension
with nested reductions.

r [ f ( mr [ mf y | y ← ys ] ) | ys ← gg xs, p ys ]

GGenerator gg generates a nested data structure, and its element (basically a subsequence of
the input xs ) is bound to variable ys . Predicate p is used to filter the generated element ys .
Function mf is applied to each element of ys passed the filtering, and a reduction with mr is
taken on the result. And then, function f is applied for each result of the inner reduction with
mr , and finally reduction with r is taken on those results. Straightforward implementation of
the computation explained above is seen in method defaultgeneration explained below.

Method defaultgeneration performs the default naive nested reductions on the actual nested
data structure. Arguments are the same as method generate2 explained above. The actual
nested data structure is generated by actualList () explained later. Against the generated nested
data structure, it performs filtering with the given predicate p by method filter of List. Judg-
ment by the predicate p is denoted by p.judge(e). After that, it performs the nested reductions
with two invocations of method generate of Generators. The inner reduction is performed
with the given reduction mr and function mf . Application of the function mf is denoted
by mf .apply(a). The outer reduction is performed with the given reduction r and function f
composed with the inner reduction. The computation by method defaultgeneration is the same
as a program of nested comprehensions desugared by the usual desugaring process of Fortress.

Method acutalList () generates the actual nested data structure by the implementation given
by defaultImplementation (). This actual list is used in some methods, such as taking the head
of the generated nested data structure, as well as the default naive nested reductions.

It is worth mentioning about type variables used in method generate2 . There are many
type variables in the method and they have no restrictions. The reason of a number of type
variables is as follows. Method generate2 wants to know complete types of the arguments and
bind those types to variables, since the dispatching process needs to check properties of the
arguments by their types to dispatch efficient implementation. The reason of no restriction on
types is basically the limitation of the current interpreter, which does not completely support
where-clause. When where-clause is supported in the future, we can add restriction on type
variables like shown below.

generate2[[R,F,M,N, P, Z, Y ]](r : R, f : F,mr : M,mf : N, p : P ) : Z
where {R extends Reduction[[Z]], F extends Function[[Y,Z]],

M extends Reduction[[Y ]], N extends Function[[E, Y ]],
P extends ListPredicate[[E]]}

= defaultgeneration[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

5.1.2 Dispatching Table

The dispatching process dispatches efficient implementation given by a theorem to an invocation
of generate2 of a GGenerator (a desugared user program) when the arguments satisfy the
applicable condition of the theorem. Basically, checking of applicable conditions of theorems
against the arguments is performed by checking types of the arguments, since properties of the
arguments should be specified by traits shown in Section 5.2.

The dispatching table shown in Figure 4 is the core of dispatching process. The dispatching
table is defined as function dispatching that checks types of the given arguments and selects
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dispatching [[G,R, F,M,N, P, Z, Y,E ]](g : G, r : R, f : F,mr : M,mf : N, p : P ) = do

typecase (g, r, f,mr ,mf , p) of
(InitsGenerator[[E]], R, IdFunction[[Y ]],LeftDistributiveOver[[R]], N,TrueListPredicate[[E]])
⇒ g.efficientImplTrueDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

(InitsGenerator[[E]], R, IdFunction[[Y ]],LeftDistributiveOver[[R]], N,RelationalPredicate[[E]])
⇒ g.efficientImplRelationalDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

(TailsGenerator[[E]], R, IdFunction[[Y ]],RightDistributiveOver[[R]], N,TrueListPredicate[[E]])
⇒ g.efficientImplTrueDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

(TailsGenerator[[E]], R, IdFunction[[Y ]],RightDistributiveOver[[R]], N,RelationalPredicate[[E]])
⇒ g.efficientImplRelationalDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

(SegsGenerator[[E]],Commutative, IdFunction[[Y ]],DistributiveOver[[R]], N,TrueListPredicate[[E]])
⇒ g.efficientImplTrueDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

(SegsGenerator[[E]],Commutative, IdFunction[[Y ]],DistributiveOver[[R]], N,RelationalPredicate[[E]])
⇒ g.efficientImplRelationalCommutativeDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

else

⇒ g.defaultgeneration[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)
end

end

Figure 4: Dispatching table

suitable implementation according to the arguments. Function dispatching receives a GGen-
erator and arguments given to generate2 of the GGenerator. Each GGenerator should invoke
function dispatching to perform dispatching in generate2 (see implementation of GGenerators
shown in the following sections).

Function dispatching checks types of arguments by typecase of Fortress to dispatch suitable
implementation. Basically, one case of typecase corresponds to one theorem, and the default
( else ) case corresponds to naive implementation of nested reductions. Figure 4 contains cases
for theorems given in Section 4 and the default case. For the default case ( else case), the
dispatching table invokes method defaultgeneration of GGenerator g . In the other cases, it
checks whether properties of the arguments satisfy applicable conditions by checking types of
the arguments, to dispatch the corresponding efficient implementation.

For example, the first case of the table shown in Figure 4 corresponds to Theorem 15 in Sec-
tion 4.3.2. The theorem requires that the inner reduction (mr ) has distributivity over the outer
reduction (r ). So, function dispatching checks whether mr extends LeftDistributiveOver[[R]]
(see Section 5.2.1). Also, function dispatching checks that f is the identity function (see Sec-
tion 5.2.2) and p is the true-predicate (see Section 5.2.3), since the theorem cannot deal with
other functions and predicates. If those conditions on types are satisfied, function dispatching
confirms that the applicable condition of the theorem is satisfied, and it invokes the efficient
implementation efficientImplTrueDistributive of InitsGenerator (see Section 5.3.2) to perform
the nested reductions of a user program efficiently by the implementation.

Summary of dispatching is as follows. Method generate2 of each GGenerator invokes func-
tion dispatching with the GGenerator and its arguments. The typecase in function dispatching
checks whether the given arguments satisfy applicable condition of each theorem by checking
their types. If it confirms that the arguments satisfy the condition, it invokes the corresponding
efficient implementation of the theorem. If no condition is satisfied, the default implementation
is used in the default case of the typecase .

