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Abstract

Computations on two-dimensional arrays such as matrix computations are one of the
most fundamental and ubiquitous in computational science and its vast application areas,
but development of efficient parallel programs on two-dimensional arrays is known to be
hard. In this paper, we propose a compositional framework which supports users, even
with little knowledge about parallel machines, to systematically develop both correct and
efficient parallel programs on two-dimensional arrays. The key feature of our framework is a
novel use of the abide-tree representation of two-dimensional arrays, which not only inherits
the advantages of tree representations of matrix where recursive blocked algorithms can be
defined to achieve better performance, but also supports transformational development of
parallel programs and architecture independent implementation owing to its solid theoretical
foundation - the theory of constructive algorithmics.

1. INTRODUCTION
Computations on two-dimensional arrays, such as matrix computations, image processing, and
relational database managements, are both fundamental and ubiquitous in computational sci-
ence and its vast application areas [11, 26, 17]. And developing efficient parallel algorithms for
these computations is one of the most important topics in many textbooks on parallel program-
ming [16, 28]. Many algorithms have been designed and implemented as standard libraries. For
example, for matrix computations [14, 32], we have the useful libraries like ScaLAPACK[10],
PLAPACK [1] and RECSY [23]. Though being useful, there are some limitations when using
these libraries to develop parallel programs for manipulating two-dimensional arrays.

• First, the libraries are of low abstraction, and thus difficult to be modified or adapted to
solve slightly different problems. In fact, the increasing popularity of parallel machines like
PC clusters enables more and more users to utilize such parallel computer environments to
perform parallel computations of various kinds, which can naturally be slightly different
from those libraries provide. The libraries are no direct help for the users in this case,
and they have to rewrite or develop the libraries for themselves to serve their purpose.
However, since (re-)building parallel libraries is not an easy task, much more involved than
sequential algorithm due to necessity of taking the synchronization and communication
between processors into consideration, not everyone can do it easily.

• Second, the libraries are not well structured, and thus hard to be efficiently composed
together. Often each library is carefully designed with suitable data structures and algo-
rithms so that it can be efficiently executed on specific parallel architectures. This may,
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however, prevents us from making efficient use of two libraries developed for two different
parallel architectures.

This situation demands a new programming model allowing users to describe parallel com-
putation over two-dimensional arrays in an easy, efficient, but compositional way. As one
promising solution to the demand, skeletal parallel programming using the parallel skeleton is
known [7, 27, 9]. In this model, users can build parallel programs by composing ready-made
components (called skeletons) that are implemented efficiently in parallel for various parallel
architectures. This compositional approach has two major advantages: (1) since low-level par-
allelism is concealed in skeletons, users can obtain a comparatively efficient parallel program
without needing detailed techniques of parallel computers and being unconscious of parallelism
explicitly, (2) since the skeletons are designed for structured programming, they can be effi-
ciently composed to solve various problems.

There is much research devoted to parallel skeletons on lists, which is a one-dimensional
data structure, and it has been shown [21, 19] that parallel programming with list skeletons
is very powerful since we can describe many problems in terms of a few skeletons. Moreover
many researches have been done on methods of deriving and optimizing parallel programs by
means of parallel skeletons on lists [15, 6, 18], and especially about optimization, and there is a
library which can automatically optimize a program described by skeletons [24]. Similarly, for
parallel skeletons on the tree data structure there is research on binary trees [31, 13], general
trees and derivation of programs on these tree skeletons. Unfortunately, it has proved to be a
challenge [25] to design a skeletal framework for developing parallel programs for manipulating
two-dimensional arrays.

Generally, a skeleton (compositional) framework for manipulating two-dimensional arrays
should consist of the following three parts:

• a fixed set of parallel skeletons for manipulating two-dimensional arrays, which cannot
only capture fundamental computations on two-dimensional arrays but also be efficiently
implemented in parallel for various parallel architectures;

• a systematic programming methodology, which can support developing both efficient and
correct parallel programs composed by these skeletons; and

• an automatic optimization mechanism, which can eliminate inefficiency due to composi-
tional or nested uses of parallel skeletons in parallel programs.

Our idea is to make use of the theory of constructive algorithmics (also known as Bird-Meertens
Formalism) [4, 30, 2], a successful theory for compositional sequential program development,
where aggregate data types are formalized constructively as an algebra, and computations on
the aggregate data are structured as recursive mappings between algebras while enjoying nice
algebraic properties for composition with each other.

The key is to formalize two-dimensional arrays constructively so that we can describe compu-
tations on them as recursions with maximum (potential) parallelism, allowing implementation
to have the maximum freedom to reorder operations for efficiency on parallel architectures. The
traditional representations of two-dimensional arrays by nested one-dimensional arrays (row-
majored or column-majored representations) [30, 22] impose much restriction on the access
order of elements. Wise et al. represent a two-dimensional array by a quadtree [33] and show
that recursive algorithms on quadtree provide better performance than existing algorithms for
some matrix computations (QR factorization [12], LU factorization [34]). More examples can
be found in [11]. However, the unique representation of two-dimensional arrays by quadtrees
does not capture the whole information a two-dimensional data may have. In contrast, Bird [4]
represents two-dimensional arrays by dynamic trees allowing restructuring trees when necessary.

In this paper, we propose a compositional framework which allows users, even with little
knowledge about parallel machines, to easily describe safe and efficient parallel computation
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over two-dimensional arrays, and enables discussion of methods of derivation and optimization
of programs. The main contributions of this paper are summarized as follows.

• We propose a novel use of the abide-tree representation of two-dimensional arrays [4]
in developing parallel programs for manipulating two-dimensional arrays, whose impor-
tance has not been well recognized in parallel programming community. Our abide-tree
representation of two-dimensional arrays not only inherits the advantages of tree repre-
sentations of matrices where recursive blocked algorithms can be defined to achieve better
performance [11, 12, 34], but also supports systematic development of parallel programs
and architecture independent implementation owing to its solid theoretical foundation -
the theory of constructive algorithmics [4, 2, 30].

• We provide a strong programming support for developing both efficient and correct paral-
lel programs on two-dimensional arrays in a highly abstract way (without the need to be
concerned with low level implementation). In our framework (Section 4), programmers
can easily build up a complicated parallel system by defining basic components recur-
sively, combining components compositionally, and improving efficiency systematically.
The power of our approach can be seen from the nontrivial programming examples of ma-
trix multiplication and QR decomposition [12], and a successful derivation of an involved
efficient parallel program for the maximum rectangle sum problem [18].

• We demonstrate an efficient implementation of basic computation skeletons (in C++ and
MPI) on distributed PC clusters, guaranteeing that programs composed by these parallel
skeletons can be efficiently executed. So far most research focuses on showing that the
recursive tree representation of matrices is suitable for parallel computation on shared
memory systems [12, 11], this work shows that the recursive tree representation is also
suitable for distributed memory systems. In fact, our parallel skeletons, being of high
abstraction with all potential parallelism, are architecture independent.

Our framework can be considered as an extension of the quadtree framework of Wise et al.
in the sense that our framework imposes no restriction on the size and the element order of
two-dimensional arrays and provides an additional support of derivation and optimization of
programs on two-dimensional arrays.

The rest of this paper is organized as follows. In Section 2, we construct a theory of abide
tree. In Section 3, we give some examples of parallel algorithms on the abide tree. In Section
4, we demonstrate development of parallel programs on two-dimensional arrays. In Section 5,
we give efficient implementations and show their experiments. In Section 6, we remark on the
related work and finally in Section 7, we make conclusion.

2. THEORY OF TWO-DIMENSIONAL ARRAYS
Before explaining our compositional programming framework, we shall construct a theory of
two-dimensional arrays, the basis of our framework, according to the theory of constructive
algorithmics [4, 30, 2].

Notation in this paper follows that of Haskell [5], a pure functional language that is able
to describe both algorithms and algorithmic transformation concisely. Function application is
denoted by a space and the argument may be written without brackets. Thus f a means f(a) in
ordinary notation. Functions are curried, i.e. functions take one argument and return a function
or a value, and the function application associates to the left. Thus f a b means (f a) b. The
function application binds stronger than any other operator, so f a⊗b means (f a)⊗b, but not
f (a⊗b). Function composition is denoted by ◦, so (f ◦g) x = f (g x) from its definition. Binary
operators can be used as functions by sectioning as follows: a⊕ b = (a⊕) b = (⊕b) a = (⊕) a b.
For arbitrary binary operator ⊗, an operator in which the arguments are swapped is denoted
by ⊗̃. Thus a ⊗̃ b = b ⊗ a. Two binary operators ¿ and À are defined by a ¿ b = a,
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a À b = b. Pairs are Cartesian products of plural data, written like (x, y). A function which
applies functions f and g respectively to the elements of a pair (x, y) is denoted by (f × g).
Thus (f × g) (x, y) = (f x, g y). A function which applies functions f and g separately to an
element and returns a pair of the results is denoted by (f4g). Thus (f4g) a = (f a, g a). A
projection function π1 extracts the first element of a pair. Thus π1 (x, y) = x. These can be
extended to the case of arbitrary number of elements.

Note that we use functional style notations only for parallel algorithm development; in fact
we use the ordinary programming language C++ for practical coding.

2.1 Two-Dimensional Arrays in Abide Trees
To represent two-dimensional arrays without loss of information, we define the following abide
trees, which are built up by three constructors |·| (singleton),−◦ (above) and − ◦ (beside) [4].

data AbideTree α = |·| α
| (AbideTree α)−◦ (AbideTree α)
| (AbideTree α) − ◦ (AbideTree α)

Here, | · | a, or abbreviated as |a|, means a singleton array of a, i.e. a two-dimensional array
with a single element a. We define function the to extract the element from a singleton array,
i.e. the |a| = a. For two-dimensional arrays x and y which have the same width, x−◦ y means
that x is located above y. Similarly, for two-dimensional arrays x and y which have the same
height, x − ◦ y means that x is located on the left of y. Moreover,−◦ and − ◦ are associative binary
operators and satisfy following abide (a coined term from above and beside) property.

(x − ◦ u)−◦ (y − ◦ v) = (x−◦ y) − ◦ (u−◦ v)

In the rest of the paper, we will assume no inconsistency in height or width when − ◦ and−◦ are
used.

Note that one two-dimensional array may be represented by more than one abide trees, but
these abide trees are equivalent because of the abide property of−◦ and − ◦. For example, we can
express the 2× 2 two-dimensional array

(
1 2
3 4

)

by the following two equivalent abide trees.

