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Abstract. Skeletal parallel programming enables us to develop parallel programs easily
by composing ready-made components called skeletons. However, a simply-composed
skeleton program often lacks efficiency due to overheads of intermediate data structures
and communications. Many studies have focused on optimizations by fusing successive
skeletons to eliminate the overheads. Existing fusion transformations, however, are too
general to achieve adequate efficiency for some classes of problems. Thus, a specific
fusion optimization is needed for a specific class. In this paper, we propose a specific
optimization of skeleton programs involving neighbor elements, which is often seen in
scientific computations. We start with a normal form that abstracts the programs of
interest. Then, we develop fusion rules that transform a skeleton program into the
normal form. Finally, we make efficient parallel implementation of the normal form.

1 Introduction

Recently, the increasing popularity of parallel machines like PC clusters and multi-core
CPUs attracts more and more users. However, development of efficient parallel programs
is difficult due to synchronization, interprocessor communications, and data distribution
that complicate the parallel programs. This difficulty calls for a methodology of parallel
programming with ease, and many studies have addressed themselves to it. As one promising
solution, skeletal parallel programming [2, 10] has been proposed.

In skeletal parallel programming users develop parallel programs by composing skeletons,
which are abstracted basic patterns in parallel programs. Each skeleton is given as a higher
order function that takes concrete computations as its parameters, and conceals low-level
parallelism from users. Therefore, users can develop parallel programs with the skeletons in
a similar way to developing sequential programs.

Efficiency is one of the most important topics in the research of skeletal parallel pro-
gramming. Since skeleton programs are developed in a compositional style, they often have
overheads of many loops and intermediate data. To make skeleton programs efficient, not
only each skeleton is implemented efficiently in parallel, but also optimizations over multiple
skeletons are necessary.

There have been several studies on the optimizations over multiple skeletons based on
fusion transformations [5–7, 9, 13], which were studied in depth in the field of functional
programming [4, 12]. In particular, general fusion optimizations [5, 7, 9, 13] have achieved
good results both in theory and in practice. For example, Hu et al. [7] proposed a set of
fusion rules based on a general form of skeletons named accumulate.

Although the general fusion optimizations so far are reasonably powerful, there is still
large room for further optimizations. Due to the generality of their fusion transformations,
some overheads in skeleton programs are left through the general fusion optimizations. In
many cases such overheads can be removed if we provide a program-specific implementation.
Thus, some specific optimizations are important for efficiency of skeleton programs.
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In this paper, we propose a specific optimization for skeleton programs that involve
neighbor elements, which is often seen in scientific computations. The proposed optimization
is based on the following strategy.

First, we formalize a normal form that captures the domain-specific computations.
Then, we develop fusion rules that transform a skeleton program into the normal
form. Finally, we provide an efficient parallel implementation of the normal form.

We formalized a normal form and fusion rules for the class of skeleton programs and de-
veloped a small system for fusing skeleton programs into the normal form implemented
efficiently in parallel. The experiment results show effectiveness of the domain-specific opti-
mization.

The rest of this paper is organized as follows. Section 2 defines skeletons and our target
skeleton programs in this paper. It also explains a strategy for optimization of our target
skeleton programs. Section 3 designs a normal form for the target skeleton programs. Sec-
tion 4 gives fusion rules for transformation of a skeleton program into the normal form.
Section 5 explains parallel implementation of the normal form. Section 6 expands our target
programs. Section 7 shows experiment results. Section 8 discusses the applicability of our
strategy and related work. Section 9 concludes this paper.

2 Preliminaries

2.1 Notations

Notations in this paper follow that of Haskell [1], a pure functional language.

Function application is denoted by a space and the argument may be written without
brackets. Thus f a means f(a) in ordinary notation. Functions are curried, i.e. f a b means
(f a) b. The function application binds more strongly than any other operator, so f a ⊗ b
means (f a)⊗b, but not f (a⊗b). Function composition is denoted by ◦, so (f ◦g)x = f (g x)
from its definition. The identity function, which is the identity of function composition, is
denoted by id. Binary operators are denoted by ⊕, ⊗ and so on. Binary operators can be
used as functions by sectioning as follows: a⊕ b = (a⊕) b = (⊕b) a = (⊕) a b. The identity of
a binary operator ⊕ is denoted by ı⊕. Pairs are Cartesian products of plural data, written
like (x, y). It can be extended to the case of arbitrary number of elements like (x, y, z).

2.2 Lists and Basic Functions

Lists are constructed by three constructors: [ ] makes an empty list, [·] makes a singleton,
and ++ concatenates two lists.

data List α = List α++ List α
| [·] α
| [ ]

Here, the concatenation constructor ++ is associative. For simplicity, we denote List α by
[α]. With the above constructors, a list of three elements a0, a1 and a2 is constructed as
[·] a1 ++ [·] a2 ++ [·] a3. For simplicity, we denote a list by lining elements up between ‘[’
and ‘]’ separated by ‘,’ . So, the above list is denoted by [a1, a2, a3]. We also use a notation
a : x = [a] ++ x to show the head of a list.
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We define basic functions on lists that used in the rest of this paper.

length (a : x) = 1 + length x
length [ ] = 0
init (x++ [a]) = x
init [ ] = [ ]
tail (a : x) = x
tail [ ] = [ ]
last (x++ [a]) = a
head (a : x) = a
rev (a : x) = rev x++ [a]
rev [ ] = [ ]
repeat a = a : repeat a
at i (a : x) = if i = 0 then a else at (i− 1) x

Function length calculates the length of a list. Function init removes the last element of
a list, while tail removes the head element. Function last returns the last element of a list,
while head returns the head element. Function rev reverses a list. Function repeat generates
an infinite list of the given element. Function at returns the element at the given index.

2.3 Skeletons on Lists

We introduce skeletons on lists. Formal definitions of those skeletons are shown in Figure 1.
In the following, we explain skeletons using intuitive definitions and examples.

Skeleton map applies a given function f to each element of the list.

map f [a1, . . . , an] = [f a1, . . . , f an]

For example, computation that calculates squares of each element is described with map as
follows.

map sqr [1, 2, 3, 4] = [1, 4, 9, 16]

Skeleton zip zips two lists of the same length.

zip [a1, . . . , an] [b1, . . . , bn] = [(a1, b1), . . . , (an, bn)]

Similarly, zip3 zips three lists. A composition of map and zip is often denoted by zipWith f =
map (λ(x, y)→ f x y) ◦ zip.

Skeleton shift� shifts elements of a list to the right by one, and inserts the given value
e as the leftmost element. The rightmost element is thrown away. Similarly, skeleton shift�
shifts elements to the left and inserts the given value as the rightmost element.

shift� e [a1, . . . , an] = [a2, . . . , an, e]
shift� e [a1, . . . , an] = [e, a1, . . . , an−1]

Skeleton reduce calculates a reduction of a list by the given associative binary operator
⊕. Application of reduce to an empty list results in the identity ı⊕ of operator ⊕.

reduce (⊕) [a1, . . . , an] = a1 ⊕ · · · ⊕ an

For example, a summation of the elements are calculated by reduce as follows.

reduce (+) [1, 2, 3, 4] = 10 (= 1 + 2 + 3 + 4)
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map :: (α→ β)→ [α]→ [β]
map f [ ] = [ ]
map f (a : x) = f a : map f x

zip :: [α]→ [β]→ [(α, β)]
zip [ ] [ ] = [ ]
zip (a : x) (b : y) = (a, b) : zip x y

shift� :: α→ [α]→ [α]
shift� e (a : x) = x++ [e]

shift� :: α→ [α]→ [α]
shift� e (x++ [a]) = e : x

reduce :: (α→ α→ α)→ [α]→ α
reduce (⊕) [ ] = ı⊕
reduce (⊕) (a : x) = a⊕ reduce (⊕) x

scan :: (α→ α→ α)→ α→ [α]→ [α]
scan (⊕) e [ ] = [ ]
scan (⊕) e (a : x) = let e′ = (e⊕ a) in e′ : (scan (⊕) e′ x)

scanr :: (α→ α→ α)→ α→ [α]→ [α]
scanr (⊕) e [ ] = [ ]
scanr (⊕) e [a] = [a⊕ e]
scanr (⊕) e (a : x) = let (c : y) = scanr (⊕) e x in (a⊕ c) : (c : y)

Fig. 1. Definitions of Skeletons on Lists

Skeleton scan accumulate the intermediate results of a reduction.

scan (⊕) e [a1, . . . , an] = [b1, . . . , bn]
where bi = e⊕ a1 ⊕ · · · ⊕ ai

For example, an accumulation of a summation is described with scan as follows.