To exploit knowledge of a theorem, an implementer has to do two things. One is to implement
the optimization given by the theorem in its corresponding GGenerator. The other is to modify
the typecase in function dispatching by adding a new case of type conditions corresponding to
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takeleft [[T ]](a : Nothing[[T ]], b : Any) = b
takeleft(a : Any, b : Any) = a
takeright [[T ]](a : Any, b : Nothing[[T ]]) = a
takeright(a : Any, b : Any) = b

object MapReduceReduction[[R]](j : (R,R)→ R, z :R) extends Reduction[[R]]
empty() = z
join(a : R, b : R):R = (j)(a, b)

end

Figure 5: Auxiliary functions and object

the applicable condition of the theorem, and a code to invoke the efficient implementation of the
GGenerator in the case. Then, nested reductions of a user program can be executed with the
efficient implementation given by the theorem, if the nested reduction satisfies the applicable
condition of the theorem.

5.1.3 Auxiliary Functions and Object

Figure 5 gives implemetation of auxiliary functions and object for defining GGenerators.
Functions takeleft and takeright provides function of operators≪ and≫ (used in Section 4)

with identities. Their identities are represented by a special value Nothing.
Object MapReduceReduction makes a reduction object from an associative binary operator

and its identity, and is used in invocations of method generate of Generator. This object is
borrowed from the Fortress Standard Library.

5.1.4 Desugaring of User Programs

Currently, desugaring of a user program into invocations of method generate2 of GGenerators
does not completely work. It is very difficult to desugar any expression into generate2 , since it
needs to split an expression into a function and a reduction. Thus, we are planning to desugar
restricted nested comprehensions that can be transformed into a form below.

⊕

[
⊗

[ f y | y ← ys ] | ys ← gg xs, p ys ] (1)

Here, gg is one of GGenerators, p is a predicate, f is a function, and ⊕ and ⊗ are associative
operators. This form is the same computation as the following invocation of generate2 .

gg(x).generate2(BinReduction[[⊕ ]], IdFunction,BinReduction[[⊗ ]], f, p)

Here, BinReduction makes a reduction object from an associative binary operator.
We show, with an example, that quite a lot of nested comprehensions can be systematically

desugared into the above form. Consider the next nested comprehension as our example.

↑[+[ f(y, b, w) | y ← ys, even y ] | ys ← inits xs, ascending ys, b← bs ]

This example computes a variant of the maximum prefix sum, in which the maximum is consid-
ered only on ascending prefixes, the summation is taken only on even numbers, and the value
is replaced with f(y, b, w) instead of the number itself (y) at the summation.

Transformation steps with the example program are shown below.

Step. 1 Remove guards p x by fusing it with generators x← g xs
There are two occurrences of guards in the example: even y and ascending ys. Fusing
these guards, we can get the following program.

↑[+[ f(y, b, w) | y ← filter even ys ] | ys ← filterascending (inits xs), b← bs ]
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This transformation is applicable, when each predicate depends only on a variable in
the left hand side of generators in the same comprehension.

Step. 2 Move depending generations to the edges
If there is depending generations in generators of two comprehensions, move those
depending generation to the edges of comprehensions as follows.

⊕[⊗[ e | gs1 ] | gs2 ] ⇒ ⊕[⊗[ e | y ← fg ys, gs ′1 ] | gs ′2, ys← fgg xs ]

Here, fgg is one of GGenerators with filter, and fg is the identity function or filter. This
transformation is valid if each operator of reductions is commutative and there is no
dependency of gs ′2 to ys.

The example program has a pair of depending generations y ← filter even ys and ys ←
filterascending (inits xs). Since operators used in our example are both commutative,
we can perform this transformation to get the following program.

↑[+[ f(y, b, w) | y ← filter even ys ] | b← bs, ys ← filterascending (inits xs) ]

Here, ys ← filterascending (inits xs) is moved to the edge using commutativity of ↑.

Step. 3 Restructure comprehensions to extract the form
The following is a rule used in this step.

⊕[⊗[ e | y ← fg ys, gs ′1 ] | gs ′2, ys← fgg xs ]
⇒⊕[⊕[⊗[⊗[ e | gs ′1 ] | y ← fg ys ] | ys← fgg xs ] | gs ′2 ]

This transformation is always valid, since it is a combination of steps used in the usual
desugaring process in Fortress. For readability, the result of this transformation can be
written as the following form.

h(⊕[⊗[ f ′(y) | y ← fg ys ] | ys← fgg xs ])
where h(z) =⊕[ z | gs ′2 ]

f ′(y) =⊗[ e | gs ′1 ]

Here, the argument of h is almost the same as the form (1). The difference can be
eliminated in the following way. If fg is filter q, we introduce another function f ′′(x) =
if q(x) then x else ı⊗, in which ı⊗ is the identity of ⊗. Otherwise, let f ′′ = f ′. If fgg
does not includes filter, we introduce p = true that always returns true. Otherwise, let
p be the predicate of the filter, i.e., fgg xs = filter p (gg xs). Using these f ′′ and p, the
argument of h is now the same as the form (1).

⊕[⊗[ f ′′(y) | y ← ys ] | ys← gg xs, p ys ])

If there is no direct dependency of f ′′ to ys, we can replace this part by an invocation
of method generate2 of gg .

Applying the above transformation, we get the following result for the example.

↑[+[ f(y, b, w) | y ← filter even ys ] | b← bs, ys ← filterascending (inits xs) ]

⇒ h(↑[+[ f(y, b, w) | y ← filter even ys ] | ys ← filterascending (inits xs) ])
where h(z) =⊕[ z | b← bs ]

⇒ h(↑[+[ f ′′ y | y ← ys ] | ys ← inits xs, ascending ys ])
where h(z) =⊕[ z | b← bs ]

f ′′(z) = if even x then x else 0

Here, the argument of h is the same as the form (1). Since there is no direct dependency
of f ′′ to ys, the part can be replaced with invocation of generate2 of GGenerator inits .
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mis = BIG MAX 〈
∑

y | y ← inits x 〉

mais = BIG MAX 〈
∑

y | y ← inits x, ascending(y) 〉

(a) User program

mis = inits(x).generate2[[ MaxReductionZZ32, IdFunction[[Z32]],
SumReductionZZ32, IdFunction[[Z32]],
TrueListPredicate[[Z32]], Z32, Z32]]

(MaxReductionZZ32, IdFunction[[Z32]],
SumReductionZZ32, IdFunction[[Z32]],
TrueListPredicate[[Z32]])

mais = inits(x).generate2[[ MaxReductionZZ32, IdFunction[[Z32]],
SumReductionZZ32, IdFunction[[Z32]],
Ascending[[Z32]], Z32, Z32]]

(MaxReductionZZ32, IdFunction[[Z32]],
SumReductionZZ32, IdFunction[[Z32]],
Ascending[[Z32]])

(b) Desugared program

Figure 6: Examples of desugaring user programs

The desugaring transformation shown above has some restrictions on target comprehensions.
For example, Step. 1 requires that each predicate should depend only on a variable in the
left hand side of generators in the same comprehension, Step. 2 requires that the operators
should be commutative and there is no dependency of outer generators to generation of the
GGenerator, and replacement of comprehension with generate2 in Step. 3 requires that there is
no direct dependency of the inner function to generation of the GGenerator. One easy sufficient
restriction for dependencies of generators is that a variable on the left hand side of arrows in
generators is used at most once in the right hand side of arrows in the generators and the body
function. This restriction is often satisfied.