(|1| −◦ |2|)−◦ (|3| −◦ |4|)
(|1|−◦ |3|) − ◦ (|2|−◦ |4|)

This is in sharp contrast to the quadtree representation of matrix [12], which does not allow
such freedom.

2.2 Abide Tree Homomorphism
It follows from the theory of constructive algorithmics [2] that each constructively built-up data
structure (i.e., algebraic data structure) is equipped with a powerful computation pattern called
homomorphism.

Definition 2.1 ((Abide Tree) Homomorphism)
A function h is said to be abide tree homomorphism, if it is defined as follows for a function f
and some binary operators ⊕,⊗.

h |a| = f a
h (x−◦ y) = h x⊕ h y
h (x − ◦ y) = h x⊗ h y

For notational convenience, we write (|f,⊕,⊗|) to denote h. When it is clear from the context,
we just call (|f,⊕,⊗|) homomorphism.
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Intuitively, a homomorphism (|f,⊕,⊗|) is a function to replace the constructors |·|,−◦ and − ◦

in an input abide tree by f , ⊕ and ⊗ respectively. We will see in Section 3 that many algorithms
on two-dimensional arrays can be concisely specified by homomorphisms.

It is worth noting that ⊕ and ⊗ in (|f,⊕,⊗|) should be associative and satisfy the abide
property, inheriting the properties of−◦ and − ◦.

Homomorphism enjoys many nice transformation rules, among which the following fusion
rule is of particular importance. The fusion rule gives us a way to create a new homomorphism
from composition of a function and a homomorphism. As will be seen in Section 4, it plays a
key role in derivation of efficient parallel programs on abide trees.

Theorem 2.1 (Fusion) Let h and (|f,⊕,⊗|) be given. If there exist ¯ and ª such that for
all x and y,

{
h (x⊕ y) = h x¯ h y
h (x⊗ y) = h xª h y

hold, then

h ◦ (|f,⊕,⊗|) = (|h ◦ f,¯,ª|) .

Proof. The theorem is proved by the induction on the structure of abide trees.

Base case:
(h ◦ (|f,⊕,⊗|)) |a|

= { Definition of (|f,⊕,⊗|) }
h (f a)

= { Definition of (|h ◦ f,¯,ª|) }
(|h ◦ f,¯,ª|) |a|

Induction for−◦:
(h ◦ (|f,⊕,⊗|)) (x−◦ y)

= { Definition of (|f,⊕,⊗|) }
h ((|f,⊕,⊗|) x⊕ (|f,⊕,⊗|) y)

= { Definition of h }
h ((|f,⊕,⊗|) x)¯ h ((|f,⊕,⊗|) y)

= { Hypothesis of induction }
(|h ◦ f,¯,ª|) x¯ (|h ◦ f,¯,ª|) y

= { Definition of (|h ◦ f,¯,ª|) }
(|h ◦ f,¯,ª|) (x−◦ y)

Induction for − ◦ is proved similarly.

A homomorphism (|f,⊕,⊗|) can be implemented efficiently in parallel, which will be shown
in Section 5. Let N be the number of elements in a two-dimensional array, Tf , T⊕, T⊗ be the
parallel time cost for computing f , ⊕ and ⊗ respectively. Then, (|f,⊕,⊗|) takes parallel time
of Tf ×O(log N)×max(T⊕, T⊗) with enough number of processors.

2.3 Almost-Homomorphism
Not all functions can be specified by a single homomorphism, but we can always tuple these
functions with some extra functions so that the tupled functions can be specified by a homo-
morphism. An almost homomorphism, as discussed in [8], is a composition of a projection
function and a homomorphism. Since projection functions are simple, almost homomorphisms
are suitable for parallel computation as homomorphisms are.
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In fact, every function can be represented in terms of an almost homomorphism. Let k be a
nonhomomorphic function, and consider a new function g such that g x = (k x, x). The tupled
function g is a homomorphism.

g |a| = (k |a|, |a|)
g (x−◦ y) = g x⊕ g y

where (k1, x1)⊕ (k2, x2) = (k (x1−◦ x2), x1−◦ x2)
g (x − ◦ y) = g x⊗ g y

where (k1, x1)⊗ (k2, x2) = (k (x1 − ◦ x2), x1 − ◦ x2)

Then, k is written as an almost homomorphism:

k = π1 ◦ g = π1 ◦ (|g ◦ |·|,⊕,⊗|) .

However, the definition above is not efficient because binary operators ⊕ and ⊗ do not use
the previously computed values k1 and k2. In order to derive a good almost homomorphism,
we should carefully define a suitable tupled function, making full use of previously computed
values. We will see this in our parallel program development in Section 4.

3. PARALLEL ALGORITHMS ON TWO-DIMENSIONAL ARRAYS
Homomorphisms are suitable for parallel implementation, which has been argued in the previ-
ous section and will be detailed in Section 5. In this section, we show that homomorphisms are
powerful enough to describe many useful parallel algorithms for manipulating two-dimensional
arrays. We will start by demonstrating that basic parallel computation components, namely
basic data parallel skeletons and basic communication skeletons, can be specified by either ho-
momorphisms or recursions on the abide trees, and then we show that composition of these basic
parallel skeletons is powerful enough to solve nontrivial problems such as matrix multiplication
and QR decomposition.

3.1 Data Parallel Skeletons
We define four primitive functions map, reduce, zipwith and scan on the data type AbideTree.
In the theory of Constructive Algorithmics [4, 30, 2], these functions are known to be the
most fundamental computation components for manipulating algebraic data structures and for
being glued together to express complicated computations. We call them data parallel skeletons
because they have potential parallelism and can be implemented efficiently in parallel (see
Section 5.)

Map and Reduce
The skeletons map and reduce are two special cases of homomorphism. The skeleton map
applies a function f to each element of a two-dimensional array while keeping the structure,
and is defined by

map f |a| = |f a|
map f (x−◦ y) = (map f x)−◦ (map f y)
map f (x − ◦ y) = (map f x) − ◦ (map f y) ,

that is, map f = (||·| ◦ f,−◦, − ◦ |) .
The skeleton reduce collapses a two-dimensional array to a value using two abiding binary

operators ⊕, ⊗, and is defined by

reduce(⊕,⊗) |a| = a
reduce(⊕,⊗) (x−◦y) = (reduce(⊕,⊗) x)⊕(reduce(⊕,⊗) y)
reduce(⊕,⊗) (x − ◦y) = (reduce(⊕,⊗) x)⊗(reduce(⊕,⊗) y) ,

that is, reduce(⊕,⊗) = (|id,⊕,⊗|) .
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Interestingly, any homomorphism (|f,⊕,⊗|) can be written as a composition of map and
reduce, i.e.

(|f,⊕,⊗|) = reduce(⊕,⊗) ◦map f

which implies that if we have efficient parallel implementations for reduce and map, we get an
efficient implementation for homomorphism.

Zipwith
The two skeletons defined above are primitive skeletons. We define other skeletons which are
extensions of these primitive skeletons. The skeleton zipwith, an extension of map, takes two
two-dimensional arrays of the same shape, applies a function f to corresponding elements of
the arrays and returns a new array of the same shape.

zipwith f |a| |b| = |f a b|
zipwith f (x−◦ y) (u−◦ v) = (zipwith f x u)−◦ (zipwith f y v)
zipwith f (x − ◦ y) (u − ◦ v) = (zipwith f x u) − ◦ (zipwith f y v)

Note that in the above definition two-dimensional arrays which are the arguments of the func-
tion should be divided in the way that the sizes of x and u are the same. Function zip is a
specialization of zipwith, making a two-dimensional array of pairs of corresponding elements.

zip (u, v) = zipwith (λxy. (x, y))u v

We may define similar zip and zipwith for the case when the number of input arrays is three or
more, and those which take k arrays are denoted by zipk and zipwithk. Also we define unzip to
be the inverse of zip.

With these three skeletons defined above, we are able to describe many useful functions.

id = reduce(−◦, − ◦) ◦map |·|
tr = reduce( − ◦,−◦) ◦map |·|
rev = reduce(−̃◦, ˜− ◦) ◦map |·|
flatten = reduce(−◦, − ◦)
height = reduce(+,¿) ◦map (λx. 1)
width = reduce(¿,+) ◦map (λx. 1)
cols = reduce(zipwith(−◦), − ◦) ◦map ||·||
rows = reduce(−◦, zipwith( − ◦)) ◦map ||·||
reducec(⊕) = map(reduce(⊕,¿)) ◦ cols
reducer(⊗) = map(reduce(¿,⊗)) ◦ rows
mapc f = reduce(¿, − ◦) ◦map f ◦ cols
mapr f = reduce(−◦,¿) ◦map f ◦ rows
add = zipwith(+)
sub = zipwith(−)

Note that || · || is abbreviation of | · | ◦ | · |; id is the identity function of AbideTree; tr is the
matrix-transposing function; rev takes a two-dimensional array and returns the array reversed
in the vertical and the horizontal direction; flatten flattens a nested AbideTree; height and
width return the number of rows and columns respectively, cols and rows return an array of
which elements are columns and rows of the array of the argument respectively; reducec and
reducer which are specializations of reduce reduce a two-dimensional array in each column and
row direction respectively and return a row-vector (an array of which height is one) and a
column-vector (an array of which width is one); mapc and mapr which are specializations of
map apply a function to each column and row respectively (i.e. the function of the argument
takes column-vector or row-vector); and add and sub denote matrix addition and subtraction
respectively.
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Scan
The skeleton scan, an extension of reduce, holds all values generated in reducing a two-dimensional
array by reduce.

scan(⊕,⊗) |a| = |a|
scan(⊕,⊗)(x−◦y) = (scan(⊕,⊗) x)⊕′(scan(⊕,⊗) y)
scan(⊕,⊗)(x − ◦y) = (scan(⊕,⊗) x)⊗′(scan(⊕,⊗) y)

Here two binary operators ⊕′ and ⊗′ are defined as follows.

bottom = reduce(À, − ◦) ◦map |·|
last = reduce(−◦,À) ◦map |·|
sx⊕′ sy = sx−◦ sy′

where sy′ = mapr (zipwith(⊕)(bottomsx)) sy
sx⊗′ sy = sx − ◦ sy′

where sy′ = mapc (zipwith(⊗)(last sx)) sy

It should be noted that reduce can be expressed by reducec and reducer when two binary
operators ⊕ and ⊗ are abiding.

reduce(⊕,⊗) = the ◦ reducec(⊕) ◦ reducer(⊗)
reduce(⊕,⊗) = the ◦ reducer(⊗) ◦ reducec(⊕)

(1)

Like reduce, we may define scan↓ and scan→ which are specialization of scan and scan a
two-dimensional array in each column and row direction respectively:

scan↓(⊕) = scan(⊕,À)
scan→(⊗) = scan(À,⊗) ;

scan can be expressed by scan↓ and scan→ when two binary operators ⊕ and ⊗ are abiding.

scan(⊕,⊗) = scan↓(⊕) ◦ scan→(⊗)
scan(⊕,⊗) = scan→(⊗) ◦ scan↓(⊕)

(2)

Using the skeleton scan, we can define scanr which executes scan reversely, allredr and allredc

which broadcast the results in each row and column after reducer and reducec respectively.
These functions are used in later section.

scanr(⊕,⊗) = rev ◦ scan(⊕̃, ⊗̃) ◦ rev
allredc(⊕) = scanr(À,¿) ◦ scan(⊕,À)
allredr (⊗) = scanr(¿,À) ◦ scan(À,⊗)

3.2 Data Communication Skeletons
We show how to define data communication skeletons dist, gather, rotr and rotc which abstract
distribution, collection and rearrangement of a two-dimensional array among processors. The
idea is to use nested two-dimensional arrays to represent distributed two-dimensional arrays.