scan (+) 2 [1, 2, 3, 4] = [3, 5, 8, 12]

Skeleton scanr is the reverse of scan.

scanr (⊕) e [a1, . . . , an] = [c1, . . . , cn]
where ci = ai ⊕ · · · ⊕ an ⊕ e

For example, a reverse accumulation of a summation is described with scanr as follows.

scanr (+) 2 [1, 2, 3, 4] = [12, 11, 9, 6]

2.4 Target Skeleton Programs

We formalize skeleton programs that are targets of this paper. Our targets are skeleton
programs that involve neighbor elements using combination of shift�, shift�, zip and map.
We also deal with skeleton programs that perform one accumulation or one reduction by
scan (scanr) or reduce to the result of the above programs. We define the former program
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as Program, a program with accumulation as ProgramS , and a program with reduction as
ProgramR. A program of ProgramS can have arbitrary number of map after scan or scanr.

data Program α = map (β → α) (Program β)

| shift� α (Program α)
| shift� α (Program α)
| zip (Program β) (Program γ)

| [α]
data ProgramS α = scan (α→ α→ α) α (Program α)

| scanr (α→ α→ α) α (Program α)
| map (β → α) (ProgramS β)

data ProgramR α = reduce (α→ α→ α) (Program α)

Here, Program α and ProgramS α are programs that generate lists of which elements have
type α, while ProgramR α is a program that generates a value of type α. Type β in map is
bound locally. Types β and γ in zip are bound by the relation α = (β, γ). For simplicity,
we do not use binding of variables in the above skeleton programs. Since the above skele-
ton programs are inputs for optimization algorithms, we distinguish skeletons in the above
skeleton programs from skeletons used in algorithms by attaching underlines.

Evaluation of the above defined program is given by evalP , evalPS and evalPR. This
evaluation is the same as that removes the underlines of skeletons.

evalP :: Program α→ [α]
evalP (map f x) = map f (evalP x)

evalP (shift� e x) = shift� e (evalP x)
evalP (shift� e x) = shift� e (evalP x)
evalP (zip y z) = zip (evalP y) (evalP z)

evalP (x) = x

evalPS :: ProgramS α→ [α]
evalPS (scan (⊕) e x) = scan (⊕) e (evalP x)
evalPS (scanr (⊕) e x) = scanr (⊕) e (evalP x)
evalPS (map f x) = map f (evalPS x)

evalPR :: ProgramR α→ α
evalPR (reduce (⊕) x) = reduce (⊕) (evalP x)

In the rest of this paper, we first focus on Program α to explain our idea. Then, we discuss
ProgramS α and ProgramR α in Section 6 as extensions of the optimization of Program α.

2.5 A Running Example

An example of our target programs, which involves neighbor elements, is computation of a
numerical solution of differential equations by difference methods. We use a simple program
for difference method as our running example.

We consider a wave-equation as a concrete differential equation.

∂u

∂t
= −C∂u

∂x

This equation describes propagation of waves. To calculate the propagation of waves, we
replace differential terms by differences. The value of u at time n and at location i is denoted
by un

i .

un+1
i − un

i

∆t
=
−C
∆x

(
a−2u

n
i−2 + a−1u

n
i−1 + a0u

n
i + a1u

n
i+1

)

where (a−2, a−1, a0, a1) = (1/6,−1, 1/2, 1/3)
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Here, we use a difference based on two elements on the left and an element on the right.
Rearranging the above equation, we get the following recurrence equation.

un+1
i = c−2u

n
i−2 + c−1u

n
i−1 + c0u

n
i + c1u

n
i+1

A skeleton program next that computes the values at the next time form the current values
of u in parallel is given as follows. Here, we consider simple boundary conditions: un

−1 = bl0 ,
un

0 = bl1 and un
N+1 = br for a fixed N .

next u = let v′
−2 = map (c−2×) (shift� bl0 (shift� bl1 u))
v′
−1 = map (c−1×) (shift� bl1 u)
v′0 = map (c0×) u
v′1 = map (c1×) (shift� br u)
v− = map add (zip v′

−2 v
′
−1)

v+ = map add (zip v′0 v
′
1)

in map add (zip v− v+)

We use intermediate variables v′
−2, v′

−1, v′0, and v′1 for readability, although the definition of
target programs Program does not have variables. The correspondence of the program next
and the above recurrence equation is as follows. First, to generate a list corresponding to
the first term c−2u

n
i−2, we apply two shift� to shift the elements, and apply map to multiply

the coefficient c−2. Similarly, lists corresponding to the second through the fourth terms are
generated by using shift�, shift� and map. Then, zipping these four lists by zip and adding
elements by map add , we obtain the final result. Since each of four lists are shifted by shift�
and shift�, ith element of the resulting list is c−2ui−2 + c−1ui−1 + c0ui + c1ui+1.

In the rest of this paper, we explain our idea by using this example next .

2.6 A Strategy for Optimization

We propose specific optimization for our target skeleton programs according to the following
strategy. This strategy is based on the observation that domain-specific skeleton programs
are often developed with a fixed set of skeletons composed in a specific manner.

1. Design a normal form that abstracts target computations.

2. Develop fusion rules that transform a skeleton program into the normal form.

3. Implement the normal form efficiently in parallel.

In designing a normal form, we should have the following regards in mind. A normal form is
specified to describe any computation of target programs but should not be too general. A
normal form specific to the target programs enables us to develop efficient implementation
for it. In addition, a normal form should be closed under the fusion rules to maintain the
result of optimization in the form. Once we formalize a normal form with fusion rules
and efficient implementation, we can perform the optimization easily: we first transform a
skeleton program into the normal form with the fusion rules, and then we translate the
program in the normal form to an efficient program.

3 Normal Form of Target Skeleton Programs

In this section, we formalize a normal form that describes the computation of Program α
that involves neighbor elements by using shift�, shift�, zip and map. The objective of this
normal form is to perform main part of such computation in one loop.

6



computation with
introduced constants

common computation
except for the index i

computation with
introduced constants

b0

b1

u
−→

[0]

u
−→

[1]

b1

u
−→

[0]

u
−→

[1]

u
−→

[2]

u
−−−→

[i− 2]

u
−−−→

[i− 1]

u
−→

[i]

u
−−−→

[i + 1]

u
←−

[2]

u
←−

[1]

u
←−

[0]

b2

l1 l2 ce r1

shift� b0 (shift� b1 u)

shift� b1 u

u

shift� b2 u

[[ ]][ , ] [ ]

Fig. 2. Regions of elements calculated by triples for next . A list of computational trees for elements
on the left edge [l1, l2]. A common computational tree for elements in the center part ce. A list of
computational trees for elements on the right edge [r1]. Elements involved in the computation are
boxed by dashed lines.

3.1 Example of Normal Form

Consider calculating the running example next in a single loop. By a simple observation,
its computation can be divided into three parts according to forms of computations of
elements: the computation of the center part elements where only elements of the given
list are involved, the computation of the left part where constants introduced by shift� are
involved, and the computation of the right part where constants introduced by shift� are
involved (shown in Fig. 2).

For the example next , each element in the center part is calculated by the following

computation. Here, u
−→
[i] denotes ith element form the left of u.

ce = add(add(c−2×u
−−−→
[i− 2], c−1×u

−−−→
[i− 1]), add(c0×u

−→
[i], c1×u

−−−→
[i+ 1]))

This computation is common among the elements in the center part.
On the other hand, the leftmost element is calculated by the following.

l1 = add(add(c−2×bl0 , c−1×bl1), add(c0×u
−→
[0], c1×u

−→
[1]))

This computation involves variables (u
−→
[0] and u

−→
[1]) and constants (bl0 and bl1) introduced

by shift�. Similarly, the second element and the rightmost element involve constants. Here,

u
←−
[i] denotes ith element from the right of u.

l2 = add(add(c−2×bl1 , c−1×u
−→
[0]), add(c0×u

−→
[1], c1×u

−→
[2]))

r1 = add(add(c−2×u
←−
[2], c−1×u

←−
[1]), add(c0×u

←−
[0], c1×br))

Summarizing these observations, whole computation of next can be denoted by the
following triple of computations.

– a list of computational trees for elements on the left edge [l1, l2]
– common computational tree for elements in the center part ce
– a list of computational trees for elements on the right edge [r1]

Figure 3 shows these computational trees. Here, u�1 denotes the element u
−−−→
[i− 1] on the

left of the ith element. Similarly, u�1 denotes the element on the right, and u�2 denotes
the second element on the left. Figure 2 shows a region that each member of the triple
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c
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←−
[1]

+
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c1×

br















Fig. 3. Triple describing computation of next .

calculates. To obtain the result from this triple, we calculate each element on the edges by its
computational tree, and calculate elements on the center part by the common computational
tree against indices in a single loop.