Some examples of desugaring is shown in Figure 6. Please refer to Section 5.2 for objects
used in the desugared program.

5.2 Traits for Describing Properties

5.2.1 Properties on Reduction Operators

Figure 7 gives definitions of traits for describing properties on reduction operators, which are
defined in Section 4.2.1.

Trait LeftDistributiveOver[[X ]] is used to indicate that a reduction object extending the trait
is left distributive over the reduction object X . Similarly, trait RightDistributiveOver[[X ]] is
used to indicate right-distributivity. Trait DistributiveOver[[X ]] indicates the reduction object
extending the trait is distributive, i.e., left-distributive and right-distributive, over the reduction
object X . Thus, trait DistributiveOver extends both trait LeftDistributiveOver and trait
RightDistributiveOver. Trait Commutative indicates commutativity.

Example use of those traits is also shown in Figure 7. Object MaxReductionZZ32 is a reduc-
tion object of the maximum operator ↑ defined in Section 3.1. Since the maximum operator is
commutative, MaxReductionZZ32 extends the trait Commutative. Object SumReductionZZ32
is a reduction object of the usual plus operator +. Since the plus distributes over the maximum
operator, SumReductionZZ32 extends trait DistributiveOver[[MaxReductionZZ32]], as well as
trait Commutative. Similarly, object ProdReductionZZ32 for the usual product operator ×
extends DistributiveOver[[SumReductionZZ32]] and Commutative.
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trait LeftDistributiveOver[[X]] end
trait RightDistributiveOver[[X]] end
trait DistributiveOver[[X]] extends {LeftDistributiveOver[[X]],RightDistributiveOver[[X]]} end

trait Commutative end

object MaxReductionZZ32
extends {Reduction[[Z32]],Commutative }
empty(): Z32 = −infinity
join(a: Z32, b: Z32): Z32 = a MAX b

end

object SumReductionZZ32
extends {Reduction[[Z32]],DistributiveOver[[MaxReductionZZ32]],Commutative }
empty(): Z32 = 0
join(a: Z32, b: Z32): Z32 = a + b

end

object ProdReductionZZ32
extends {Reduction[[Z32]],DistributiveOver[[SumReductionZZ32]],Commutative }
empty(): Z32 = 1
join(a: Z32, b: Z32): Z32 = a ∗ b

end

Figure 7: Traits for describing properties on reductions and example reductions

5.2.2 Properties on Functions

Figure 8 gives definitions of traits for describing properties on functions.

Trait Function[[X ,Y ]] is the base trait of functions that take a value of type X and return
a value of type Y . Every function given to dispatching and generate2 should extend trait
Function to make the library check properties of the function. Basically, a function does not
necessarily need to be a trait or an object in Fortress, since Fortress can handle functions
directly. However, to describe properties of functions by themselves, we require a function to
be a trait or an object. Otherwise, we need an extra argument in generate2 to tell properties
of functions.

Object IdFunction is the identity function that returns the given argument as its return
value. Object IdFunction is used to cancel functions in the generate-and-test specification. If
the user program does not need mapping of a function to elements, the object IdFunction must
be given to method generate2 of GGenerator (and function dispatching ) to let the library know
there is no function to map. Note that when a function object other than IdFunction is given
to method generate2 , the library determines that there is a function to map that can return a
value different form the input value, even if the function actually returns always the input value
itself.

5.2.3 Properties on Predicates

Figure 9 gives definitions of traits for describing properties on predicates, which are defined in
Section 4.2.2.

Trait Predicate is the base of all predicates. It has method judge that returns a Boolean
value (true or false) of the given argument x .

Trait ListPredicate is a predicate on lists. Every predicate given to method generate2 of
GGenerators or the dispatching table dispatching should extend trait ListPredicate.

Object TrueListPredicate is a predicate returning true for any input. This predicate is
used to cancel the filtering in the generate-and-test specification, since filtering with the pred-
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trait Function[[X,Y ]]
apply(x : X) :Y

end

object IdFunction[[X]] extends Function[[X,X]]
apply(x : X) :X = x

end

object SingletonFunction[[X]] extends Function[[X,List[[X]]]]
apply(x : X) : List[[X]] = singleton[[X]](x)

end

object FunctionWrapper[[X,Y ]](f :X → Y ) extends Function[[X,Y ]]
apply(x : X) :Y = f x

end

Figure 8: Traits for function objects

icate is equals to the identity function. If the user program does not need filtering, the
object TrueListPredicate must be given to method generate2 of GGenerator (and function
dispatching ) to let the library know there is no filtering. Note that when a predicate object
other than TrueListPredicate is given to method generate2 , the library determines that there
is a filtering with a predicate that can return false, even if the predicate actually returns always
true.

Trait SuffixClosedPredicate indicates that a predicate extending SuffixClosedPredicate is
suffix-closed. Similarly, trait PrefixClosedPredicate indicates prefix-closedness of a predicate.
Since a segment-closed predicate is both suffix-closed and prefix-closed, SegmentClosedPredicate
extends both SuffixClosedPredicate and PrefixClosedPredicate. Trait OverlapClosedPredicate
indicates a predicate is overlap-closed.

Trait RelationalPredicate is the base trait of all relational predicates. Since a relational
predicate is segment-closed and overlap-closed (Lemma 11 in Section 4.2.2), RelationalPredicate
extends SuffixClosedPredicate and OverlapClosedPredicate. Method related corresponds to
the relation that determines the predicate, and it returns true when the given arguments are
related by the relation. Method judge uses related to check all pairs of consecutive elements
are related by the relation.