The skeleton dist abstracts distribution of a two-dimensional array to processors, and is
defined as

dist p q x = (flatten ◦map(grpcn) ◦ grprm) x
where m = dheight x/pe, n = dwidth x/qe

where grpr is defined as follows and grpc is defined similarly.

grpr k (x−◦ y) = |x|−◦ (grpr k y) if height x = k
grpr k x = |x| if height x < k
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X00 X01 X02

X11 X12 X10

X22 X20 X21

rotr fX00 X01 X02
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f z = −z

X00 X01 X02

X10 X11 X12

dist 2 3X00 X01 X02

X10 X11 X12 gather

Figure 1: An image of communication skeletons (each rectangle corresponds to each
processor; Xij represents a subarray.)

The skeleton gather, the inverse operator of dist, abstracts gathering of two-dimensional
arrays distributed to the processors into a two-dimensional array on the root processor.

gather = reduce(−◦, − ◦)

Although definitions of these skeletons may seem complicated, actual operations are rather
simple as illustrated in Figure 1. What is significant here is that these skeletons satisfy the
relation of id = gather ◦ dist p q .

The rotation skeleton rotr which takes a function f and rotates i-th row (the index begins
from 0) by f i, is defined as follows:

rotr f = flatten ◦map shiftr ◦ addidx r ◦ rows
where

addidx r u = zip(map f (idx r u), u)
idx r = map(−1) ◦ scan↓(+) ◦map(λx. 1) ;

here shiftr is defined under the condition i > 0 below.

shiftr (0, x) = x
shiftr (i, x − ◦ y) = y − ◦ x if width y = i
shiftr (−i, x − ◦ y) = y − ◦ x if width x = i

Similarly, we can define the skeleton rotc which takes a function f and rotates i-th column by
f i . An image of the above communication skeletons is depicted in Figure 1. In the figure,
since the rotation skeleton rotr takes a negation function, 0-th row does not rotate (rotates by
0), first row rotates to the left by 1 (to the right by −1) and second row rotates to the left by
2 (to the right by −2).

3.3 Matrix Multiplication
As a more involved example, we describe two known parallel algorithms for matrix multiplica-
tion, which is a primitive operation of matrices, in terms of the above defined parallel skeletons
on two-dimensional arrays.

The first description is of Cannon’s Algorithm [16]:

mmC = gather ◦(map thd) ◦ (iter p step) ◦ zip3 ◦arrange ◦ distribute ◦ init
where

init(A,B) = (A,B, map(λx. 0) A)
distribute = (dist p p× dist p p× dist p p)
arrange = (rotr neg × rotc neg × id)
step = zip3 ◦rearrange ◦ unzip3 ◦map lmm
rearrange = rotr(λx.1)× rotc(λx.1)× id
neg x = −x
thd (x, y, z) = z
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where p is a natural number indicating the number of division of matrices in column and row
direction, and lmm is a function which executes locally matrix multiplication on matrices on
each processor, i.e. lmm (A,B, C) = (A,B, C + A×B). The function iter is defined as follows.

iter k f x = x if k = 0
iter k f x = iter (k − 1) f (f x) if k > 0

Explicit distribution of matrices by data communication skeletons makes this description look-
ing complicated. However, it should be noted that even non-intuitive complicated Cannon’s
Algorithm can be described by composition of the skeletons.

The second description is an intuitively understandable description using only data parallel
skeletons. This description describes just a definition of matrix multiplication. Although users
do not need to take parallelism into consideration at all, this program can be executed in parallel
due to parallelism of each skeleton.

mm = zipwithP iprod ◦ (id ×map tr) ◦ (allrows × allcols)
where

allrows = allredr ( − ◦) ◦map |·|
allcols = allredc(−◦) ◦map |·|
iprod = (reduce(¿,+)◦) ◦ zipwith(×)
zipwithP (⊗) (x, y) = zipwith (⊗) x y

3.4 QR Factorization
As the final nontrivial example, we show descriptions of two parallel algorithms for QR factor-
ization [11]. We will not explain the details, rather we hope to show that these algorithms can
be dealt with in our framework.

We give the recursive description of QR factorization algorithm based on Householder trans-
form. This function returns Q and R which satisfy A = QR where A is a matrix of m× n , Q
an orthogonal matrix of m×m and R an upper-triangular matrix of m× n.

qr ((A11−◦A21) − ◦ (A12−◦A22))
= let (Q1, R11−◦ 0) = qr (A11−◦A21)

(R12−◦ Â22) = mm (trQ1) (A12−◦A22)
(Q̂2, R22) = qr Â22

Q = mm Q1 ((I − ◦ 0)−◦ (0 − ◦ Q̂2))
in (Q, (R11 − ◦ R12)−◦ (0 − ◦ R22))

qr (|a|−◦ x) = hh (|a|−◦ x)
hh v = let v′ = add v e

a =
√

reduce(+,+) (zipwith(×) v′ v′)
u = map (/a) v′

Q = sub I (map (×2) (mm u (tr u)))
in (Q, e)

Here e is a vector (a matrix of which width is 1) whose first element is 1 and the other elements
are 0, and I and 0 represent an identity matrix and a zero matrix of suitable size respectively.

Furthermore, we give the recursive description of QR factorization algorithm on quadtree [12];
transforming algorithms on quadtrees to those on abide trees is always possible because abide
trees is more flexible than quadtrees. This function qrq is mutual recursively defined with an
extra function e, and returns Q and R which satisfy A = QR where A is a matrix of n × n
(n = 2k for a natural number k), Q an orthogonal matrix of n× n and R an upper-triangular
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matrix of n× n.

qrq |a| = (|1|, |a|)
qrq ((A11−◦A21) − ◦ (A12−◦A22))

= let (Q1, R1) = qrq A11

(Q2, R2) = qrq A21

Q12 = (Q1 − ◦ 0)−◦ (0 − ◦ Q2)
(Q3, R3) = e (R1, R2)
Q4 = mm Q12 Q3

(Un−◦ Us) = mm (tr Q4) (A12−◦A22)
(Q6, R6) = qrq Us

Q = mm Q4 ((I − ◦ 0)−◦ (0 − ◦ Q6))
R = (R3 − ◦ Un)−◦ (0 − ◦ R6)

in (Q,R)

Note that Aij (i, j ∈ {1, 2}) have the same shape.

e (N, 0) = (I, N)
e (|n|, |s|) = let Q = g(n, s)

(N, 0) = mm(tr Q) (|n|−◦ |s|)
in (Q,N)

e ((N11−◦N21) − ◦ (N12−◦N22), (S11−◦ S21) − ◦ (S12−◦ S22))
= let

((Q11
1 −◦Q21

1 ) − ◦ (Q12
1 −◦Q22

1 ), N1) = e (N11, S11)
((Q11

2 −◦Q21
2 ) − ◦ (Q12

2 −◦Q22
2 ), N2) = e (N22, S22)

Q12 = (Q11
1 − ◦ 0 − ◦ Q12

1 − ◦ 0)−◦ (0−◦Q11
2 − ◦ 0 − ◦ Q12

2 )
−◦ (Q21

1 − ◦ 0 − ◦ Q22
1 − ◦ 0)−◦ (0−◦Q21

2 − ◦ 0 − ◦ Q22
2 )

Q1 = (Q11
1 −◦Q21

1 ) − ◦ (Q12
1 −◦Q22

1 )
(Un−◦ Us) = mm (tr Q1) (N12−◦ S12)
(Q4, R4) = qrq Us

Q′
4 = (I − ◦ 0 − ◦ 0 − ◦ 0)−◦ (0 − ◦ I − ◦ 0 − ◦ 0)−◦ (0 − ◦ 0 − ◦ Q4 − ◦ 0)−◦ (0 − ◦ 0 − ◦ 0 − ◦ I)

Q5 = mm Q12 Q4′

((Q11
6 −◦Q21

6 ) − ◦ (Q12
6 −◦Q22

6 ), N6) = e (N2, R4)
Q′

6 = (I − ◦ 0 − ◦ 0 − ◦ 0)−◦ (0 − ◦ Q11
6 − ◦ Q12

6 − ◦ 0)−◦ (0 − ◦ Q21
6 − ◦ Q22

6 − ◦ 0)−◦ (0 − ◦ 0 − ◦ 0 − ◦ I)
in (mm Q5 Q′

6, (N1 − ◦ Un)−◦ (0 − ◦ N6))
g (a, b) = (|c| −◦ |s|)−◦ (| − s| −◦ |c|)

where c =
a√

a2 + b2
, s =

−b√
a2 + b2

Note that Nij and Sij (i, j ∈ {1, 2}) have the same shape and Qij
k (i, j, k ∈ {1, 2}) have the

same shape.
Like in [12], we can efficiently parallelize some parts of these complicated recursive functions,

such as matrix multiplication in the recursion. It is, however, still an open problem whether
the complicated recursive functions can be parallelized, which is one of our future work.