Generally, such a triple denotes a computation of a target skeletal program. Thus, in
the next section, we formalize this triple as a normal form of our target skeletal programs.
Transformation of a skeleton program into a normal form is shown in Section 4.

3.2 Definition of Normal Form

A normal form is defined as a triple of two lists of computational trees for elements on the
edges and a common computational tree for the center part.

type NForm α = ([Tree α],Tree α, [Tree α])

We denote this triple by using special brackets like [[ ls, zms, rs ]]. Here, ls is the list of
computational trees for the left edge, zms is the common computational tree for the center
part, and rs is the list of computational trees for the right edge. Computational trees in
normal forms are defined as follows.

data Tree α = Node ((β, γ)→ α) (Tree β) (Tree γ)
| Leafv (β → α) (Var β)
| Leafc α

data Var α = Var [α] Int
| Fix [α] Int Direction
| Hole

data Direction = FromL | FromR

Here, types β and γ are bound locally. A node of the tree holds left and right children
zipped by zip and a function applied by successive map. There are two kinds of leaves: Leafc
denotes a constant introduced by shift� or shift�, and Leafv denotes a list variable and holds
a function applied by successive map. Access to a list is formalized by Var α: Var is used
is index access of the center part, and Fix is used in computations edge elements where
the indices are fixed. Thus, Var holds the list and the amount of shifting, while Fix holds
the list, the index and the origin of the index. The origin of the fixed index is specified by
Direction. A special value Hole is used in parallel implementation.

For example, add(c−2×bl1 , c−1×u
−→
[0]) is described as follows.

Node add (Leafc (c−2×bl1)) (Leafv (c−1×) (Fix u 0 FromL))

A part of common tree c−2×u�2 is described as follows.

Leafv (c−2×) (Var u (−2))

Note that negative value of the amount of shifting means shifting to the left.
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3.3 Semantics of Normal Form

We give a semantics of the normal form by sequential evaluation of the normal form. The
center part is calculated by a single loop with the common computational tree. Each element
on both edges is calculated by its own computational tree.

First, we define the evaluation of computational trees by evaluation function evalT0 and
evalT as follows. This evaluation uses an auxiliary function evalV defined below.

evalT0 :: Tree α→ α
evalT0 x = evalT x 0
evalT :: Tree α→ Int → α
evalT (Node f l r) i = f (evalT l i, evalT r i)
evalT (Leafv f v) i = f (evalV v i)
evalT (Leafc c) i = c

The evaluation function evalT0 for elements on the left and right edges is defined by evalT
ignoring the index. The evaluation function evalT performs computation according to the
definition of computational trees. The auxiliary function evalV processes index accessing of
input lists. The result of evalV for Hole is not defined.

evalV :: Var α→ Int → α
evalV (Var u s) i = at (i− s) u
evalV (Fix u s FromL) = at s u
evalV (Fix u s FromR) = at s (rev u)

Using the above evaluation functions, we define a sequential program eval that evaluates
the normal form. Here, the lengths of involved lists are supposed to be n.

eval :: NForm α→ [α]
eval [[ ls, zms, rs ]] = map evalT0 ls ++ map (evalT zms) idces ++ map evalT0 rs

where l = length ls ; r = length rs
idces = [l..(n− r − 1)]

Each element on both edges is calculated by its own computational tree using evalT0 defined
above. The center part is calculated by a single loop (map (evalT zms)) with the common
computational tree.

4 Fusion Rules for Transformation to Normal Form

In this section, we define rules to transform a skeleton program Program α into a normal
form.

4.1 Transformation with Fusion Rules

The transformation of a skeleton program into a normal form is performed by the following
function compile and fusion rules one by one.

compile :: Program α→ NForm α
compile (map f x) = fuseMap f (compile x)

compile (shift� e x) = fuseShift� e (compile x)
compile (shift� e x) = fuseShift� e (compile x)
compile (zip x y) = fuseZip (compile x) (compile y)

compile (x) = [[ [ ],Leafv id (Var x 0), [ ] ]]

Fusion rules for each skeletons are defined as follows. Figure 4 illustrates the fusion rules.
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⇓

map f

⇓

shift� e

(a) Fusion of map composes the given function to each
tree of the normal form. The structure of the normal
form is not changed.

(b) Fusion of shift� discards the rightmost computa-
tional tree and introduces a new constant tree to
the leftmost. The amount of shifting in the tree for
center part is updated by one.

⇓

shift� e

zip

⇓

(c) Fusion of shift� discards the leftmost computational
tree and introduces a new constant tree to the right-
most. The amount of shifting in the tree for center
part is updated by −1.

(d) Fusion of zip instantiates the shaded parts so that
the sizes of lists of trees for edges become uniform,
and zips the corresponding trees.

Fig. 4. An image of fusion rules. Rectangles show the resulting lists. The three parts separated by
vertical lines correspond to the triple of a normal form. Changed parts are shaded.

Fusion Rule for map Fusion of skeleton map is performed by composing the given function
to roots of computational trees.

fuseMap :: (α→ β)→ NForm α→ NForm β
fuseMap f [[ ls, zms, rs ]] = [[ map (comp f) ls, comp f zms,map (comp f) rs ]]

Composition of a function is defined by the following comp.

comp :: (α→ β)→ Tree α→ Tree β
comp f (Node g l r) = Node (f ◦ g) l r
comp f (Leafv g v) = Leafv (f ◦ g) v
comp f (Leafc c) = Leafc (f c)

For non-constant roots, comp composes the given function to the function held in the root.
For constant roots (i.e. constant leaves), comp applies the given function to the constant to
generate a new constant root.

Fusion Rules for shiftfi and shiftfl Fusion of skeletons shift� and shift� is performed by
insertion and deletion of the leftmost and the rightmost trees, and update of the amount of
shifting.

fuseShift� :: α→ NForm α→ NForm α
fuseShift� e [[ ls, zms, rs ]] = [[ tail ls, slide (−1) zms, rs ++ [Leafc e] ]]
fuseShift� :: α→ NForm α→ NForm α
fuseShift� e [[ ls, zms, rs ]] = [[ [Leafc e] ++ ls, slide 1 zms, init rs ]]

For the left-shift, the fusion discards the leftmost computational tree and introduces a
constant computational tree to the rightmost. Then, it updates the amount of shifting in the
common computational tree for the center part. This update is performed by the following
slide. The right-shift is similar to the left-shift.

slide :: Int → Tree α→ Tree α
slide d (Node f l r) = Node f (slide d l) (slide d r)
slide d (Leafv f (Var x s)) = Leafv f (Var x (s+ d))
slide d x = x
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Fusion Rule for zip Fusion of skeleton zip needs unification of the lengths of lists to
be zipped. Thus, the common trees for the center parts are instantiated to expand the
lists of computational trees for edges. Then, each pair of corresponding trees is zipped by
introducing a new node with id function.

fuseZip :: NForm α→ NForm β → NForm (α, β)
fuseZip [[ ls1, zms1, rs1 ]] [[ ls2, zms2, rs2 ]]

= let zms = Node id zms1 zms2

ls = trim FromL ls1 ls2 zms1 zms2

rs = trim FromR (rev rs1) (rev rs2) zms1 zms2

in [[ ls, zms, rev rs ]]

The function trim defined below unifies the lengths of lists by instantiating common tree
zmsk by a function insts defined below.

trim :: Direction → [Tree α]→ [Tree β] → Tree α→ Tree β → [Tree (α, β)]
trim d ts1 ts2 zms1 zms2

= letn1 = length ts1 ; n2 = length ts2

(ts ′1, ts
′
2) = (ts1 ++ insts d zms1 n1 n2, ts2 ++ insts d zms2 n2 n1)

in zipWith (Node id) ts ′1 ts ′2

The instantiation is performed by the following insts and inst .

insts :: Direction → Tree α→ Int → Int → [Tree α]
insts d zms s e = map (inst d zms) [s..(e− 1)]

inst d (Node f l r) i = Node f (inst d l i) (inst d r i)
inst d (Leafv f (Var x s)) i = let s′ = case d of FromL→ s; FromR → −s

in Leafv f (Fix x (−s′ + i) d)
inst d x i = x

These four fusion rules and the base case rule can transform any skeleton program defined
by Program into the normal form. We conclude this fact as a theorem.

Theorem 1. Any skeleton program defined by Program can be transformed into the normal
form by using the four fusion rules and the base case rule.

Proof. This is proved by induction on the structure of Program. The base case is shown by
the transformation of an input list. Induction cases are shown by the four fusion rules.