Operator AND and object AndRelationalPredicate composes two relational predicates to
make another relational predicate that returns true when both of the two predicates return
true.

Example instances of RelationalPredicate are specified by comparison operators. Object
Ascending is specified by <, and returns true when the given list is sorted in ascending order.
Similarly, we can define objects Descending, WeaklyAscending, WeaklyDescending and Flat
by >, ≤, ≥ and =. Object Smooth makes a relational predicate to check that the difference
between any pair of consecutive elements is less than or equal to the given threshold c .
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trait Predicate[[E ]]
judge(x : E) : Boolean

end

trait ListPredicate[[E ]] extends Predicate[[ List[[E ]] ]] end

object TrueListPredicate[[E ]] extends ListPredicate[[E ]]
judge(x : List[[E ]]) : Boolean = true

end

trait SuffixClosedPredicate[[E ]] extends ListPredicate[[E ]] end

trait PrefixClosedPredicate[[E ]] extends ListPredicate[[E ]] end

trait SegmentClosedPredicate[[ E ]]
extends {PrefixClosedPredicate[[E ]],SuffixClosedPredicate[[E ]] }

end

trait OverlapClosedPredicate[[E ]] extends ListPredicate[[E ]] end

trait RelationalPredicate[[E ]]
extends {SegmentClosedPredicate[[ E ]],OverlapClosedPredicate[[E ]] }
related(a : E, b : E) : Boolean
judge(x : List[[E ]]) : Boolean = do

if x.size() ≤ 1 then

true
else

sz = x.size()− 1
(0 # sz ).generate[[Boolean]](AndReduction, fn i⇒ related(xi, xi+1))

end

end

end

opr ∧[[E]](p1 : RelationalPredicate[[E ]], p2 : RelationalPredicate[[E ]]): RelationalPredicate[[E ]]
= AndRelationalPredicate[[E ]](p1, p2)

object AndRelationalPredicate[[E ]](p1 : RelationalPredicate[[E ]], p2 : RelationalPredicate[[E ]])
extends RelationalPredicate[[E ]]
related(a : E, b : E) : Boolean = p1.related(a, b) ∧ p2.related(a, b)

end

object Ascending[[E]] extends RelationalPredicate[[E]]
related(a : E, b : E) : Boolean = a < b

end

object Descending[[E]] extends RelationalPredicate[[E]]
related(a : E, b : E) : Boolean = a > b

end

object WeaklyAscending[[E]] extends RelationalPredicate[[E]]
related(a : E, b : E) : Boolean = a ≤ b

end

object WeaklyDescending[[E]] extends RelationalPredicate[[E]]
related(a : E, b : E) : Boolean = a ≥ b

end

object Flat[[E]] extends RelationalPredicate[[E]]
related(a : E, b : E) : Boolean = a = b

end

object Smooth[[E]](c : E) extends RelationalPredicate[[E]]
related(a : E, b : E) : Boolean = |a− b| ≤ c

end

Figure 9: Traits for describing properties on predicates and example predicates
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object InitsGenerator[[E]](arglist : List[[E ]]) extends GGenerator[[E ]]
getter list() : List[[E ]] = arglist
getter defaultImplementation() : List[[E ]]→ List[[ List[[E ]] ]] = initsImpl [[E ]]
generate2[[R,F,M,N, P, Z, Y ]](r : R, f : F,mr : M,mf : N, p : P ) : Z
= do

dispatching [[ InitsGenerator[[E]], R, F,M,N, P, Z, Y,E ]](self, r, f,mr ,mf , p)
end

end

initsImpl [[E ]](x : List[[E ]]) : List[[ List[[E ]] ]] = do

x.generate[[ List[[ List[[E ]]]] ]](InitsReduction[[E ]], fn (a)⇒ singleton[[ List[[E ]] ]](singleton[[E ]](a)))
end

object InitsReduction[[E ]] extends Reduction[[ List[[ List[[E ]] ]] ]]
empty(): List[[ List[[E ]] ]] = emptyList [[ List[[E ]] ]]()
join(a : List[[ List[[E ]] ]], b : List[[ List[[E ]] ]]): List[[ List[[E ]] ]] = do

l = a.right().generate[[ List[[E ]]]](Concat[[E ]], fn (x)⇒ x);
a.append(b.map[[ List[[E ]] ]](fn (x)⇒ l.append(x)));

end

end

inits[[E ]](x : List[[E ]]) : GGenerator[[E]] = InitsGenerator[[E]](x)

Figure 10: Base definition of GGenerator inits

5.3 Implementation of GGenerator inits

This section gives implementations for GGenerator inits: an object for base implementation
of inits and methods for efficient implementations of nested reductions given by theorems in
Section 4.3.

5.3.1 Base Implementation

The base implementation of GGenerator inits is object InitsGenerator given in Figure 10. A
related example problem is found in Section 3.3.1. A related theory is found in Section 4.3.1.

Object InitsGenerator takes the original list as its argument, and getter list() returns
the given original list. Default implementation of GGenerator inits is defined outside the ob-
ject InitsGenerator as function initsImpl shown below. Method generate2 invokes function
dispatching (Section 5.1.2) to dispatch suitable implementation to a user program specified by
the given arguments.

Function initsImpl generates a list of prefix (initial) segments using method generate of the
given list with reduction object InitsReduction shown below.

InitsReduction takes two lists of initial segments (a and b in the code), and returns a list
of initial segments of the concatenated list. Suppose a is a list of initial segments of a list x ,
and b is that of a list y . InitsReduction makes a list of initial segments of the concatenated
list x .append(y) from a and b as follows. Initial segments of x are also initial segments of
the concatenated list. So, all elements in a remain in the result. Each initial segment of y
needs to be concatenated with x to become an initial segment of the concatenated list. So,
InitsReduction maps a function to concatenate the last (rightmost) element of a (x is the last
element of a ) to each element of b so that it can become an initial segment of the concatenated
list.
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efficientImplTrueDistributive[[R,F,M,N, P, Z, Y ]]
(r : R, f : IdFunction[[Y ]],mr : LeftDistributiveOver[[R]],mf : N, p : TrueListPredicate[[E]])

= do

join(x, y) = do

(i1, s1) = x
(i2, s2) = y
(r.join(i1,mr .join(s1, i2)),mr .join(s1, s2))

end

zero = (r.empty(),mr .empty())
(r1, r2) = list().generate[[(Z,Z)]](MapReduceReduction[[(Z,Z)]](join, zero),

(fn a⇒ do b = mf .apply(a); (b, b) end))
r1

end

Figure 11: Efficient implementation of nested reductions with distributive operators for GGen-
erator inits

5.3.2 Implementation for Nested Reductions with Distributive Operators

Figure 11 shows the efficient implementation efficientImplTrueDistributive for Theorem 15 in
Section 4.3.2, which should be implemented in object InitsGenerator to be used in dispatching.
A related example problem is found in Section 3.3.2.