4. DEVELOPING EFFICIENT PARALLEL PROGRAMS
It has been shown so far that compositions of recursive functions on abide trees provide us with
a powerful mechanism to describe parallel algorithms on two-dimensional arrays, where paral-
lelism in the original parallel algorithms can be fully captured. In this section, we move on from
issues of parallelism to the issues of efficiency. We shall illustrate a strategy to guide program-
mers to systematically develop efficient parallel algorithms through program transformation.
Remember (almost-) homomorphisms have efficient parallel implementation as composition of
our parallel skeletons.
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Our strategy for deriving efficient parallel programs on two-dimensional arrays consists of
the following four steps, extending the result of [18].

Step 1. Define the target program p as a composition of p1, . . . , pn which are already defined,
i.e. p = pn ◦ · · · ◦ p1. Each of p1, . . . , pn may be defined as a composition of small
functions or a recursive function (see Section 3.3 and Section 3.4).

Step 2. Derive an almost homomorphism (Section 2.3) from the recursive definition of p1.

Step 3. Fuse p2 into the derived almost homomorphism to obtain a new almost homomorphism
for p2 ◦ p1, and repeat this derivation until pn is fused.

Step 4. Let π1 ◦ (|f,⊕,⊗|) be the resulting almost homomorphism for pn ◦ · · · ◦ p1 obtained at
Step 3. For the functions inside the homomorphism, namely f , ⊕ and ⊗, try to repeat
Steps 2 and 3 to find efficient parallel implementations for them.

In the following, we explain this strategy through a derivation of an efficient program for the
maximum rectangle sum problem: compute the maximum of sums of all the rectangle data
areas in a two-dimensional data. For example, for the following two-dimensional data




3 −1 4 −1 −5
1 −4 −1 5 −3

−4 1 5 3 1




the result should be 15, which denotes the maximum sum contributed by the sub-rectangular
area with bolded numbers above. To appreciate difficulty of this problem, we ask the reader to
pause for a while to think how you solve it.

Step 1. Defining a Clear Parallel Program
A clear and straightforward solution to the maximum rectangle sum problem is as follows:
enumerating all possible rectangles, then computing sums for all rectangles, and finally returning
the maximum value as the result.

mrs = max ◦map max ◦map (map sum)◦rects
where

max = reduce(↑, ↑)
sum = reduce(+,+)

Here rects is a function which takes a two-dimensional array and returns all possible rectangles
of the array. The returned value of rects is an array of arrays of arrays, and (k, l)-element of
(i, j)-element of the resulting array is a sub-rectangle having rows from i-th to j-th and columns
from k-th to l-th of the original array. An example of rects is shown below. Note that we think
that the special value is contained in the blank portion of the above-mentioned array, and we
write the blank of arbitrary size by NIL for brevity. In this case, NIL may be an array of which
element is −∞ or an array of it.

rects
(

1 2 3
5 6 7

)
=







(
1
) (

1 2
) (

1 2 3
)

(
2
) (

2 3
)

(
3
)







(
1
5

) (
1 2
5 6

) (
1 2 3
5 6 7

)

(
2
6

) (
2 3
6 7

)

(
3
7

)







(
5
) (

5 6
) (

5 6 7
)

(
6
) (

6 7
)

(
7
)






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The function rects is mutual recursively defined as follows:

rects |a| = |||a|||
rects (x−◦ y) = (rects x − ◦ gemm( , zipwith(−◦)) (bottoms x) (tops y))−◦ (NIL − ◦ rects y)
rects (x − ◦ y) = zipwith4 fs (rects x) (rects y) (rights x) (lefts y)

where fs s1 s2 r1 l2 = (s1 − ◦ gemm( , − ◦) r1 l2)−◦(NIL − ◦ s2)

where ‘ ’ indicates “don’t care” and generalized matrix multiplication gemm is defined as follows:

gemm(⊕,⊗) = g
where

g (X1 − ◦ X2) (Y1−◦ Y2) = zipwith(⊕) (g X1 Y1) (g X2 Y2)
g (X1−◦X2) Y = (g X1 Y )−◦ (g X2 Y )
g X (Y1 − ◦ Y2) = (g X Y1) − ◦ (g X Y2)
g |a| |b| = |a⊗ b|

Functions bottoms, tops, rights and lefts are similarly defined as mutual recursive functions
with some extra functions:

tops |a| = |||a|||
tops (x−◦ y) = tops x − ◦ map (zipwith(−◦) (cols ′ x)) (tops y)
tops (x − ◦ y) = zipwith4 ft (tops x) (tops y) (toprights x) (toplefts y)

where ft t1 t2 tr1 tl2 = (t1 − ◦ gemm ( , − ◦) tr1 tl2)−◦ (NIL − ◦ t2)
bottoms |a| = |||a|||
bottoms (x−◦ y) = map (λz → zipwith(−◦) z (cols ′ y)) (bottoms x)−◦ bottoms y
bottoms (x − ◦ y) = zipwith4 fb (bottoms x) (bottoms y) (bottomrights x) (bottomlefts y)

where fb b1 b2 br1 bl2 = (b1 − ◦ gemm ( , − ◦) br1 bl2)−◦ (NIL − ◦ b2)

rights |a| = |||a|||
rights (x−◦ y) = (rights x − ◦ gemm ( , zipwith(−◦)) (bottomrights x) (toprights y))

−◦(NIL − ◦ rights y)
rights (x − ◦ y) = zipwith3 fr (rights x) (rights y) (rows ′ y)

where fr r1 r2 ro2 = map ( − ◦ro2) r1−◦ r2

lefts |a| = |||a|||
lefts (x−◦ y) = (lefts x − ◦ gemm ( , zipwith(−◦)) (bottomlefts x) (toplefts y))−◦ (NIL − ◦ lefts y)
lefts (x − ◦ y) = zipwith3 fl (lefts x) (lefts y) (rows ′ x)

where fl l1 l2 ro1 = l1 − ◦ map (ro1 − ◦) l2

toprights |a| = |||a|||
toprights (x−◦ y) = toprights x − ◦ map (zipwith(−◦) (right ′ (toprights x))) (toprights y)
toprights (x − ◦ y) = zipwith ftr (toprights x) (toprights y)

where ftr tr1 tr2 = map ( − ◦top ′ tr2 − ◦) tr1−◦ tr2

bottomrights |a| = |||a|||
bottomrights (x−◦ y) = map (λz → zipwith(−◦) z (top ′ (bottomrights y))) (bottomrights x)

−◦bottomrights y
bottomrights (x − ◦ y) = zipwith fbr (bottomrights x) (bottomrights y)

where fbr br1 br2 = map ( − ◦top ′ br2 − ◦) br1−◦ br2
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toplefts |a| = |||a|||
toplefts (x−◦ y) = toplefts x − ◦ map (zipwith(−◦) (right ′ (toplefts x))) (toplefts y)
toplefts (x − ◦ y) = zipwith ftl (toplefts x) (toplefts y)

where ftl tl1 tl2 = tl1 − ◦ map (right ′ tl1 − ◦) tl2

bottomlefts |a| = |||a|||
bottomlefts (x−◦ y) = map (λz → zipwith(−◦) z (top ′ (bottomlefts y))) (bottomlefts x)

−◦bottomlefts y
bottomlefts (x − ◦ y) = zipwith fbl (bottomlefts x) (bottomlefts y)

where fbl bl1 bl2 = bl1 − ◦ map (right ′ bl1 − ◦) bl2

cols ′ |a| = ||a||
cols ′ (x−◦ y) = zipwith(−◦) (cols ′ x) (cols ′ y)
cols ′ (x − ◦ y) = (cols ′ x − ◦ gemm ( , − ◦) (right (cols ′ x)) (top (cols ′ y)))−◦ (NIL − ◦ cols ′ y)

rows ′ |a| = ||a||
rows ′ (x−◦ y) = (rows ′ x − ◦ gemm ( ,−◦) (right (rows ′ x)) (top (rows ′ y)))−◦ (NIL − ◦ rows ′ y)
rows ′ (x − ◦ y) = zipwith( − ◦) (rows ′ x) (rows ′ y)

top = reduce(¿, − ◦) ◦map |·|
bottom = reduce(À, − ◦) ◦map |·|
right = reduce(−◦,À) ◦map |·|
left = reduce(−◦,¿) ◦map |·|
top ′ = the ◦top
bottom ′ = the ◦bottom
right ′ = the ◦right
left ′ = the ◦left

Although this initial program is clear and has all its parallelism specified in terms of our
parallel skeletons, it is inefficient in the sense that it needs to execute O(n6) addition operations
for the input of n× n array. We shall show how to develop a more efficient parallel program.

Examples of these functions are listed in Appendix A.

Step 2. Deriving Almost Homomorphism
First of all, we propose a way of deriving almost homomorphism from mutual recursive defini-
tions. For notational convenience, we define

4n
1fi = f14f24· · ·4fn

x(4n
1⊕i)y = (x⊕1 y, x⊕2 y, . . . , x⊕n y) .

Our main idea is based on the following theorem.

Theorem 4.1 (Tupling)
Let h1, h2, . . . , hn be mutual recursively defined by





hi |a| = fi a
hi (x−◦ y) = ((4n

1hi) x)⊕i ((4n
1hi) y)

hi (x − ◦ y) = ((4n
1hi) x)⊗i ((4n

1hi) y)
(3)

Then 4n
1hi is a homomorphism (| 4n

1 fi,4n
1⊕i,4n

1 ⊗i |) .

Proof. The theorem is proven based on the definition of homomorphisms. According to the
definition of array homomorphisms, it is sufficient to prove that

(4n
1hi) |a| = (4n

1fi) a
(4n

1hi) (x−◦y) = ((4n
1hi) x) (4n

1⊕i) ((4n
1hi) y)

(4n
1hi) (x − ◦y) = ((4n

1hi) x) (4n
1⊗i) ((4n

1hi) y) .
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The first equation is proved by the following calculation.

(4n
1hi) |a|

= { Definition of 4 }
(h1 |a|, . . . , hn |a|)

= { Definition of hi }
(f1 a, . . . , fn a)

= { Definition of 4 }
(4n

1fi) a

The second is proved as follows.

(4n
1hi) (x−◦ y)

= { Definition of 4 }
(h1 (x−◦ y), . . . , hn (x−◦ y))

= { Definition of hi }
(((4n

1hi) x)⊕1 ((4n
1hi) y),

. . . , ((4n
1hi) x)⊕n ((4n

1hi) y))
= { Definition of 4 }

((4n
1hi) x) (4n

1⊕i) ((4n
1hi) y)

The third is proved similarly.

Theorem 4.1 says that if h1 is mutually defined with other functions (i.e. h2, . . . , hn) which
traverse over the same array in the specific form of Eq. (3), then tupling h1, . . . , hn will give a
homomorphism. It follows that every hi is an almost homomorphism. Thus, this theorem gives
us a systematic way to execute Step 2 of the strategy.