Complete proof is shown in Appendix A ut

4.2 Example of Transformation

As a brief explanation of the rules, we transform the example next into the normal form.
For readability, we use a brief notation used in the previous examples instead of the data
structures.

Most simplest case is the transformation of the argument list u. A list u needs only the

common computational tree u
−→
[i] that is just the element of u.

u⇒ [[ [ ], id u, [ ] ]]

Here, id u is the brief notation of Leafv id (Var u 0).
Next, we transform shift� bl1 u. This shift� introduces the constant bl1 to the leftmost

element, a new computational tree of the constant bl1 is introduced to the normal form.

shift� bl1 [[ [ ], id u, [ ] ]]⇒ [[ [bl1 ], id u�1, [ ] ]]

11



Also, the amount of shifting in the common tree is updated by 1.

Then, we fuse map (c−1×) to the above result.

map (c−1×) [[ [bl1 ], id u�1, [ ] ]]⇒ [[ [c−1×bl1 ], c−1×u�1, [ ] ]]

The constant bl1 is replaced by c−1 × bl1 , and the function c−1× is composed to id held in
the root of the common tree. Since id is the identity of function composition, id is removed
in the result.

Similarly, other applications of shift�, shift� and map result in the following normal
forms.

map (c0×) u⇒ [[ [ ], c0 × u, [ ] ]]
map (c1×) (shift� br u)⇒ [[ [ ], c1 × u�1, [c1 × br] ]]
map (c−2×) (shift� bl0 (shift� bl1 u))⇒ [[ [c−2 × bl0 , c−2 × bl1 ], c−2 × u�2, [ ] ]]

In the second transformation, a new tree is introduced by shift� to the rightmost, and
the amount of shifting in the common tree is updated by 1 to the left. After the last
transformation, there are two computational trees for elements on the left edges introduced
by two shift�, and the amount of shifting in the common tree becomes 2.

Next, we perform fusion of zip to transform zip v′0 v
′
1, i.e.

zip [[ [ ], c0 × u, [ ] ]] [[ [ ], c1 × u�1, [c1 × br] ]].

Since the lengths of lists of two normal forms to be zipped are not the same (i.e. [ ] and
[c1×br] for the right edges), we have to unify the lengths by instantiating the common trees.
Instantiation means to fix the indices in the common trees for elements on the edges. The
result of instantiation and zip is as follows.

[[ [ ], (c0 × u, c1 × u�1), [(c0 × u
←−
[0], c1 × br)] ]]

Here, instantiation of the common tree of the first normal form c0×u results in c0×u
←−
[0], and

it is zipped with the rightmost tree of the second normal form to make the new rightmost
tree.

Similarly, we obtain the following normal form from zip v ′
−2 v

′
−1.

[[ [(c−2 × bl0 , c−1 × bl1), (c−2 × bl1 , c−1 × u
−→
[0])], (c−2 × u�2, c−1 × u�1), [ ] ]]

Continuing these fusions, we finally obtain the following normal form for the example
next .

[[[add(add(c−2 × bl0 , c−1 × bl1), add(c0 × u
−→
[0], c1 × u

−→
[1])),

add(add(c−2 × bl1 , c−1 × u
−→
[0]), add(c0 × u

−→
[1], c1 × u

−→
[2]))],

add(add(c−2 × u�2, c−1 × u�1), add(c0 × u, c1 × u�1)),

[add(add(c−2 × u
←−
[2], c−1 × u

←−
[1]), add(c0 × u

←−
[0], c1 × br))] ]]

5 Parallel Implementation of Normal Form

In this section, we give a parallel implementation of the normal form.
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combine

(1) Lists in a normal form are divided into two parts to generate two normal forms. Then, these normal
forms are distributed to processors.

(2) Each processor calculates elements that can be calculated by local data. Elements on the edges
cannot be calculated because they need data on other processors.

(3) To calculate the elements on the edges, communication is performed to complete the data.
(4) Perform calculation of the elements on the edges. Combine the edge elements to the other elements.

Fig. 5. An image of parallel implementation of the normal form (two processors).

5.1 Parallel Implementation of Normal Form

Based on parallel implementation of existing skeletons [8], we consider parallel implemen-
tation of the normal form by four steps: (1) distribution of a normal form (input lists), (2)
the first local computation, (3) global communication, (4) the second local computation.
We explain the idea of parallel implementation using the example next . Figure 5 shows an
image of parallel implementation of the normal form using two processors.

First, we distribute the normal form among processors. The input list u is divided into
two parts: u = u1 ++ u2. There are two processors, and each processor has a part of the
divided list. Letting the original normal form be [[ ls, zms, rs ]], each processor has one of the
following distributed normal forms.

nf 1 = [[ ls, zms1, [ ] ]] ; nf 2 = [[ [ ], zms2, rs ]]

Here, the list of computational trees for the left edge is held in the first normal form nf 1,
while the list of computational trees for the right edge is held in the last normal form
nf 2. The common computational tree zmsk of the normal form nf k is created from zms
by replacing the input list u with the part of the list uk. Thus, for the example next , the
distributed normal form nf k is as follows.

add(add(c−2×uk�2, c−1×uk�1), add(c0×uk , c1×uk�1))

Next, in the first local step, processors calculate own partial results in parallel. Since
elements on the edges of the distributed normal forms needs elements of both u1 and u2, these
elements cannot be calculated in this phase. For example, the rightmost element calculated
by nf 1 needs an element of u2, which is underlined in the following expression.

add(add(c−2×u1
←−
[2], c−1×u1

←−
[1]), add(c0×u1

←−
[0], c1×u2

−→
[0]))

Since these elements cannot be calculated in this local phase, computational trees for these
elements are held until the global computation phase. Here, a hole • is substituted to an
element that is not available in this phase.

add(add(c−2×u1
←−
[2], c−1×u1

←−
[1]), add(c0×u1

←−
[0], c1×•))

Similarly, the left edge of nf 2 generates the following computational tree with holes.

add(add(c−2×•, c−1×•), add(c0×•, c1×u2
−→
[0]))
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Note that this tree complement the tree generated from nf 1. Generally, letting the maximum
amounts of shifting to the left and the right be l and r, the number of computational trees
with holes generated on each edge is l+r. Trees on both sides of an edge are complementary
to each other.

Third, in the global communication step, neighboring processors communicate incom-
plete trees with holes to each other to complete those trees. Of course, the first local com-
putation can hide the time of this communication phase.

Fourth, in the second local step, each processor calculates the elements on the edges
with the completed trees to complete the resulting distributed list.

For the example next , nf 1 generates the following trees with holes,

add(add(c−2×u1
←−
[2], c−1×u1

←−
[1]), add(c0×u1

←−
[0], c1×•)),

add(add(c−2×u1
←−
[1], c−1×u1

←−
[0]), add(c0×•, c1×•)),

add(add(c−2×u1
←−
[0], c−1×•), add(c0×•, c1×•)),

while nf 2 generates the following trees.

add(add(c−2×•, c−1×•), add(c0×•, c1×u2
−→
[0]))

add(add(c−2×•, c−1×•), add(c0×u2
−→
[0], c1×u2

−→
[1]))

add(add(c−2×•, c−1×u2
−→
[0]), add(c0×u2

−→
[1], c1×u2

−→
[2]))

Zipping these trees, we obtain the following complete computational trees for elements on
the edge.

add(add(c−2×u1
←−
[2], c−1×u1

←−
[1]), add(c0×u1

←−
[0], c1×u2

−→
[0]))

add(add(c−2×u1
←−
[1], c−1×u1

←−
[0]), add(c0×u2

−→
[0], c1×u2

−→
[1]))

add(add(c−2×u1
←−
[0], c−1×u2

−→
[0]), add(c0×u2

−→
[1], c1×u2

−→
[2]))

After these four steps, these completed results are gathered to the root processor, or become
a new input to another normal form. Distribution of input will be skipped in the latter case.

Summarizing the above ideas, we get the following parallel implementation of the normal
form.

eval = globalReduction ◦map (localEval) ◦ dist

First, a normal form is distributed among processors by dist (step (1)). Next, each processor
evaluates a part of distributed normal forms by localEval (step (2)). Then, these results are
combined globally by globalReduction (step (3) and (4)). Local computation localEval takes
a distributed normal form, and generates a triple of its partial result (pls, cs, prs), where cs
is the calculated elements on the center part, and pls and prs are computational trees with
holes for elements on left and right edges. Global computation globalReduction communicates
partial results (pls1, cs1, prs1) and (pls2, cs2, prs2) of both sides of an edge, then generates a
new partial result (pls1, cs1++glue prs1 pls2++cs2, prs2). Here, glue denotes the complement
process. Then, the final result is obtained by extracting the center result of the final partial
result.