The signature of efficientImplTrueDistributive is almost the same as method generate2 of
trait GGenerator. The types of some arguments are restricted to guarantee that the applicable
condition of the theorem is satisfied by the arguments. Basically, restriction on types here is
not necessary because the checking of types are performed before an invocation of this method.
The type restriction in the code is added for safety.

Function join defined in efficientImplTrueDistributive is straightforward implementation of
the new operator ⊙ given in the theorem. Function join is applied to tuples. The first element
of a tuple is the result of the nested reductions. The second element of the tuple is the result
of a reduction with mr , which is used to improve efficiency by reuse of partial results. Value
zero is the identity of the new operator, constructed from identities of the operators used in
the original nested reductions. The reduction with the new operator is performed by generate
of the original list ( list () in the code). The body function given to generate is extended to
apply a function mf before the reduction. The correctness of this extension is guaranteed by
Theorem 14

To dispatch this implementation to a user program, we have to add an entry to typecase

of the dispatching table (Section 5.1.2). The entry is shown below.

(InitsGenerator[[E]], R, IdFunction[[Y ]],LeftDistributiveOver[[R]], N,TrueListPredicate[[E]])
⇒ g.efficientImplTrueDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

Since the condition for the theorem is that the inner reduction (mr ) has left-distributivity over
the outer reduction (r ), the entry checks whether mr extends trait LeftDistributiveOver[[R]].
Also, it checks that f is the identity function and p is the true-predicate, since the theorem
cannot deal with other functions and predicates.

5.3.3 Implementation for Filtering with Relational Predicates

Figure 12 shows the efficient implementation efficientImplRelationalDistributive for Corollary 17
(Theorem 16) in Section 4.3.3, which should be implemented in object InitsGenerator to be
used in dispatching. A related example problem is found in Section 3.3.3.
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efficientImplRelationalDistributive[[R,F,M,N, P, Z, Y ]]
(r : R, f : IdFunction[[Y ]],mr : LeftDistributiveOver[[R]],mf : N, p : RelationalPredicate[[E]])

= do

join(x, y) = do

(i1, s1, h1, l1) = x
(i2, s2, h2, l2) = y
px = typecase (l1, h2) of
(Just[[E]], Just[[E]])⇒ p.related(l1.unJust(), h2.unJust())
else⇒ true
end

if px then

(r.join(i1,mr .join(s1, i2)),mr .join(s1, s2), takeleft(h1, h2), takeright(l1, l2))
else

(i1, r.empty(), takeleft(h1, h2), takeright(l1, l2))
end

end

zero = (r.empty(),mr .empty(),Nothing[[E]],Nothing[[E]])
(r1, r2, r3, r4) = list().generate[[(Z,Z,Maybe[[E]],Maybe[[E]])]]

(MapReduceReduction[[(Z,Z,Maybe[[E]],Maybe[[E]])]](join, zero),
(fn a⇒ do b = mf .apply(a); (b, b, Just[[E]](a), Just[[E]](a)) end))

r1

end

Figure 12: Efficient implementation of nested reductions with distributive operators and filtering
by relational predicate for GGenerator inits

The signature of efficientImplRelationalDistributive is almost the same as method generate2
of trait GGenerator. The types of some arguments are restricted to guarantee that the applica-
ble condition of the theorem is satisfied by the arguments. Basically, restriction on types here is
not necessary because the checking of types are performed before an invocation of this method.
The type restriction in the code is added for safety.

Function join defined in efficientImplRelationalDistributive is straightforward implementa-
tion of the new operator ⊠ given in the theorem. Function join is applied to quadruples. The
first element of a quadruple is the result of the nested reductions. The second element of the
quadruple is the result of a reduction with mr after filtering with p, which is used to improve
efficiency by reuse of partial results. The third and the fourth elements are the edge elements
of the input, which are used to check whether results from two recursions in divide-and-conquer
computation can be combined to make a better solution. Value zero is the identity of the new
operator, constructed from identities of the operators used in the original nested reductions.
The reduction with the new operator is performed by generate of the original list ( list () in
the code). The body function given to generate is extended to apply a function mf before the
reduction. The correctness of this extension is guaranteed by Theorem 14

To dispatch this implementation to a user program, we have to add an entry to typecase

of the dispatching table (Section 5.1.2). The entry is shown below.

(InitsGenerator[[E]], R, IdFunction[[Y ]],LeftDistributiveOver[[R]], N,RelationalPredicate[[E]])
⇒ g.efficientImplRelationalDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

Since the condition for the theorem is that the inner reduction (mr ) has left-distributivity over
the outer reduction (r ) and the predicate (p ) is relational, the entry checks whether mr extends
trait LeftDistributiveOver[[R]] and p extends trait RelationalPredicate. Also, it checks that f
is the identity function, since the theorem cannot deal with other functions.
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object TailsGenerator[[E]](arglist : List[[E ]]) extends GGenerator[[E ]]
getter list() : List[[E ]] = arglist
getter defaultImplementation() : List[[E ]]→ List[[ List[[E ]] ]] = tailsImpl [[E ]]
generate2[[R,F,M,N, P, Z, Y ]](r : R, f : F,mr : M,mf : N, p : P ) : Z
= do

dispatching [[ TailsGenerator[[E]], R, F,M,N, P, Z, Y,E ]](self, r, f,mr ,mf , p)
end

end

tailsImpl [[E ]](x : List[[E ]]) : List[[ List[[E ]] ]] = do

x.generate[[ List[[ List[[E ]]]] ]](TailsReduction[[E ]], fn (a)⇒ singleton[[ List[[E ]] ]](singleton[[E ]](a)))
end

object TailsReduction[[E ]] extends Reduction[[ List[[ List[[E ]] ]] ]]
empty(): List[[ List[[E ]] ]] = emptyList [[ List[[E ]] ]]()
join(a : List[[ List[[E ]] ]], b : List[[ List[[E ]] ]]): List[[ List[[E ]] ]] = do

h = b.left().generate[[ List[[E ]]]](Concat[[E ]], fn (x)⇒ x);
a.map[[ List[[E ]] ]](fn (x)⇒ x.append(h)).append(b);

end

end

tails[[E ]](x : List[[E ]]) : GGenerator[[E]] = TailsGenerator[[E]](x)

Figure 13: Base definition of GGenerator tails

5.4 Implementation of GGenerator tails

This section gives implementations for GGenerator tails: an object for base implementation
of tails and methods for efficient implementations of nested reductions given by theorems in
Section 4.4.