We apply this theorem to derive an almost homomorphism for rects. In fact rects is mutually
defined with some other functions such as tops and bottoms, and these functions are in the
form of Eq. (3). Thus, letting h1 = rects, h2 = tops, h3 = bottoms, h4 = rights, h5 = lefts,
h6 = toprights, h7 = bottomrights, h8 = toplefts, h9 = bottomlefts, h10 = cols ′, h11 = rows ′, we
can obtain an almost homomorphism for rects by tupling these functions as follows.

rects = π1 ◦ (411
1 hi) = π1 ◦ (| 411

1 fi,411
1 ⊕i,411

1 ⊗i |)
where

411
1 fi |a| = (|||a|||, |||a|||, |||a|||, |||a|||, |||a|||, |||a|||, |||a|||, |||a|||, |||a|||, ||a||, ||a||)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (411
1 ⊕i) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where

s0 = (s1 − ◦ gemm ( , zipwith(−◦)) b1 t2)−◦ (NIL − ◦ s2)
t0 = t1 − ◦ map (zipwith(−◦) c1) t2
b0 = map (λz → zipwith(−◦) z c2) b1−◦ b2

r0 = (r1 − ◦ gemm ( , zipwith(−◦)) br1 tr2)−◦ (NIL − ◦ r2)
l0 = (l1 − ◦ gemm ( , zipwith(−◦)) bl1 tl2)−◦ (NIL − ◦ l2)
tr0 = tr1 − ◦ map (zipwith(−◦) (right ′ tr1)) tr2

br0 = map (λz → zipwith(−◦) z (top ′ br2)) br1−◦ br2

tl0 = tl1 − ◦ map (zipwith(−◦) (right ′ tl1)) tl2
bl0 = map (λz → zipwith(−◦) z (top ′ bl2)) bl1−◦ bl2
c0 = zipwith(−◦) c1 c2

ro0 = (ro1 − ◦ gemm ( ,−◦) (right ro1) (top ro2))−◦ (NIL − ◦ ro2)
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(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (411
1 ⊗i) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where

s0 = zipwith4 fs s1 s2 r1 l2
where fs s1 s2 r1 l2 = (s1 − ◦ gemm ( , − ◦) r1 l2)−◦ (NIL − ◦ s2)

t0 = zipwith4 ft t1 t2 tr1 tl2
where ft t1 t2 tr1 tl2 = (t1 − ◦ gemm ( , − ◦) tr1 tl2)−◦ (NIL − ◦ t2)

b0 = zipwith4 fb b1 b2 br1 bl2
where fb b1 b2 br1 bl2 = (b1 − ◦ gemm ( , − ◦) br1 bl2)−◦ (NIL − ◦ b2)

r0 = zipwith3 fr r1 r2 ro2

where fr r1 r2 ro2 = map ( − ◦ro2) r1−◦ r2

l0 = zipwith3 fl l1 l2 ro1

where fl l1 l2 ro1 = l1 − ◦ map (ro1 − ◦) l2
tr0 = zipwith ftr tr1 tr2

where ftr tr1 tr2 = map ( − ◦top ′ tr2) tr1−◦ tr2

br0 = zipwith fbr br1 br2

where fbr br1 br2 = map ( − ◦top ′ br2) br1−◦ br2

tl0 = zipwith ftl tl1 tl2
where ftl tl1 tl2 = tl1 − ◦ map (right ′ tl1 − ◦) tl2

bl0 = zipwith fbl bl1 bl2
where fbl bl1 bl2 = bl1 − ◦ map (right ′ bl1 − ◦) bl2

c0 = (c1 − ◦ gemm ( , − ◦) (right c1) (top c2))−◦ (NIL − ◦ c2)
ro0 = zipwith( − ◦) ro1 ro2

Step 3. Fusing with Almost Homomorphisms
We aim to derive an efficient almost homomorphism for mrs. To this end, we give the following
theorem showing how to fuse a function with an almost homomorphism to get new another
almost homomorphism.

Theorem 4.2 (Almost Fusion)
Let h and (| 4n

1 fi,4n
1⊕i,4n

1 ⊗i |) be given. If there exist ¯i,ªi (i = 1, . . . , n) and H =
h1 × h2 × · · · × hn (h1 = h) such that ∀i, ∀x, y

hi (x⊕i y) = H x¯i H y

hi (x⊗i y) = H xªi H y

then

h ◦ (π1 ◦ (| 4n
1 fi,4n

1⊕i,4n
1 ⊗i |)) = π1 ◦ (| 4n

1 (hi ◦ fi),4n
1¯i,4n

1 ªi |) . (4)

Proof. The theorem is proven by some calculation and Theorem 2.1.

h ◦ (π1 ◦ (| 4n
1 fi,4n

1⊕i,4n
1 ⊗i |))

= { Definition of H and π1 }
π1 ◦H ◦ (| 4n

1 fi,4n
1⊕i,4n

1 ⊗i |)
= { Theorem 2.1 and the proofs below }

π1 ◦ (| 4n
1 (hi ◦ fi),4n

1¯i,4n
1 ªi |)

To complete the above proof, we need to show




H ◦ (4n
1fi) = 4n

1 (hi ◦ fi)
H(x (4n

1⊕i) y) = (H x) (4n
1¯i) (H y)

H(x (4n
1⊗i) y) = (H x) (4n

1ªi) (H y) .
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These equations are proved as follows.

(H ◦ (4n
1fi)) a

= { Definition of 4 and H }
((h1 ◦ f1) a, . . . , (hn ◦ fn) a)

= { Definition of 4 }
(4n

1 (hi ◦ fi)) a

H (x (4n
1⊕i) y)

= { Definition of 4 and H }
(h1 (x⊕1 y), . . . , hn (x⊕n y))

= { Assumption of hi }
((H x)¯1 (H y), . . . , (H x)¯n (H y))

= { Definition of 4 }
(H x) (4n

1¯i) (H y)

The third is similar to the second.

Theorem 4.2 says that we can fuse a function with an almost homomorphism to get another
almost homomorphism by finding h2, . . . , hn together with ¯1, . . . ,¯n, ª1, . . . ,ªn that satisfy
Eq. (4). Thus, this theorem gives us a systematic way to execute Step 3 of the strategy.

Returning to our example, we apply this theorem to mrs. The second function p2 of our
example is map (map sum), so h1 = map (map sum) . Then, we calculate h1 (x⊕1 y) to find
other functions and operators.

h1 (x⊕1 y)
= { Expand x, y and h1 }

map (map sum)
((s1 − ◦ gemm( , zipwith(−◦)) b1 t2)−◦ (NIL − ◦ s2))

= { Definition of map }
(map (map sum)s1 − ◦

map (map sum) (gemm( , zipwith(−◦)) b1 t2))
−◦ (NIL − ◦ map (map sum)s2)

= { Promotion of map, folding }
(h1 s1 − ◦ gemm( , zipwith(+))

(map (map sum) b1) (map (map sum) t2))−◦ (NIL − ◦ h1 s2)

In the last formula, functions applied to t1 and b1 should be h2 and h3 respectively, which
suggests us to define h2, h3 and ¯1 as follows.

h2 = h3 = map (map sum) = h1

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1)
¯1 (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s1 − ◦ gemm ( , zipwith(+)) b1 t2)−◦ (NIL − ◦ s2)
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Similarly, we can derive ª1 by calculating h1 (x⊗1 y) as follows:

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1)
⊗1 (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= zipwith4 fs s1 s2 r1 l2

where fs s1 s2 r1 l2 = (s1 − ◦ gemm( ,+) r1 l2)−◦(NIL − ◦ s2)

and derive other functions and operators by doing similarly about ⊕i and ⊗i. Finally, we get
the following.

map (map sum) ◦ rects = π1 ◦ (| 411
1 f ′i ,411

1 ¯i,411
1 ªi |)

where

411
1 f ′i |a| = (||a||, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, |a|, |a|)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (411
1 ¯i) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where

s0 = (s1 − ◦ gemm ( , zipwith(+)) b1 t2)−◦ (NIL − ◦ s2)
t0 = t1 − ◦ map (zipwith(+) c1) t2
b0 = map (λz → zipwith(−◦) z c2) b1−◦ b2

r0 = (r1 − ◦ gemm ( , zipwith(+)) br1 tr2)−◦ (NIL − ◦ r2)
l0 = (l1 − ◦ gemm ( , zipwith(+)) bl1 tl2)−◦ (NIL − ◦ l2)
tr0 = tr1 − ◦ map (zipwith(+) (right ′ tr1)) tr2

br0 = map (λz → zipwith(+) z (top ′ br2)) br1−◦ br2

tl0 = tl1 − ◦ map (zipwith(+) (right ′ tl1)) tl2
bl0 = map (λz → zipwith(+) z (top ′ bl2)) bl1−◦ bl2
c0 = zipwith(+) c1 c2

ro0 = (ro1 − ◦ gemm ( ,+) (right ro1) (top ro2))−◦ (NIL − ◦ ro2)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (411
1 ªi) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where

s0 = zipwith4 fs s1 s2 r1 l2
where fs s1 s2 r1 l2 = (s1 − ◦ gemm ( ,+) r1 l2)−◦ (NIL − ◦ s2)

t0 = zipwith4 ft t1 t2 tr1 tl2
where ft t1 t2 tr1 tl2 = (t1 − ◦ gemm ( ,+) tr1 tl2)−◦ (NIL − ◦ t2)

b0 = zipwith4 fb b1 b2 br1 bl2
where fb b1 b2 br1 bl2 = (b1 − ◦ gemm ( ,+) br1 bl2)−◦ (NIL − ◦ b2)

r0 = zipwith3 fr r1 r2 ro2

where fr r1 r2 ro2 = map (+ro2) r1−◦ r2

l0 = zipwith3 fl l1 l2 ro1

where fl l1 l2 ro1 = l1 − ◦ map (ro1+) l2
tr0 = zipwith ftr tr1 tr2

where ftr tr1 tr2 = map (+top ′ tr2) tr1−◦ tr2

br0 = zipwith fbr br1 br2

where fbr br1 br2 = map (+top ′ br2) br1−◦ br2

tl0 = zipwith ftl tl1 tl2
where ftl tl1 tl2 = tl1 − ◦ map (right ′ tl1+) tl2

bl0 = zipwith fbl bl1 bl2
where fbl bl1 bl2 = bl1 − ◦ map (right ′ bl1+) bl2

c0 = (c1 − ◦ gemm ( ,+) (right c1) (top c2))−◦ (NIL − ◦ c2)
ro0 = zipwith(+) ro1 ro2
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In this case, the function H appeared in Theorem 4.2 is as follows:

H = h× h× h× h× h× h× h× h× h× (map sum)× (map sum)
where h = map (map sum) .