5.2 Formalization of Parallel Implementation of Normal Form

We formalize the parallel implementation explained in the previous section. In the rest of
this section, p means the number of processors and n means the length of the lists involved
in the computation.
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First, we define the distribution dist that divides a normal form into p parts.

dist :: Int → NForm α→ [NForm α]
dist p [[ ls, zms, rs ]] = letdivs = division p n

zmss = distribute zms divs
lss = ls : take (p− 1) (repeat [ ])
rss = take (p− 1) (repeat [ ]) ++ [rs]

in zip3 lss zmss rss

Here, division p n calculates the division of input lists, and distribute zms divs distributes
the input lists according to the division. This process generates distributes a computational
tree zms i that is generated by replacing a list u (= u1 ++ · · ·++ui ++ · · ·++up) in the original
tree zms with ui, and zms i is distributed to ith processor and held in the normal form nf i

(this is generated by zip3 lss zmss rss). The list of computational trees for the left edge is
held in the first normal form nf 1, while the list of computational trees for the right edge is
held in the last normal form nf p.

Next, we define the triple of the partial result PResult .

type PResult α β = ([Tree α], β, [Tree α])

We use a special brackets 〈〈 pls, cs, prs 〉〉 to denote a partial result. Here, cs is the calculated
elements on the center part, and pls and prs are computational trees with holes for elements
on left and right edges. We abstract the type of calculated elements on the center part as β
for generality.

Next, we define an auxiliary function maxShift that calculates the maximum amount of
shifting.

maxShift :: Tree α→ (Int , Int)
maxShift (Node l r) = let (l1, r1) = maxShift l

(l2, r2) = maxShift r
in (max l1 l2,max r1 r2)

maxShift (Leafv (Var s)) = if s < 0 then (−s, 0) else (0, s)
maxShift = (0, 0)

We define a general function gEval ′ to perform the local computation.

gEval ′ :: (NForm α→ [Int ]→ β)→ NForm α→ PResult α β
gEval ′ fc [[ ls, zms, rs ]] = 〈〈 pls, cs, prs 〉〉

where

idces = [r..(n− l − 1)]
(l, r) = maxShift zms
cs = fc (ls, zms, rs) idces
pls = map (instP FromL zms) [(−l)..(r − 1)]
prs = map (instP FromR zms) (rev [(−r)..(l − 1)])

This gEval ′ takes a function to calculate the center part of the partial result, and generates
a partial result consisting of the result computed by the given function and two lists of
computational trees with holes generated by the following function instP .

instP :: Direction → Tree α→ Int → Tree α
instP d (Node f l r) i = Node f (instP d l i) (instP d r i)
instP d (Leafv f (Var x s)) i = let s′ = case d of FromL→ s; FromR → −s

i′ = (−s′ + i)
in if (i′ ≤ (length x))||(i′ < 0) then Leafv f Hole

else Leafv f (Fix x i′ d)
instP d x i = x
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This instP is the same of inst except that it substitutes a hole for an element that is not
available in this phase.

Using gEval ′, we define the function eval ′ that performs local computation of the normal
form as follows.

eval ′ :: NFormα→ PResultα[α]
eval ′ = gEval ′ fcMap

where fcMap [[ ls, zms, rs ]] idces
= map evalT0 ls ++ map (evalT zms) idces ++ map evalT0 rs

The defined function fcMap evaluates the computational tree zms against indices given by
gEval ′, and returns a list of the resulting elements.

Next, we define the process of completion of a computational tree from two trees com-
plementary to each other.

combine :: Tree α→ Tree α→ Tree α
combine (Node f1 l1 r1) (Node f2 l2 r2) = Node f1 (combine l1 l2) (combine r1 r2)
combine (Leafv f1 Hole) (Leafv f2 v) = Leafv f2 v
combine (Leafv f1 v) (Leafv f2 Hole)) = Leafv f1 v
combine (Leafc c) (Leafc c

′) = Leafc c

This function completes the tree by filling holes with values held in the other tree. Using
this auxiliary function, we define an operator �(·,·) for global reduction.

(�(·,·)) :: (α→ α→ α)→ (β → α)→ PResult β α→ PResult β α→ PResult β α

〈〈 pls1, cs1, prs1 〉〉�(⊕,f) 〈〈 pls2, cs2, prs2 〉〉 = 〈〈 pls1, cs, prs2 〉〉
where es = zipWith ((evalT0◦) ◦ combine) prs1 pls2

cs = cs1 ⊕ cata (⊕) f es ⊕ cs2

This operator takes an associative operator and a function, and calculates the reduction of
the elements on edges. This reduction is done by the following general function.

cata :: (α→ α→ α)→ (β → α)→ [β]→ α
cata (⊕) f [ ] = ı⊕
cata (⊕) f (a : x) = f a⊕ cata (⊕) f x

Since the computation of the normal form generates a list, we use �(++,[·]) that performs
reduction by ++ and [·].

Using the functions defined above, we define the parallel implementation of normal form
parEval as follows.

parEval :: Int → NForm α→ [α]
parEval p=extract ◦ reduce (�(++,[·])) ◦map eval ′ ◦ dist p

The last function extract extracts the center value from the final partial result.

extract :: PResult α β → β
extract 〈〈 pls, cs, prs 〉〉 = cs

6 Expansion of Target Programs

Based on the results for Program, we expand our target programs to ProgramS , which
includes accumulation by scan or scanr, and ProgramR, which includes reduction by reduce
(see Section 2).
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6.1 Target Programs with Accumulation

First, we expand our target programs to ProgramS . A target skeleton program of ProgramS

has one accumulation by scan or scanr after the computation (i.e. Program) that involves
neighbor elements using combination of shift�, shift�, zip and map. The target skeleton
program also has arbitrary number of map after the accumulation.

An Example of Target Programs with Accumulation As an example of the target
programs, consider a program to solve a tridiagonal linear system of equations. The output
of the program is xs = [x1, . . . , xn] that satisfies the following linear equations for the given
coefficients ds = [d1, . . . , dn], es = [e1, . . . , en], fs = [f1, . . . , fn], bs = [b1, . . . , bn].
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︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

A x = b

A skeleton program that solves this tridiagonal linear system of equations is given as follows.
This program is based on the LU decomposition of the coefficient matrix A = LU [11].

solveTS ds es fs bs
= let us = map g2 (scan (⊗1) eye (map g1 (zip ds (map mul (zip es (shift� 0 fs))))))

ms = map div (zip es (shift� ∞ us))
ys = map g5 (scan (⊗2) eye ′ (map g3 (zip ms bs)))
xs = map g5 (scanr (⊗3) eye ′ (map g4 (zip us (zip ys fs))))

in xs
where (a11, a12, a21, a22)⊗1 (b11, b12, b21, b22)

= (a11 ∗ b11 + a12 ∗ b21, a11 ∗ b12 + a12 ∗ b22,
a21 ∗ b11 + a22 ∗ b21, a21 ∗ b12 + a22 ∗ b22)

(a11, a21)⊗2 (b11, b21) = (a11 ∗ b11, a21 ∗ b11 + b21)
(a11, a12)⊗3 (b11, b12) = (a11 ∗ b11, a11 ∗ b12 + a12)
g1 (d, ef ) = (d, 1,−ef , 0)
g2 (a11, a12, a21, a22) = a11/a12

g3 (m, b) = (−m, b)
g4 (u, (y, f)) = (−f/u, y/u)
g5 (a11, a12) = a12

mul a b = a ∗ b
div a b = a/b
eye = (1, 0, 0, 1)
eye ′ = (1, 0)

Here, us corresponds to the upper triangular matrix U , ms corresponds to the lower trian-
gular matrix L, ys is the solution of the linear equation Lys = bs, and xs the solution of the
linear equation Axs = bs. The operators ⊗1, ⊗2 and ⊗3 are multiplication of 2×2 matrices,
although ⊗2 and ⊗3 omit the half of the elements. This program consists of three parts:
the first part performs the LU decomposition with scan to obtain us and ms, the second
part performs the forward substitution by scan to obtain ys, and the third part performs
the backward substitution by scanr to obtain xs.
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Normal Form with Accumulation We extend the normal form of Program to hold the
operator, the direction and the element of the accumulation, and the functions applied by
the last map. Thus, the extended normal form NFormS is defined as follows.

type NFormS α = (NForm β, (Direction, β → β → β, β, β → α))

In the extended normal form ([[ ls, zms, rs ]], (d,⊕, e, f)), [[ ls, zms, rs ]] specifies the computa-
tion before the accumulation, d is the direction of accumulation, ⊕ is the associative binary
operator used in the accumulation, e is the initial element of the accumulation, and f is a
function applied to each element after the accumulation. The direction d is FromL for the
accumulation by scan, and FromR for scanr.