5.4.1 Base Implementation

The base implementation of GGenerator tails is object TailsGenerator given in Figure 13. A
related example problem is found in Section 3.4.1. A related theory is found in Section 4.4.1.

Object TailsGenerator takes the original list as its argument, and getter list() returns
the given original list. Default implementation of GGenerator tails is defined outside the ob-
ject TailsGenerator as function tailsImpl shown below. Method generate2 invokes function
dispatching (Section 5.1.2) to dispatch suitable implementation to a user program specified by
the given arguments.

Function tailsImpl generates a list of suffix (tail) segments using method generate of the
given list with reduction object TailsReduction shown below.

TailsReduction takes two lists of tail segments (a and b in the code), and returns a list of tail
segments of the concatenated list. Suppose a is a list of tail segments of a list x , and b is that
of a list y . TailsReduction makes a list of tail segments of the concatenated list x .append(y)
from a and b as follows. Tail segments of y are also tail segments of the concatenated list. So,
all elements in b remain in the result. Each tail segment of x needs to be concatenated with
y to become a tail segment of the concatenated list. So, TailsReduction maps a function to
concatenate the first (leftmost) element of b (y is the first element of b ) to each element of a
so that it can become an tail segment of the concatenated list.

5.4.2 Implementation for Nested Reductions with Distributive Operators

Figure 14 shows the efficient implementation efficientImplTrueDistributive for Theorem 15 in
Section 4.4.2, which should be implemented in object TailsGenerator to be used in dispatching.
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efficientImplTrueDistributive[[R,F,M,N, P, Z, Y ]]
(r : R, f : IdFunction[[Y ]],mr : RightDistributiveOver[[R]],mf : N, p : TrueListPredicate[[E]])

= do

join(x, y) = do

(t1, s1) = x
(t2, s2) = y
(r.join(mr .join(t1, s2), t2),mr .join(s1, s2))

end

zero = (r.empty(),mr .empty())
(r1, r2) = list().generate[[(Z,Z)]](MapReduceReduction[[(Z,Z)]](join, zero),

(fn a⇒ do b = mf .apply(a); (b, b) end))
r1

end

Figure 14: Efficient implementation of nested reductions with distributive operators for GGen-
erator tails

A related example problem is found in Section 3.4.2.
The signature of efficientImplTrueDistributive is almost the same as method generate2 of

trait GGenerator. The types of some arguments are restricted to guarantee that the applicable
condition of the theorem is satisfied by the arguments. Basically, restriction on types here is
not necessary because the checking of types are performed before an invocation of this method.
The type restriction in the code is added for safety.

Function join defined in efficientImplTrueDistributive is straightforward implementation of
the new operator ⊛ given in the theorem. Function join is applied to tuples. The first element
of a tuple is the result of the nested reductions. The second element of the tuple is the result
of a reduction with mr , which is used to improve efficiency by reuse of partial results. Value
zero is the identity of the new operator, constructed from identities of the operators used in
the original nested reductions. The reduction with the new operator is performed by generate
of the original list ( list () in the code). The body function given to generate is extended to
apply a function mf before the reduction. The correctness of this extension is guaranteed by
Theorem 20.

To dispatch this implementation to a user program, we have to add an entry to typecase

of the dispatching table (Section 5.1.2). The entry is shown below.

(TailsGenerator[[E]], R, IdFunction[[Y ]],RightDistributiveOver[[R]], N,TrueListPredicate[[E]])
⇒ g.efficientImplTrueDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

Since the condition for the theorem is that the inner reduction (mr ) has right-distributivity over
the outer reduction (r ), the entry checks whether mr extends trait RightDistributiveOver[[R]].
Also, it checks that f is the identity function and p is the true-predicate, since the theorem
cannot deal with other functions and predicates.

5.4.3 Implementation for Filtering with Relational Predicates

Figure 15 shows the efficient implementation efficientImplRelationalDistributive for Corollary 23
(Theorem 22) in Section 4.4.3, which should be implemented in object TailsGenerator to be
used in dispatching. A related example problem is found in Section 3.4.3.

The signature of efficientImplRelationalDistributive is almost the same as method generate2
of trait GGenerator. The types of some arguments are restricted to guarantee that the applica-
ble condition of the theorem is satisfied by the arguments. Basically, restriction on types here is
not necessary because the checking of types are performed before an invocation of this method.
The type restriction in the code is added for safety.
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efficientImplRelationalDistributive[[R,F,M,N, P, Z, Y ]]
(r : R, f : IdFunction[[Y ]],mr : RightDistributiveOver[[R]],mf : N, p : RelationalPredicate[[E]])

= do

join(x, y) = do

(t1, s1, h1, l1) = x
(t2, s2, h2, l2) = y
px = typecase (l1, h2) of
(Just[[E]], Just[[E]])⇒ p.related(l1.unJust(), h2.unJust())
else⇒ true
end

if px then

(r.join(mr .join(t1, s2), t2),mr .join(s1, s2), takeleft(h1, h2), takeright(l1, l2))
else

(t2, r.empty(), takeleft(h1, h2), takeright(l1, l2))
end

end

zero = (r.empty(),mr .empty(),Nothing[[E]],Nothing[[E]])
(r1, r2, r3, r4) = list().generate[[(Z,Z,Maybe[[E]],Maybe[[E]])]]

(MapReduceReduction[[(Z,Z,Maybe[[E]],Maybe[[E]])]](join, zero),
(fn a⇒ do b = mf .apply(a); (b, b, Just[[E]](a), Just[[E]](a)) end))

r1

end

Figure 15: Efficient implementation of nested reductions with distributive operators and filtering
by relational predicate for GGenerator tails

Function join defined in efficientImplRelationalDistributive is straightforward implementa-
tion of the new operator ⊠⊞ given in the theorem. Function join is applied to quadruples. The
first element of a quadruple is the result of the nested reductions. The second element of the
quadruple is the result of a reduction with mr after filtering with p, which is used to improve
efficiency by reuse of partial results. The third and the fourth elements are the edge elements
of the input, which are used to check whether results from two recursions in divide-and-conquer
computation can be combined to make a better solution. Value zero is the identity of the new
operator, constructed from identities of the operators used in the original nested reductions.
The reduction with the new operator is performed by generate of the original list ( list () in
the code). The body function given to generate is extended to apply a function mf before the
reduction. The correctness of this extension is guaranteed by Theorem 20.