Some calculation rules used in this derivation are listed in Appendix B.
Then, applying the theorem again with the third function p3 = map max , we obtain another

almost-homomorphism with H = (map max )× id × id × id × id × id × id × id × id × id × id
as follows:

map max ◦map (map sum) ◦ rects = π1 ◦ (| 411
1 f ′′i ,411

1 ¯′i,411
1 ª′i |)

where

411
1 f ′′i |a| = (|a|, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, |a|, |a|)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (411
1 ¯′i) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where

s0 = (s1 − ◦ mapmax (gemm ( , zipwith(+)) b1 t2))−◦ (NIL − ◦ s2)
t0 = t1 − ◦ map (zipwith(+) c1) t2
b0 = map (λz → zipwith(−◦) z c2) b1−◦ b2

r0 = (r1 − ◦ gemm ( , zipwith(+)) br1 tr2)−◦ (NIL − ◦ r2)
l0 = (l1 − ◦ gemm ( , zipwith(+)) bl1 tl2)−◦ (NIL − ◦ l2)
tr0 = tr1 − ◦ map (zipwith(+) (right ′ tr1)) tr2

br0 = map (λz → zipwith(+) z (top ′ br2)) br1−◦ br2

tl0 = tl1 − ◦ map (zipwith(+) (right ′ tl1)) tl2
bl0 = map (λz → zipwith(+) z (top ′ bl2)) bl1−◦ bl2
c0 = zipwith(+) c1 c2

ro0 = (ro1 − ◦ gemm ( ,+) (right ro1) (top ro2))−◦ (NIL − ◦ ro2)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (411
1 ª′i) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where

s0 = zipwith4 fs s1 s2 r1 l2
where fs s1 s2 r1 l2 = s1 ↑ max (gemm ( ,+) r1 l2) ↑ s2

t0 = zipwith4 ft t1 t2 tr1 tl2
where ft t1 t2 tr1 tl2 = (t1 − ◦ gemm ( ,+) tr1 tl2)−◦ (NIL − ◦ t2)

b0 = zipwith4 fb b1 b2 br1 bl2
where fb b1 b2 br1 bl2 = (b1 − ◦ gemm ( ,+) br1 bl2)−◦ (NIL − ◦ b2)

r0 = zipwith3 fr r1 r2 ro2

where fr r1 r2 ro2 = map (+ro2) r1−◦ r2

l0 = zipwith3 fl l1 l2 ro1

where fl l1 l2 ro1 = l1 − ◦ map (ro1+) l2
tr0 = zipwith ftr tr1 tr2

where ftr tr1 tr2 = map (+top ′ tr2) tr1−◦ tr2

br0 = zipwith fbr br1 br2

where fbr br1 br2 = map (+top ′ br2) br1−◦ br2

tl0 = zipwith ftl tl1 tl2
where ftl tl1 tl2 = tl1 − ◦ map (right ′ tl1+) tl2

bl0 = zipwith fbl bl1 bl2
where fbl bl1 bl2 = bl1 − ◦ map (right ′ bl1+) bl2

c0 = (c1 − ◦ gemm ( ,+) (right c1) (top c2))−◦ (NIL − ◦ c2)
ro0 = zipwith(+) ro1 ro2
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Finally, applying such fusion with max will yield the result shown below. This final parallel
program uses only O(n3) addition operations, which is much better than the initial one. ．

mrs = π1 ◦ (| 411
1 f ′′′i ,411

1 ¯′′i ,411
1 ª′′i |)

where

(411
1 f ′′′i ) |a| = (a, |a|, |a|, |a|, |a|, |a|, |a|, |a|, |a|, |a|, |a|)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (411
1 ¯′′i ) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where

s0 = (s1 ↑ max (zipwith(+) b1 t2) ↑ s2

t0 = zipwith3 ft t1 c1 t2
where ft t1 c1 t2 = t1 ↑ (c1 + t2)

b0 = zipwith3 fb b1 c2 b2

where fb b1 c2 b2 = (b1 + c2) ↑ b2

r0 = (r1 − ◦ gemm (↑,+) (tr br1) tr2)−◦ (NIL − ◦ r2)
l0 = (l1 − ◦ gemm (↑,+) bl1 (tr tl2))−◦ (NIL − ◦ l2)
tr0 = tr1 − ◦ mapc (zipwith(+) (right tr1)) tr2

br0 = mapc (zipwith(+) (left br2)) br1 − ◦ br2

tl0 = tl1−◦mapr (zipwith(+) (bottom tl1)) tl2
bl0 = mapr (zipwith(+) (top bl2)) bl1−◦ bl2
c0 = zipwith(+) c1 c2

ro0 = (ro1 − ◦ gemm( ,+) (right ro1) (top ro2))−◦ (NIL − ◦ ro2)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (411
1 ª′′i ) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where

s0 = s1 ↑ max (zipwith(+) r1 l2) ↑ s2

t0 = (t1 − ◦ gemm (↑,+) tr1 tl2)−◦ (NIL − ◦ t2)
b0 = (b1 − ◦ gemm (↑,+) br1 bl2)−◦ (NIL − ◦ b2)
r0 = zipwith3 fr r1 r2 ro2

where fr r1 r2 ro2 = (r1 + ro2) ↑ r2

l0 = zipwith3 fl l1 l2 ro1

where fl l1 l2 ro1 = l1 ↑ (ro1 + l2)
tr0 = mapr (zipwith(+)(top tr2)) tr1−◦ tr2

br0 = mapr (zipwith(+)(top br2)) br1−◦ br2

tl0 = tl1 − ◦ mapc (zipwith(+) (right tl1)) tl2
bl0 = bl1 − ◦ mapc (zipwith(+) (right bl1)) bl2
c0 = (c1 − ◦ gemm( ,+) (right c1) (top c2))−◦ (NIL − ◦ c2)
ro0 = zipwith(+) ro1 ro2

The function H for the final fusion is as follows:

H =max × (reduce( , zipwith(↑)))× (reduce(zipwith(↑), ))× (map (reduce(↑, )))
× (map (reduce( , ↑)))× (reduce( , − ◦))× (reduce( − ◦, ))
× (reduce( ,−◦))× (reduce(−◦, ))× id × id

Step 4. Optimizing Inner Functions
For our example, we may proceed to optimize the operators and functions such as f ′′′i , ¯′′i and
ª′′i in the program of Step 3. Since they cannot be made efficient any more, we finish our
derivation of efficient parallel program.
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5. IMPLEMENTATION
In this section, we will give an efficient parallel implementation (on PC clusters) of the parallel
skeletons, which are primitive operations on two-dimensional arrays defined in Section 3.1 and
Section 3.2. Since a homomorphism can be specified as a composition of the reduce and map
skeletons, homomorphisms have efficient parallel implementations. Our parallel skeletons are
implemented as a C++ library with MPI. We will report some experimental results, showing
programs described in terms of skeletons can be executed efficiently in parallel.

5.1 Implementation of Data Parallel Skeletons
The four basic data parallel skeletons of map, zipwith, reduce and scan can be efficiently im-
plemented on distributed memory systems. To illustrate this, we separate computations of a
skeleton into two parts: local computations within a processor and global computations crossing
processors.

For map skeleton, we can separate its computation as follows.

map f = map f ◦ gather ◦ dist p q
= map f ◦ reduce(−◦, − ◦) ◦ dist p q
= reduce(−◦, − ◦) ◦map (map f) ◦ dist p q
= gather ◦map (map f) ◦ dist p q

The last formula indicates that we can compute map f by distributing a two-dimensional array
of the argument to the processors by dist p q, applying map f to each local array independently
on each processor, and finally gathering the results onto the root processor by gather. Thus, for
a two-dimensional array of n × n size we can compute map f in O(n2/P ) parallel time using
P = pq processors and ignoring distribution and collection provided that the function f can be
computed in O(1) time. This is the same also about zipwith.

For reduce skeleton, we can separate its computation as follows.

reduce(⊕,⊗) = reduce(⊕,⊗) ◦ gather ◦ dist p q
= reduce(⊕,⊗) ◦ reduce(−◦, − ◦) ◦ dist p q
= reduce(⊕,⊗) ◦map (reduce(⊕,⊗)) ◦ dist p q

The last formula indicates that we can compute reduce(⊕,⊗) by distributing a two-dimensional
array of the argument to the processors by dist p q, applying reduce(⊕,⊗) to each local array
independently on each processor, and finally reducing the results into the root processor by
reduce(⊕,⊗) described in the last formula. From the property of Eq. (1), the last reduction over
the results of all processors can be computed by using tree-like computation in column and row
directions respectively like parallel computation of reduction on one-dimensional lists. Thus, for
a two-dimensional array of n×n size we can compute reduce(⊕,⊗) in O(n2/P + log P ) parallel
time using P = pq processors and ignoring distribution provided that the binary operators ⊕
and ⊗ can be computed in O(1) time.

For scan skeleton, we can separate its computation as follows.

scan(⊕,⊗) = reduce(⊕′,⊗′) ◦map |·| ◦ gather ◦ dist p q
= reduce(⊕′,⊗′) ◦map |·| ◦ reduce(−◦, − ◦) ◦ dist p q
= reduce(⊕′,⊗′) ◦map (reduce(⊕′,⊗′) ◦map |·|) ◦ dist p q
= reduce(⊕′,⊗′) ◦map (scan(⊕,⊗)) ◦ dist p q
= gather ◦ dist p q ◦ reduce(⊕′,⊗′) ◦map (scan(⊕,⊗)) ◦ dist p q

The second last formula indicates we can compute scan(⊕,⊗) by distributing a two-dimensional
array of the argument to the processors by dist p q , applying scan(⊕,⊗) to each local array
independently on each processor, and finally reducing the results into the root processor by
reduce(⊕′,⊗′). However, since the result of scan(⊕,⊗) is a two-dimensional array, we want that
the last operation of computing scan(⊕,⊗) is gather like the case of map f . Thus, we compute
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underlined dist p q ◦ reduce(⊕′,⊗′) instead of the last reduction reduce(⊕′,⊗′) . Although under
our notation the underlined computation cannot be written in simpler form, we can compute
it in sequence in column and row direction like the case of reduce. The computation in each
direction can be done like those of lists [15]. Or, from the property of Eq. (2), we can com-
pute scan(⊕,⊗) by computing scan↓(⊕) after scan→(⊗). Note that scan↓(⊕) and scan→(⊗)
can be computed in the same way of scan on list although it performs to two or more lists
simultaneously. Thus, for a two-dimensional array of n× n size we can compute scan(⊕,⊗) in
O(n2/P +

√
n2/P log P ) parallel time using P = pq processors and ignoring distribution and

collection provided that the binary operators ⊕ and ⊗ can be computed in O(1) time.