For example, the example solveTS is described by the following three normal forms.

us ⇒ ([[ [g1 (ds ,mul (es , 0))], g1 (ds ,mul (es , fs�1)), [ ] ]], (FromL,⊗1, eye, g2))
ys ⇒ ([[ [g3 (div (es ,∞), bs )], g3 (div (es , us�1), bs ), [ ] ]], (FromL,⊗2, eye

′, g5))
xs ⇒ ([[ [ ], g4 (us , (ys , fs )), [ ] ]], (FromR,⊗3, eye

′, g5))

Note that the computation of ms is absorbed by the computation of ys.

Fusion Rules with Accumulation We extend the fusion rules to handle scan, scanr and
map after accumulation. The transformation of a skeleton program into an extended normal
form is performed by the following function compileS and fusion rules one by one.

compileS :: ProgramS α→ NFormS α
compileS (scan (⊕) e x) = fuseScan (⊕) e (compile x)
compileS (scanr (⊕) e x) = fuseScanr (⊕) e (compile x)
compileS (map f x) = fuseMapS f (compileS x)

Transformation of the computation before the accumulation is done by compile defined in
Section 4.

Fusion rules for accumulations are as follows.

fuseScanr :: (α→ α→ α)→ α→ NForm α→ NFormS α
fuseScanr (⊕) e [[ ls, zms, rs ]] = ([[ ls, zms, rs ]], (FromR, (⊕), e, id))

fuseScan :: (α→ α→ α)→ α→ NForm α→ NFormS α
fuseScan (⊕) e [[ ls, zms, rs ]] = ([[ ls, zms, rs ]], (FromL, (⊕), e, id))

Each rule appends the operator ⊕ and the initial element e to the normal form, and marks
the direction of the accumulation by FromL or FromR. The last element of the extended
normal form is initialized by the identity function id.

The fusion rule for map after accumulation is as follows.

fuseMapS :: (β → α)→ NFormS β → NFormS α
fuseMapS f = (nf , (d, (⊕), e, g)) = (nf , (d, (⊕), e, f ◦ g))

This rule merely composes the given function f to the function g in the extended normal
form.

It is obvious that any target program can be transformed into an extended normal form
by the above fusion rules and the fusion rules defined in Section 4.
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Parallel Implementation of Normal form with Accumulation Based on parallel
implementation of skeleton scan, we design parallel implementation of the normal form.
Parallel implementation of skeleton scan is given as follows.

scan (⊕) e =reduce (++) ◦ zipWithP (postScan (⊕))
◦ ((prescan (⊕) e ◦map last)4id)
◦map (scan (⊕) ı⊕) ◦ dist p
where postScan (⊕) a x = map (a⊕) x

Here, zipWithP f (x, y) = zipWith f x y and (f4g) x = (f x, g x). First, this implementation
performs local accumulation in parallel by scan. Then, it performs global accumulation by
prescan defined below. Finally, postScan adds the accumulated value calculated by prescan
to each element of the result of the local accumulation.

prescan :: (α→ α→ α)→ α→ [α]→ [α]
prescan (⊕) e [ ] = [ ]
prescan (⊕) e (a : x) = e : prescan (⊕) (e⊕ a) x

Based on the parallel implementation of scan, we consider the following parallel imple-
mentation of a normal form with accumulation. We only show the implementation of the
normal form with accumulation by scan. The implementation for accumulation by scanr is
similar to that by scan.

parEvalScan :: Int→NFormS α→[α]
parEvalScan p (nf , (FromL,⊕, e, f)) = reduce (++) ◦ zipWithP (evalPostScan (⊕) f)

◦ ((prescan (�(⊕,id)) ([ ], e, [ ]) ◦map takeLast)4id)

◦map (evalScan ′ (⊕) ı⊕) ◦ dist p $ nf

Here, takeLast 〈〈 pls, cs, prs 〉〉 = 〈〈 pls, last cs, prs 〉〉. Basic structure is the same as the im-
plementation of scan. Main difference is that local and global computation deal with triples
of partial results defined. The local computation evalScan ′ that generates a partial result is
defined as follows. The generated partial result holds the result of local accumulation in the
center of the triple.

evalScan ′ :: (α→ α→ α)→ α→ NForm α→ PResult α [α]
evalScan ′ (⊕) e = gEval ′ fcScan

where fcScan [[ ls, zms, rs ]] idces = sls ++ scs ++ srs
where sls = scata (⊕) e evalT0 ls

e′ = last (e : sls)
scs = scata (⊕) e′ (evalT zms) idces
e′′ = last (e′ : scs)
srs = scata (⊕) e′′ evalT0 rs

Here, scata defined below performs accumulation and evaluation of the computational tree
at the same time.

scata :: (α→ α→ α)→ α→ (β → α)→ [β]→ [α]
scata (⊕) e f [ ] = [ ]
scata (⊕) e f (a : x) = let e′ = (e⊕ f a)

in e′ : scata (⊕) e′ f x
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The final local computation evalPostScan (⊕) calculates accumulation of elements on the
edges and adds the accumulated value to the result of the local computation.

evalPostScan :: (α→ α→ α)→ (α→ β)PResult α α→ PResult α [α]→ [β]
evalPostScan (⊕) f 〈〈 epls, e, eprs 〉〉 〈〈 pls, cs, prs 〉〉 = res

where fe (epr , pl) = evalT0 (combine epr pl))
sls = scata (⊕) e fe (zip eprs pls)
e′ = last (e : sls)
scs = map (f ◦ e′⊕) cs
res = map f sls ++ scs

6.2 Target Programs with Reduction

Next, we expand our target programs to ProgramR.

Normal Form with Reduction We extend the normal form of Program to hold the
operator of the reduction. Thus, the extended normal form NFormR is defined as follows.

type NFormR α = (NForm β, β → β → β)

In the extended normal form ([[ ls, zms, rs ]],⊕), [[ ls, zms, rs ]] specifies the computation before
the accumulation, and ⊕ is the associative binary operator used in the reduction.

Fusion Rules with Reduction We extend the fusion rules to handle reduce. The trans-
formation of a skeleton program into an extended normal form is performed by the following
function compileR and fusion rules one by one.

compileS :: ProgramS α→ NFormS α
compileR (reduce (⊕) x) = fuseReduce (⊕) (compile x)

Transformation of the computation before the reduction is done by compile defined in Sec-
tion 4.

The fusion rule for reduction is as follows.

fuseReduce :: (α→ α→ α)→ NForm α→ NFormR α
fuseReduce (⊕) [[ ls, zms, rs ]] = ([[ ls, zms, rs ]], (⊕))

The rule appends the operator ⊕ to the normal form.
It is obvious that any target program can be transformed into an extended normal form

by the above fusion rule and the fusion rules defined in Section 4.

Parallel Implementation of Normal Form with Reduction In this section, we give
parallel implementation for ProgramR that perform reduction by reduce to the result of a
normal form.

These programs can be executed in parallel by performing reduction, instead of genera-
tion of a list, in the implementation of a normal form. That is, parallel implementation is
obtained by giving the reduction operator to gEval ′ and �(·,·).

The function evalReduce ′ that performs local reduction is defined as follows.

evalReduce ′ :: (α→ α→ α)→ NForm α→ PResult α α
evalReduce ′ (⊕) = gEval ′ fcReduce

where fcReduce [[ ls, zms, rs ]] idces
= cata (⊕) evalT0 ls ⊕ cata (⊕) (evalT zms) idces ⊕ cata (⊕) evalT0 rs
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Table 1. Running times and speedups of parallel programs against the number of processors. A
speedup is one with respect to a sequential program.