To dispatch this implementation to a user program, we have to add an entry to typecase

of the dispatching table (Section 5.1.2). The entry is shown below.

(TailsGenerator[[E]], R, IdFunction[[Y ]],RightDistributiveOver[[R]], N,RelationalPredicate[[E]])
⇒ g.efficientImplRelationalDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

Since the condition for the theorem is that the inner reduction (mr ) has right-distributivity over
the outer reduction (r ) and the predicate (p ) is relational, the entry checks whether mr extends
trait RightDistributiveOver[[R]] and p extends trait RelationalPredicate. Also, it checks that
f is the identity function, since the theorem cannot deal with other functions.
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object SegsGenerator[[E]](arglist : List[[E ]]) extends GGenerator[[E ]]
getter list() : List[[E ]] = arglist
getter defaultImplementation() : List[[E ]]→ List[[ List[[E ]] ]] = segsImpl [[E ]]

generate2[[R,F,M,N, P, Z, Y ]](r : R, f : F,mr : M,mf : N, p : P ) : Z

= do

dispatching [[ SegsGenerator[[E]], R, F,M,N, P, Z, Y,E ]](self, r, f,mr ,mf , p)
end

end

segsImpl [[E ]](x : List[[E ]]) : List[[ List[[E ]] ]] = do

concat(tailsImpl(x).map[[ List[[ List[[E ]]]]]](initsImpl [[E]]))
end

segs[[E ]](x : List[[E ]]) : GGenerator[[E]] = SegsGenerator[[E]](x)

Figure 16: Base definition of GGenerator segs

5.5 Implementation of GGenerator segs

This section gives implementations for GGenerator segs: an object for base implementation
of segs and methods for efficient implementations of nested reductions given by theorems in
Section 4.5.

5.5.1 Base Implementation

The base implementation of GGenerator segs is object SegsGenerator given in Figure 16. A
related example problem is found in Section 3.5. A related theory is found in Section 4.5.1.

Object SegsGenerator takes the original list as its argument, and getter list() returns
the given original list. Default implementation of segs generator is defined outside the ob-
ject SegsGenerator as function segsImpl shown below. Method generate2 invokes function
dispatching (Section 5.1.2) to dispatch suitable implementation to a user program specified by
the given arguments.

Function segsImpl generates a list of all segments (continuous subsequences) using naive
implementation initsImpl (Section 5.3.1) and tailsImpl (Section 5.4.1).

5.5.2 Implementation for Nested Reductions with Distributive Operators

Figure 17 shows the efficient implementation efficientImplTrueDistributive for Theorem 26 in
Section 4.5.2, which should be implemented in object SegsGenerator to be used in dispatching.
A related example problem is found in Section 3.5.2.

The signature of efficientImplTrueDistributive is almost the same as method generate2 of
trait GGenerator. The types of some arguments are restricted to guarantee that the applicable
condition of the theorem is satisfied by the arguments. Basically, restriction on types here is
not necessary because the checking of types are performed before an invocation of this method.
The type restriction in the code is added for safety.

Function join defined in efficientImplTrueDistributive is straightforward implementation
of the new operator ⊚ given in the theorem. Function join is applied to quadruples. The
first element of a quadruple is the result of the nested reductions. The second and the third
elements of the quadruple are the results of the nested reductions on suffixes only and prefixes
only, which are used to improve efficiency by reuse of partial results. The fourth element is the
result of a reduction with mr . Value zero is the identity of the new operator, constructed from
identities of the operators used in the original nested reductions. The reduction with the new
operator is performed by generate of the original list ( list () in the code). The body function

52



efficientImplTrueDistributive[[R,F,M,N, P, Z, Y ]]
(r : Commutative, f : IdFunction[[Y ]],
mr : DistributiveOver[[R]],mf : N, p : TrueListPredicate[[E]])

= do

join(x, y) = do

(m1, i1, t1, s1) = x
(m2, i2, t2, s2) = y
t = r.join(mr .join(t1, s2), t2)
i = r.join(i1,mr .join(s1, i2))
(r.join(r.join(m1,m2), r.join(t, i)), i, t,mr .join(s1, s2))

end

zero = (r.empty(), r.empty(), r.empty(),mr .empty())

(r1, r2, r3, r4) = list().generate[[(Z,Z,Z, Z)]](MapReduceReduction[[(Z,Z,Z, Z)]](join, zero),
(fn a⇒ do b = mf .apply(a); (b, b, b, b) end))

r1

end

Figure 17: Efficient implementation of nested reductions with distributive operators for GGen-
erator segs

given to generate is extended to apply a function mf before the reduction. The correctness of
this extension is guaranteed by Theorem 25.

To dispatch this implementation to a user program, we have to add an entry to typecase

of the dispatching table (Section 5.1.2). The entry is shown below.

(SegsGenerator[[E]], R, IdFunction[[Y ]],DistributiveOver[[R]], N,TrueListPredicate[[E]])
⇒ g.efficientImplTrueDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

Since the condition for the theorem is that the inner reduction (mr ) has distributivity over
the outer reduction (r ) and the outer reduction is commutative, the entry checks whether mr
extends trait DistributiveOver[[R]] and r extends trait Commutative. Also, it checks that f
is the identity function and p is the true-predicate, since the theorem cannot deal with other
functions and predicates.

5.5.3 Implementation for Filtering with Relational Predicates

Figure 18 shows the efficient implementation efficientImplRelationalCommutativeDistributive
for Theorem 27 in Section 4.5.3, which should be implemented in object SegsGenerator to be
used in dispatching. A related example problem is found in Section 3.5.3.