5.2 Implementation of Data Communication Skeletons
We have efficient parallel implementations for the data communication skeletons defined in
Section 3.2.

Since dist distributes all elements of a two-dimensional array at the root processor to all
other processors and gather does the inverse, we can compute dist and gather in O(n2) parallel
time for a two-dimensional array of n× n size.

Although the definition of rotr f given in Section 3 is complicated, the actual operation of
rotr f is simple. Function rotr f merely rotates independently i-th row by f i , and rotation of
each row can be done by four parallel communications. Without losing generality we can assume
that the amount of rotation r = f i satisfies 0 < r ≤ n/2 where n is the length of the row because
we just reverse the direction of rotation in the case of n/2 < r. The operations are followings:
(1) making groups of 2r processors from the first processor of the row (i.e. n/(2r) groups are
made) and transmitting subarrays of first r processors to the rest r processors in each group, (2)
considering that processors from the 0th to the r-th continue behind the last processor, making
groups of 2r processors from the r-th processor of the row and transmitting subarrays of first r
processors to the rest r processors in each group (i.e. processors in the first n/(2r) groups have
transmitted their subarrays), (3) doing the former two operations on the rest processors which
have not transmitted their subarrays yet, considering the processors which have done continue
behind the processors. Since more than the half processors have transmitted their subarrays
by the end of the former two operations, all processors can transmit their subarrays by the end
of third operation. Thus, since the amount of one communication is O(n2/P ) for P processors,
rotr f can be executed in O(n2/P ) parallel time. Similarly, rotc f can be executed in O(n2/P )
parallel time.

5.3 Experiments
We implemented the parallel skeletons as a library with C++ and MPI, and did our experiments
on a small-scale cluster of four Pentium 4 Xeon 2.0-GHz dualprocessor PCs with 1 GB of
memory, connected through a Gigabit Ethernet. The OS was FreeBSD 4.10 and we used gcc
2.95 for the compiler, MPICH 1.1.2 for MPI.

Figures 2 and 3 show speedup of the following parallel skeletons and matrix multiplication
described in terms of parallel skeletons with square x = x2 :

(1) map square , (2) reduce(+,+) ,

(3) zipwith(λxy →
√

x2 + y2) , (4) scan(+,+) ,
(5) mm (composition of skeletons, see Section 3.3) .

The inputs for the first five parallel programs are 8000×8000 matrices, and 1800×1800 matrices
for mm. The computation times of the above programs on one processor are 4.72sec, 0.32sec,
4.85sec, 0.36sec and 135.3sec respectively.

The result shows programs described in terms of skeletons can be executed efficiently in
parallel, and proves the success of our framework. The speedup of matrix multiplication is
super-linear. This can happen in large matrix operations where the matrix on a single processor
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Figure 2: Speedup of Parallel Skeletons

is large with respect to the cache size. It is reasonable that super-linear speedup is achieved
here.

Finally, we list part of the C++ code of mm written with the skeleton library in Figure 4,
to give a concrete impression of the conciseness our library provides.

6. RELATED WORKS
Besides the related work as in the introduction, our work is closely related the active researches
on matrix representation for parallel computations and the compositional approach to parallel
program development.

Recursive Matrix Representations
Wise et al. [33] propose representation of a two-dimensional array by a quadtree, i.e. a two-
dimensional array recursively constructed by four small sub-arrays of the same size. This
representation is suitable for describing recursive blocked algorithms [11], which can provide
better performance than existing algorithms for some matrix computations such as LU and
QR factorizations [12, 34]. However, the quadtree representation requires the size of two-
dimensional arrays to be the power of 2. Moreover, once a two-dimensional array is represented
by a quadtree, we cannot reblock the array by restructuring the quadtree, which would prevent
us from developing more parallelism in the recursive blocked algorithms on them.

A more natural representation of a two-dimensional array is to use nested one-dimensional
arrays (lists) [4, 30, 22]. The advantage is that many results developed for lists can be reused.
However, this representation imposes much restriction on the access order of elements.

The abide tree representation, as used in this paper, was first proposed by Bird [4], as an
extension of one-dimensional join list. However, the focus there is on derivation of sequential
programs for manipulating two-dimensional arrays, and there is little study on the framework
for developing efficient parallel programs. Our work provides a good complement.

Compositional Parallel Programming
This work were greatly inspired by the success of compositional (skeletal) parallel programming
on one-dimensional arrays (lists) [27], and our initial motivation was to import the results so
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Figure 3: Speedup of Matrix Multiplication

template <class C, class A, class B>
void mm(dist_matrix<C> &Z2, const dist_matrix<A> &X2, const dist_matrix<B> &Y2)
{

dist_matrix < matrix < int > > *A2;
dist_matrix < matrix < int > > *B2;
A2 = all_rows2(X2);
B2 = all_cols2(Y2);
m_skeletons::map_i(Tri< matrix <B> >(), *B2);
m_skeletons::zipwith(Iprod<C>(), *A2, *B2, Z2);
delete B2;
delete A2;

}

Figure 4: C++ Code of mm

far to two-dimensional arrays. This turns out to be more difficult than we had expected.
Compositional parallel Programming using Bird-Meertens Formalism (BMF) has been at-

tracting many researchers. The initial BMF [3] was designed as a calculus for deriving (se-
quential) efficient programs on lists. Skillicorn [29] showed that BMF could also provide an
architecture independent parallel model for parallel programming because a small fixed set of
higher order functions (skeletons) in BMF such as map and reduce can be mapped efficiently
to a wide range of parallel architectures.

Systematic programming methods have actively been studied in the framework of skeletal
(compositional) parallel programming on lists. The diffusion theorem [21] gives a powerful
method to obtain suitable composition of skeletons for a program recursively defined on lists
and trees. Chin et al. [20, 6] have studied a systematic method to derive an associative operator
which plays an important role in parallelization, based on which Xu et al. [35] build an automatic
derivation system for parallelizing recursive linear functions with normalization rules.

7. CONCLUSION
In this paper, we propose a compositional framework which allows users, even with little knowl-
edge about parallel machines, to easily describe safe and efficient parallel computation over two-
dimensional arrays. In our framework, two-dimensional arrays are represented by the abide-tree
which supports systematic development of parallel programs and architecture independent im-
plementation, and programmers can easily build up a complicated parallel system by defining
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basic components recursively, putting components compositionally, and improving efficiency
systematically. The power of our approach is seen from the nontrivial programming examples
of matrix multiplication and QR decomposition, and a successful derivation of an involved ef-
ficient parallel programs for the maximum rectangle sum problem [18]. A demonstration of
an efficient implementation of basic computation skeletons (in C++ and MPI) on distributed
PC clusters guarantees that programs composed by these parallel skeletons can be efficiently
executed.

This work is still in an early stage, and there are at least two things to do. One is to construct
more powerful theories for a systematic programming methodology, in which we can develop
efficient and correct parallel programs by parallel skeletons from their recursive specifications.
Another is to study an automatic optimization mechanism, which can eliminate inefficiency due
to compositional or nested uses of parallel skeletons in parallel programs. It is also our future
work to compare our matrix computation algorithms with existing routines (e.g. BLAS).
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A. EXAMPLES OF rects AND SO ON.
We give example values of eleven functions which constructs the mutually defined function
rects .
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B. SOME CALCULATION RULES
We summarize the calculation rules used in Section 4 for derivation of the efficient parallel
program for solving the maximum rectangle sum problems.

B.1 Rule I

map f (zipwith(⊕) x y) = zipwith(⊕′) (map f x) (map f y)
⇐ ∀a, b f (a⊕ b) = f a⊕′ f b

Proof. The induction on the structure of abide trees.

map f (zipwith(⊕) |a| |b|)
= { def. of zipwith,map }
|f (a⊕ b)|

= { hypo. }
|f a⊕′ f b|

= { def. of zipwith,map }
zipwith(⊕′) (map f |a|) (map f |b|)

map f (zipwith(⊕) (x−◦ y) (u−◦ v))
= { def. of zipwith,map }

map f (zipwith(⊕) x u)−◦map f (zipwith(⊕) y v)
= { hypo. of induction }

zipwith(⊕′) (map f x) (map f u)−◦ zipwith(⊕′) (map f y) (map f v)
= { def. of zipwith,map }

zipwith(⊕′) (map f (x−◦ y)) (map f (u−◦ v))

map f (zipwith(⊕) (x − ◦ y) (u − ◦ v))
= { similar to−◦ }

zipwith(⊕′) (map f (x − ◦ y)) (map f (u − ◦ v))

B.2 Rule II

map (reduce(⊕,⊗)) (zipwith(−◦) x y) = zipwith(⊕) (map (reduce(⊕,⊗)) x) (map (reduce(⊕,⊗)) y)

Proof. Rule I and the following calculation with f = reduce(⊕,⊗),⊕ =−◦,⊕′ = ⊕ .

reduce(⊕,⊗) (a−◦ b) = reduce(⊗,⊕) a⊕ reduce(⊗,⊕) b
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B.3 Rule III

map f (gemm(⊕,⊗) x y) = gemm(⊕′,⊗′) (map f x) (map f y)
⇐ ∀a, b f (a⊕ b) = f a⊕′ f b, f (a⊗ b) = f a⊗′ f b

Proof. The induction on the structure of abide trees.