#processors 1 2 4 8 16 24 32 48 64
next time (s) 210.25 100.84 48.12 24.41 13.31 8.86 6.52 4.70 3.50

speedup 0.09 0.20 0.41 0.81 1.49 2.24 3.04 4.23 5.67
next opt time (s) 19.86 9.64 4.93 2.44 1.26 0.87 0.70 0.54 0.47

speedup 1.00 2.06 4.03 8.14 15.79 22.76 28.26 36.73 42.22

r[0] = c_2*b0 + c_1*b1 + c0*u[0] + c1*u[1];
r[1] = c_2*b1 + c_1*u[0] + c0*u[1] + c1*u[2];
for(int i = 2; i < n-1; i++) {

r[i] = c_2*u[i-2] + c_1*u[i-1] + c0*u[i] + c1*u[i+1];
}
r[n-1] = c_2*u[n-3] + c_1*u[n-2] + c0*u[n-1] + c1*b2;

Fig. 6. A sequential program of next

This function performs reduction and evaluation of computational trees at the same time
by cata (⊕) evalT0 and cata (⊕) (evalT zms). Using this function, parallel implementation
of a normal form with reduction is defined as follows.

parEvalReduce :: Int → NFormR α→ α
parEvalReduce p (nf ,⊕) = extract ◦ reduce (�(⊕,id)) ◦map (evalReduce ′ (⊕)) ◦ dist p $ nf

7 Experiment Result

We implemented a small domain-specific optimizer for the target programs. The system
reads a skeleton program written with our skeleton library SkeTo [8], and generates an
optimized C++ code of the program. For the examples next and solveTS , we measured
running times of skeleton programs and optimized programs. We used a PC cluster where
each of the nodes connected with Gigabit Ethernet has a CPU of Intel R© Xeon R©2.80GHz
and 2GB memory, with Linux 2.4.21, GCC 4.1.1, and mpich 1.2.7.

7.1 Result of next

Table 1 shows measured running times and speedups. Running time is of applying next 100
times to an input list of 10,000,000 elements. A speedup is a ratio of running time of a
parallel program to running time of a sequential program (shown in Figure 6).

The optimized program (next opt) achieves ten times faster running time than the orig-
inal skeleton program, and the same running time as a sequential program on one processor.
This improvement was gained by elimination of redundant intermediate data and com-
munications. Also, the optimized program achieves good speedups against the number of
processors. These results show effectiveness of the proposed optimization.

7.2 Result of solveTS

Table 2 shows measured running times and speedups. Running time is of applying solveTS
10 times to an input list of 1,000,000 elements. A speedup is a ratio of running time of a
parallel program to running time of solveTS on one processor.

The optimized program (solveTS opt) achieves about 20% faster running time than the
original skeleton program. This improvement was gained by elimination of redundant in-
termediate data and communications. Also, the optimized program achieves good speedups
against the number of processors. These results show effectiveness of the proposed optimiza-
tion.
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Table 2. Running times and speedups of parallel programs against the number of processors. A
speedup is one with respect to solveTS on one processor.

#processors 1 2 4 8 16 32 64
solveTS time (s) 117.03 69.92 40.54 20.21 10.14 4.97 2.79

speedupp 1.00 1.67 2.89 5.79 11.54 23.56 41.92
solveTS opt time (s) 62.20 60.81 30.47 15.26 7.66 3.91 2.18

speedupp 1.88 1.92 3.84 7.67 15.28 29.92 53.61

8 Discussion and Related Work

One of the simplest fusion optimizations so far uses a general form called cataJ [9]. This cataJ
can describe the skeleton map and the reduction skeleton reduce, and consists of two things:
a function applied to each element of the input list, and an associative binary operator used
to reduce those elements. The general form cataJ can describe any computation written as
composition of any number of map and at most one reduce at the last. Thus, cataJ is thought
to be a normal form of skeleton programs described with such compositions.

Hu et al. [7] proposed a more general fusion optimization using a general form called
accumulate with some fusion rules. This accumulate can describe skeleton scan, which cal-
culates an accumulation of the input list with an associative binary operator, as well as
map and reduce. The general form accumulate essentially consists of two pairs of a function
and an associative binary operator, and it is thought to be a normal form of skeleton pro-
grams described with compositions of the skeletons. This accumulate is powerful so that it
can describe shift� and shift� too. However, describing shift� and shift� with accumulate
cause some overheads due to lack of special consideration of elements on the edges. The
overheads are extensions of elements to treat all elements uniformly, and logarithmic steps
of interprocessor communications for general implementation of accumulation. Thus, we
need to consider a specific fusion optimization, i.e. a normal form, fusion rules and efficient
implementation.

Our normal form extends these fusion optimizations with special consideration of ele-
ments on the edges, which are introduced by shift� and shift�. The normal form separates
computation of elements on the edges from that of center elements, so that it does not
introduce the overheads accumulate needed.

Grelck et al. [6] proposed an optimization based on fusion of a general skeleton called
WITH-loop. Since their WITH-loop are based on index accessing, their method can deal
with shifting operation such as shift� and shift�. Also, their fusion can handle nesting use
of skeletons. However, skeletons that perform accumulation or reduction, in which a region
of elements required in computation of an element varies, cannot be described with WITH-
loop.

Generalized scan (gen scan) proposed by Fischer et al. [3] can perform accumulation that
involves neighbor elements. We can describe shifting operations such as shift� and shift�
with their gen scan. We think programs that perform accumulation after combinations of
map, zip, shift� and shift� can be described by gen scan. However, since the condition for
parallel implementation of gen scan is very complicated, formalization of fusion rules of
gen scan is very difficult.

9 Conclusion

In this paper, we proposed an optimization technique for skeletons programs that involve
neighbor elements, which cannot gain adequate efficiency with existing fusion techniques.
We give a normal form that abstracts computations that involve neighbor elements, fusion
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rules of skeletons into a normal form, and an efficient parallel implementation of a normal
form. The optimization is performed by transforming a skeleton program with fusion rules
into a normal form that has efficient implementation. Experimental results show the opti-
mized program can be executed efficiently in parallel, and show effectiveness of proposed
optimization. We consider extension of this technique to multidimensional data structures
and nesting use of skeletons as our future work.
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A Proof of Theorem 1

In the following, we use an abbreviation of the index accessing for readability: 〈x〉i = at i x.
We assume that the length of an input list is n. The goal of this proof is to show the equation
evalP prog = eval (compile prog) for any prog .

A.1 Base Case

What we have to prove is the following equation for a list x.

evalP x = eval [[ [],Leafc id (Var x 0), [] ]] (1)

The ith element of the left-hand sides is as follows.

〈evalP x〉i = { definition of evalP }
〈evalP x〉i

The ith element of the right-hand sides is as follows.

〈eval [[ [],Leafc id (Var x 0), [] ]]〉i = { definition of eval }
〈map evalT (Leafc id (Var x 0)) [0..n− 1]〉i

= { ith element }
evalT (Leafc id (Var x 0)) i

= { definition of evalT and the identity function }
evalV (Var x 0) i

= { definition of evalV and ith element }
〈x〉i

Thus, the following equation holds.

〈evalP x〉i = 〈eval [[ [],Leafc id (Var x 0), [] ]]〉i
Since this equation holds for i ∈ [0..n− 1], the equation (1) holds.

A.2 Inductive Case for map

What we have to prove is the following equation for a function f and a program prog . Here,
compile prog = [[ ls, zms, rs ]].

evalP (map f prog) = eval [[ map (comp f) ls, comp f zms,map (comp f) rs ]] (2)

To prove this equation, we first show a lemma.

Lemma 1. Let f be a function, t be a computational tree, and i be an index. Then, the
following equation holds.

evalT (comp f t) i = f (evalT t i)

Proof. This is shown by induction on Tree.
The Node case:

evalT (comp f (Node g l r)) i = { definition of comp }
evalT (Node (f ◦ g) l r) i

= { definition of evalT }
(f ◦ g) (evalT l i, evalT r i)

= { function composition }
f (g (evalT l i, evalT r i))

= { definition of evalT }
f (evalT (Node g l r) i)
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The Leafv case:

evalT (comp f (Leafv g v)) i = { definition of comp }
evalT (Leafv (f ◦ g) v) i

= { definition of evalT }
(f ◦ g) (evalV v i)

= { function composition }
f (g (evalV v i))

= { definition of evalT }
f (evalT (Leafv g v) i)

The Leafc case:

evalT (comp f (Leafc c)) i = { definition of comp }
evalT (Leafc (f c)) i

= { definition of evalT }
f c

= { definition of evalT }
f (evalT (Leafc c) i)

ut

Now, we show the equation (2). In the following, l = length ls, r = length rs, and
idces = [l..(n− r − 1)].

evalP (map f prog)

= { definition of evalP }
map f (evalP prog)

= { induction hypothesis }
map f (eval [[ ls, zms, rs ]])

= { definition of eval }
map f (map evalT0 ls ++ map (evalT zms) idces ++ map evalT0 rs)

= { definition of map and its distributivity: map h ◦map g = map (h ◦ g) }
map (f ◦ evalT0 ) ls ++ map (f ◦ evalT zms) idces ++ map (f ◦ evalT0 ) rs

= { Lemma 1 and definition of evalT0 }
map (evalT0 ◦comp f) ls ++ map (evalT (comp f zms)) idces ++ map (evalT0 ◦comp f) rs

= { distributivity of map and definition of eval }
eval [[ map (comp f) ls, comp f zms,map (comp f) rs ]]

Thus, the equation (2) holds.