The signature of efficientImplRelationalCommutativeDistributive is almost the same as
method generate2 of trait GGenerator. The types of some arguments are restricted to guar-
antee that the applicable condition of the theorem is satisfied by the arguments. Basically,
restriction on types here is not necessary because the checking of types are performed before an
invocation of this method. The type restriction in the code is added for safety.

Function join defined in efficientImplRelationalCommutativeDistributive is straightforward
implementation of the new operator �◦ given in the theorem. Function join is applied to
hextuples. The first element of a hextuple is the result of the nested reductions. The second
and the third elements of the hextuple are the results of the nested reductions on suffixes only
and prefixes only, which are used to improve efficiency by reuse of partial results. The fourth
element is the result of a reduction with mr after filtering with p. The fifth and the sixth
elements are the edge elements of the input, which are used to check whether results from two
recursions in divide-and-conquer computation can be combined to make a better solution. Value
zero is the identity of the new operator, constructed from identities of the operators used in
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efficientImplRelationalCommutativeDistributive[[R,F,M,N, P, Z, Y ]]
(r : Commutative, f : IdFunction[[Y ]],
mr : DistributiveOver[[R]],mf : N, p : RelationalPredicate[[E]])

= do

join(x, y) = do

(m1, t1, i1, s1, h1, l1) = x
(m2, t2, i2, s2, h2, l2) = y
px = typecase (l1, h2) of
(Just[[E]], Just[[E]])⇒ p.related(l1.unJust(), h2.unJust())
else⇒ true
end

if px then

(r.join(r.join(m1,m2),mr .join(t1, i2)), r.join(mr .join(t1, s2), t2),
r.join(i1,mr .join(s1, i2)),mr .join(s1, s2),
takeleft(h1, h2), takeright(l1, l2))

else

(r.join(m1,m2), t2, i1, r.empty(), takeleft(h1, h2), takeright(l1, l2))
end

end

zero = (r.empty(), r.empty(), r.empty(),mr .empty(),Nothing[[E]],Nothing[[E]])
(r1, r2, r3, r4, r5, r6) = list().generate[[(Z,Z,Z, Z,Maybe[[E]],Maybe[[E]])]]

(MapReduceReduction[[(Z,Z,Z, Z,Maybe[[E]],Maybe[[E]])]](join, zero),
(fn a⇒ do b = mf .apply(a); (b, b, b, b, Just[[E]](a), Just[[E]](a)) end))

r1

end

Figure 18: Efficient implementation of nested reductions with distributive operators and filtering
by relational predicate for GGenerator segs

the naive nested reductions. The reduction with the new operator is performed by generate
of the original list ( list () in the code). The body function given to generate is extended to
apply a function mf before the reduction. The correctness of this extension is guaranteed by
Theorem 25.

To dispatch this implementation to a user program, we have to add an entry to typecase

of the dispatching table (Section 5.1.2). The entry is shown below.

(SegsGenerator[[E]],Commutative, IdFunction[[Y ]],DistributiveOver[[R]], N,RelationalPredicate[[E]])
⇒ g.efficientImplRelationalCommutativeDistributive[[R,F,M,N, P, Z, Y ]](r, f,mr ,mf , p)

Since the condition for the theorem is that the inner reduction (mr ) has distributivity over the
outer reduction (r ), the outer reduction is commutative, and the predicate (p ) is relational,
the entry checks whether mr extends trait DistributiveOver[[R]], r extends trait Commutative
and p extends trait RelationalPredicate. Also, it checks that f is the identity function, since
the theorem cannot deal with other functions.
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(MIS) mis = BIG MAX 〈
∑

y | y ← inits x 〉

(MAIS) mais = BIG MAX 〈
∑

y | y ← inits x, ascending(y) 〉

(MTS) mts = BIG MAX 〈
∑

y | y ← tails x 〉

(MATS) mats = BIG MAX 〈
∑

y | y ← tails x, ascending(y) 〉

(MSS) mss = BIG MAX 〈
∑

y | y ← segs x 〉

(MDSS) mdss = BIG MAX 〈
∑

y | y ← segs x, descending(y) 〉

Figure 19: Programs for experiment

5.6 Experimnt Results

This section shows the power of automatic optimization with dispatching implementation. Fig-
ure 19 shows the target programs of the experiment. Since the desugaring process does not
work well, we desugared comprehensions by hand.

Execution time of each program is measured on the current Fortress interpreter [For] in two
cases. In the first case (case “naive”), the library does not know any theorems and dispatches
naive implementations to programs. In the second case (case “efficient”), the library knows
theorems and dispatches accompanying efficient implementations to programs.

Measured execution time (an average of eight executions) is shown in Table 1. The measure-
ment is performed on a PC with two quadcore CPUs (Intel R©Xeon R©E5430, total 8 cores), 8GB
memory, and Linux 2.6.22. The execution time contains startup time of a Fortress program, as
well as the execution time of the program code.

The ratio of execution time of two cases shows the power of the optimization by dispatching,
although the absolute speed is not meaningful because the interpreter is still under active
development. Dispatching the efficient implementation, the library succeeded in improving the
efficiency of the user program to achieve ten times faster execution time. So, a user program
naively written with our GG library can run efficiently.
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Table 1: Execution time and relative speed of dispatched naive/efficient implementation

problem case input size execution time (s) relative speed (naive / x)

MIS naive 1000 19.72 1.00
2000 71.49 1.00

efficient 1000 0.40 49.30
2000 0.46 155.41

MAIS naive 1000 31.53 1.00
2000 117.86 1.00

efficient 1000 0.50 63.06
2000 0.61 193.21

MTS naive 1000 20.88 1.00
2000 76.54 1.00

efficient 1000 0.40 52.20
2000 0.51 150.07

MATS naive 1000 32.92 1.00
2000 127.47 1.00

efficient 1000 0.49 67.18
2000 0.63 202.33

MSS naive 100 17.51 1.00
200 92.00 1.00

efficient 100 0.35 50.02
200 0.35 262.85

MDSS naive 100 22.02 1.00
200 125.37 1.00

efficient 100 0.35 62.91
200 0.35 358.20
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6 Conclusion

This report provides collections for enriching the power of “GG library.” It provides a collection
of GGenerators with example problems, a collection of theories on GGenerators for efficient
implementations with formal discussion, and a collection of their actual implementation in GG
library on Fortress.

The library will grow with further collections of GGenerators and theories.
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