A.3 Inductive Cases for shiftfi and shiftfl

What we have to prove is the following equations for an element e and a program prog .
Here, compile prog = [[ ls, zms, rs ]].

evalP (shift� e prog) = eval [[ tail ls, slide (−1) zms, rs ++ [Leafc e] ]] (3)

evalP (shift� e prog) = eval [[ [Leafc e] ++ ls, slide 1 zms, init rs ]] (4)

To prove this equation, we first show a lemma.

Lemma 2. Let d be an integer, i be an index, and t be a computational tree. Then, the
following equation holds.

evalT (slide d t) i = evalT t (i− d) (5)
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Proof. This is shown by induction on Tree and Var .

The Node case:

evalT (slide d (Node f l r)) i = { definition of slide }
evalT (Node f (slide d l) (slide d r))) i

= { definition of evalT }
f (evalT (slide d l) i, evalT (slide d r) i)

= { induction hypothesis }
f (evalT l (i− d), evalT r (i− d))

= { definition of evalT }
evalT (Node f l r) (i− d)

The Leafv with Var case:

evalT (slide d (Leafv f (Var x s))) i = { definition of slide }
evalT (Leafv f (Var x (s+ d))) i

= { definition of evalT and evalV }
f (at (i− (s+ d)) x)

= { arithmetic }
f (at ((i− d)− s) x)

= { definition of evalT and evalV }
evalT (Leafv f (Var x s)) (i− d)

Since other cases of Leafv and the case of Leafc ignore the index i, the equation (5) holds in
these cases.

Thus, the equation (5) holds. ut

Now, we show the equation (3). In the following, l = length ls and r = length rs. First,
we assume ls is not empty, i.e. l > 0.

evalP (shift� e prog)
= { definition of evalP }

shift� e (evalP prog)
= { induction hypothesis }

shift� e (eval [[ ls, zms, rs ]])
= { definition of eval }

shift� e (map evalT0 ls ++ map (evalT zms) [l..(n− r − 1)] ++ map evalT0 rs)
= { definition of shift�, and ls being not empty }

tail (map evalT0 ls) ++ map (evalT zms) [l..(n− r − 1)] ++ map evalT0 rs ++ [e]
= { definition of map and evalT0 }

map evalT0 (tail ls) ++ map (evalT zms) (map (+1) [(l − 1)..(n− (r + 1)− 1)])
++map evalT0 (rs ++ [Leafc e])

= { distributivity of map, and Lemma 2 }
map evalT0 (tail ls) ++ map (evalT (slide (−1) zms)) [l′..(n− r′ − 1)]

++map evalT0 (rs ++ [Leafc e])
wherel′ = length tail ls, r′ = length (rs ++ [Leafc e])

= { definition of eval }
eval [[ tail ls, slide (−1) zms, rs ++ [Leafc e] ]]
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Next, we assume ls = [ ].

evalP (shift� e prog)
= { the same as the previous calculation }

shift� e (map evalT0 ls ++ map (evalT zms) [l..(n− r − 1)] ++ map evalT0 rs)
= { definition of shift�, and ls being empty }

tail (map (evalT zms) [0..(n− r − 1)]) ++ map evalT0 rs ++ [e]
= { definition of tail }

map (evalT zms) ([1..(n− r − 1)]) ++ map evalT0 rs ++ [e]
= { definition of map and evalT0 }

map (evalT zms) (map (+1) [0..(n− (r + 1)− 1)]) ++ map evalT0 (rs ++ [Leafc e])
= { distributivity of map, Lemma 2, and tail ls = [ ] }

map evalT0 (tail ls) ++ map (evalT (slide (−1) zms)) [l′..(n− r′ − 1)]
++map evalT0 (rs ++ [Leafc e])

wherel′ = tail ls, r′ = length (rs ++ [Leafc e])
= { definition of eval }

eval [[ tail ls, slide (−1) zms, rs ++ [Leafc e] ]]

Thus, the equation (3) holds.

The equation (4) is shown similarly.

A.4 Inductive Case for zip

What we have to prove is the following equation for two programs prog 1 and prog2. Here,
compile prog1 = [[ ls1, zms1, rs1 ]] and compile prog2 = [[ ls2, zms2, rs2 ]].

evalP (zip prog1 prog2) = eval [[ ls, zms, rev rs ]]

where zms = Node id zms1 zms2

ls = trim FromL ls1 ls2 zms1 zms2

rs = trim FromR (rev rs1) (rev rs2) zms1 zms2

(6)

To prove this equation, we first show a lemma.

Lemma 3. Let i be an index, and t be a computational tree. Then, the following equation
holds.

evalT0 (inst FromL i) = evalT t i (7)

Proof. This is shown by induction on Tree and Var .

The Node case:

evalT0 (inst FromL (Node f l r) i) = { definition of inst }
evalT0 (Node f (inst FromL l i) (inst FromL r i))

= { definition of evalT0 }
f (evalT0 (inst FromL l i), evalT0 (inst FromL r i))

= { induction hypothesis }
f (evalT l i, evalT r i)

= { definition of evalT }
evalT (Node f l r) i
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The Leafv with Var case:

evalT0 (inst FromL (Leafv f (Var x s)) i) = { definition of inst }
evalT0 (Leafv f (Fix x (−s+ i) FromL))

= { definition of evalT0 }
f (at (−s+ i) x)

= { definition of evalT }
evalT (Var x s) i

Since other cases of Leafv and the case of Leafc merely return the given tree and this tree
ignores the index, the equation (7) holds in these cases.

Thus, the equation (7) holds. ut

We also use the following lemma.

Lemma 4. Let i be an index, and t be a computational tree. Then, the following equation
holds.

evalT0 (inst FromR i) = evalT t (n− 1− i)

Proof. Similar to the proof of Lemma 3. ut

In the following, l1 = length ls1, r1 = length rs1, l2 = length ls2 and r2 = length rs2.
First, we assume l1 ≥ l2 and r1 ≥ r2.

evalP (zip prog1 prog2)

= { definition of evalP }
zip (evalP prog1, evalP prog2)

= { induction hypothesis }
zip (eval [[ ls1, zms1, rs1 ]]) (eval [[ ls2, zms2, rs2 ]])

= { definition of eval and zip, letting ls1 = ls11 ++ ls12 and rs1 = rs11 ++ rs12 }
zip (map evalT0 ls11) (map evalT0 ls2)
++ zip (map evalT0 ls11) (map (evalT zms2) [l2..(l1 − 1)])
++ zip (map (evalT zms1) [l1..(n− r1 − 1)]) (map (evalT zms2) [l1..(n− r1 − 1)])
++ zip (map evalT0 rs11) (map (evalT zms2) [(n− r1)..(n− r2 − 1)])
++ zip (map evalT0 rs12) (map evalT0 rs2)

= { Lemma 3 and Lemma 4 }
zip (map evalT0 ls11) (map evalT0 ls2)
++ zip (map evalT0 ls11) (map evalT0 (map (inst FromL zms2) [l2..(l1 − 1)])
++ zip (map (evalT zms1) [l1..(n− r1 − 1)]) (map (evalT zms2) [l1..(n− r1 − 1)])
++ zip (map evalT0 rs11) (map evalT0 (map (inst FromR zms2) [(r1 − 1)..r2])
++ zip (map evalT0 rs12) (map evalT0 rs2)

= { introducing (Node id), and definition of eval and evalT0 }
map evalT0 (zipWith (Node id) ls11 ls2)
++ map evalT0 (zipWith (Node id) ls11 (map (inst FromL zms2) [l2..(l1 − 1)]))
++ map (evalT (Node id zms1 zms2)) [l1..(n− r1 − 1)]
++ map evalT0 (zipWith (Node id) rs11 (map (inst FromR zms2) [(r1 − 1)..r2]))
++ map evalT0 (zipWith (Node id) rs12 rs2)
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= { combining edge elements }
map evalT0 (zipWith (Node id) ls1 (ls2 ++ map (inst FromL zms2) [l2..(l1 − 1)]))
++ map (evalT (Node id zms1 zms2)) [l1..(n− r1 − 1)]
++ map evalT0 (zipWith (Node id) rs1 (map (inst FromR zms2) [(r1 − 1)..r2] ++ rs2))

= { definition of eval and trim }
eval [[ ls, zms, rev rs ]]

where zms = Node id zms1 zms2

ls = trim FromL ls1 ls2 zms1 zms2

rs = trim FromR (rev rs1) (rev rs2) zms1 zms2

The other cases (l1 ≥ l2 ∧ r1 < r2, l1 < l2 ∧ r1 ≥ r2 and l1 < l2 ∧ r1 < r2) are similarly
shown.

Thus, the equation (6) holds.
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