map f (gemm(⊕,⊗) |a| |b|)
= { def. of gemm,map }
|f (a⊗ b)|

= { hypo. }
|f a⊗′ f b|

= { def. of gemm,map }
gemm(⊕′,⊗′) (map f |a|) (map f |b|)

map f (gemm(⊕,⊗) (x−◦ y) z)
= { def. of gemm,map }

map f (gemm(⊕,⊗) x z)−◦map f (gemm(⊕,⊗) y z)
= { hypo. of induction }

gemm(⊕′,⊗′) (map f x) (map f z)−◦ gemm(⊕′,⊗′) (map f y)) (map f z)
= { def. of gemm,map }

gemm(⊕′,⊗′) (map f (x−◦ y)) (map f z)

map f (gemm(⊕,⊗) x (y − ◦ z))
= { similar to above }

gemm(⊕′,⊗′) (map f x) (map f (y − ◦ z))

map f (gemm(⊕,⊗) (x − ◦ y) (u−◦ v))
= { def. of gemm,map }

map f (zipwith(⊕) (gemm(⊕,⊗) x u) (gemm(⊕,⊗) y v))
= { I }

zipwith(⊕′)(map f (gemm(⊕,⊗) x u)) (map f (gemm(⊕,⊗) y v))
= { hypo. of induction }

zipwith(⊕′)(gemm(⊕′,⊗′) (map f x) (map f u)) (gemm(⊕′,⊗′) (map f y) (map f v))
= { def. of gemm,map }

gemm(⊕′,⊗′) (map f (x−◦ y)) (map f z)
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B.4 Rule IV

map f (map(⊕x) y) = map (⊗′(f x))(map f y)
⇐ ∀a, b f (a⊕ b) = f a⊕′ f b

Proof. The induction on the structure of abide trees.

map f (map(⊕x) |a|)
= { def. of map }
|f (x⊕ a)|

= { hypo. }
|f x⊕′ f a)|

= { def. of map }
map (⊗′(f x))(map f y)

map f (map(⊕x) (y − ◦ z))
= { def. of map }

map f (map(⊕x) y) − ◦ map f (map(⊕x) z)
= { hypo. of induction }

map (⊗′(f x))(map f y) − ◦ map (⊗′(f x))(map f z)
= { def. of map }

map (⊗′(f x))(map f (y − ◦ z))

The incuntion case for−◦ is proved similarly.
The following is an instance of this rule:

map sum (zipwith (−◦) a b) = zipwith(+) (map sum a) (map sum b)

B.5 Rule V

map f (right ′ x) = right ′(map (map f) x)

Proof.

map f ◦ right ′

= { def. of right ′ }
map f ◦ the ◦right

= { def. of right }
map f ◦ the ◦ reduce(−◦,À) ◦map |·|

= { def. of the,map }
the ◦map (map f) ◦ reduce(−◦,À) ◦map |·|

= { VI }
the ◦ reduce(−◦,À) ◦map (map (map f)) map |·|

= { def. of |·|,map }
the ◦ reduce(−◦,À) ◦map |·| ◦map (map f))

= { def. of right ′ }
right ′ ◦map (map f)
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This rule for top ′ holds similarly.

B.6 Rule VI

map f ◦ reduce(⊕,⊗) = reduce(⊕,⊗) ◦map (map f)
⇐ ⊕,⊗ ∈ {−◦, − ◦,¿,À}

Proof.

map f (reduce(⊕,⊗) |a|)
= { def. of reduce }

map f a

= { def. of reduce }
reduce(⊕,⊗) |map f a|

= { def. of map }
reduce(⊕,⊗) (map (map f) |a|)

map f (reduce(⊕,⊗) (x − ◦ y))
= { def. of reduce }

map f (reduce(⊕,⊗) x⊗ reduce(⊕,⊗)y)
= { below }

map f (reduce(⊕,⊗) x)⊗map f (reduce(⊕,⊗)y)
= { hypo. of induction }

reduce(⊕,⊗) (map (map f) x)⊗ reduce(⊕,⊗) (map (map f) y)
= { def. of map, reduce }

reduce(⊕,⊗) (map (map f) (x − ◦ y))

The incuntion case for−◦ is proved similarly.

map f (x⊕ y) = map f x⊕map f y ⇐ ⊕ ∈ {−◦, − ◦,¿,À}

Proof.

map f (x − ◦ y) = map f x − ◦ map f y

map f (x−◦ y) = map f x−◦map f y

map f (x À y) = map f y = map f x À map f y

map f (x ¿ y) = map f x = map f x ¿ map f y

B.7 Rule VII

map f (zipwith4 g x u w a) = zipwith4 g′ (map f1 x) (map f2 u) (map f3 w) (map f4 a)
⇐ f (g x u w a) = g′ (f1 x) (f2 u) (f3 w) (f4 a)
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Proof. The induction on the structure of abide trees.

map f (zipwith4 g |a| |b| |c| |d|)
= { def. of zipwith,map }
|f (g a b c d)|

= { hypo. }
|g′ (f1 a) (f2 b) (f3 c) (f4 d)|

= { def. of zipwith,map }
zipwith4 g′ (map f1 |a|) (map f2 |b|) (map f3 |c|) (map f4 |d|)

map f (zipwith4 g (a − ◦ x) (b − ◦ y) (c − ◦ z) (d − ◦ w))
= { def. of zipwith,map }

map f (zipwith4 g a b c d) − ◦ map f (zipwith4 g x y z w)
= { hypo. of induction }

zipwith4 g′ (map f1 a) (map f2 b) (map f3 c) (map f4 d)

− ◦ zipwith4 g′ (map f1 x) (map f2 y) (map f3 z) (map f4 w)
= { def. of zipwith,map }

zipwith4 g′ (map f1 (a − ◦ x)) (map f2 (b − ◦ y)) (map f3 (c − ◦ z)) (map f4 (d − ◦ w))

The incuntion case for−◦ is proved similarly.

B.8 Rule VIII

sum ◦ ( − ◦x) = (+(sum x)) ◦ sum

Proof.

(sum ◦ ( − ◦x)) y = sum (y − ◦ x) = sum y + sum x = ((+(sum x)) ◦ sum) y

B.9 Rule IX

map sum(map ( − ◦ top ′ tr2) tr1−◦ tr2)
= { def. of map }

map sum(map ( − ◦ top ′ tr2) tr1)−◦map sumtr2

= { def. of map }
map (sum ◦ ( − ◦ top ′ tr2)) tr1−◦map sumtr2

= { V, VIII }
map (+ top ′ (map sum tr2)) (map sum tr1)−◦map sumtr2

B.10 Rule X

reduce(⊕,⊕)(zipwith(⊗) (zipwith(⊕) a b) (zipwith(⊕) c d))
= reduce(⊕,⊕)(zipwith(⊗) a c)⊕ reduce(⊕,⊕)(zipwith(⊗) a d)
⊕ reduce(⊕,⊕)(zipwith(⊗) b c)⊕ reduce(⊕,⊕)(zipwith(⊗) b d)
⇐ (a⊕ b)⊗ (c⊕ d) = (a⊗ c)⊕ (a⊗ d)⊕ (b⊗ c)⊕ (b⊗ d)
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Proof. The induction on the structure of abide trees.

reduce(⊕,⊕)(zipwith(⊗) (zipwith(⊕) |a| |b|)) (zipwith(⊗) (zipwith(⊕) |c| |d|))
= { def. of zipwith, reduce }

(a⊕ b)⊗ (c⊕ d)
= { hypo. }

(a⊗ c)⊕ (a⊗ d)⊕ (b⊗ c)⊕ (b⊗ d)
= { def. of zipwith, reduce }

reduce(⊕,⊕)(zipwith(⊗) |a| |c|)⊕ reduce(⊕,⊕)(zipwith(⊗) |a| |d|)
⊕ reduce(⊕,⊕)(zipwith(⊗) |b| |c|)⊕ reduce(⊕,⊕)(zipwith(⊗) |b| |d|)

reduce(⊕,⊕)(zipwith(⊗) (zipwith(⊕) (a1 − ◦ a2) (b1 − ◦ b2))) (zipwith(⊗) (zipwith(⊕) (c1 − ◦ c2) (d1 − ◦ d2)))
= { def. of zipwith, reduce }

reduce(⊕,⊕)(zipwith(⊗) (zipwith(⊕) a1 b1)) (zipwith(⊗) (zipwith(⊕) c1 d1))
⊕ reduce(⊕,⊕)(zipwith(⊗) (zipwith(⊕) a2 b2)) (zipwith(⊗) (zipwith(⊕) c2 d2))

= { hypo. of induction }
reduce(⊕,⊕)(zipwith(⊗) a1 c1)⊕ reduce(⊕,⊕)(zipwith(⊗) a1 d1)

⊕ reduce(⊕,⊕)(zipwith(⊗) b1 c1)⊕ reduce(⊕,⊕)(zipwith(⊗) b1 d1)
⊕ reduce(⊕,⊕)(zipwith(⊗) a2 c2)⊕ reduce(⊕,⊕)(zipwith(⊗) a2 d2)

⊕ reduce(⊕,⊕)(zipwith(⊗) b2 c2)⊕ reduce(⊕,⊕)(zipwith(⊗) b2 d2)
= { def. of zipwith, reduce }

reduce(⊕,⊕)(zipwith(⊗) (a1 − ◦ a2) (c1 − ◦ c2))⊕ reduce(⊕,⊕)(zipwith(⊗) (a1 − ◦ a2) (d1 − ◦ d2))
⊕ reduce(⊕,⊕)(zipwith(⊗) (b1 − ◦ b2) (c1 − ◦ c2))⊕ reduce(⊕,⊕)(zipwith(⊗) (b1 − ◦ b2) (d1 − ◦ d2))

The incuntion case for−◦ is proved similarly.

B.11 Rule XI

max (map max (gemm( , zipwith(+)) b t))
= max (zipwith(+) (reduce (zipwith(↑), ) b) (reduce ( , zipwith(↑)) t))

⇐ width b = 1, height t = 1

Proof.The induction on the structure of abide trees.

max (map max (gemm( , zipwith(+)) |b| |t|))
= { def. of gemm }

max (map max (| zipwith(+) b t|))
= { def. of zipwith,map,max }

max (zipwith(+) b t)
= { def. of reduce }

max (zipwith(+) (reduce (zipwith(↑), ) |b|) (reduce ( , zipwith(↑)) |t|))
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max (map max (gemm( , zipwith(+)) (b1−◦ b2) (t1 − ◦ t2)))
= { def. of gemm }

max (map max (((gemm( , zipwith(+)) b1 t1) − ◦ (gemm( , zipwith(+)) b1 t2))
−◦ ((gemm( , zipwith(+)) b2 t1) − ◦ (gemm( , zipwith(+)) b2 t2))))

= { def. of max }
max (map max (gemm( , zipwith(+)) b1 t1)) ↑

max (map max (gemm( , zipwith(+)) b1 t2))
↑ max (map max (gemm( , zipwith(+)) b2 t1))
↑ max (map max (gemm( , zipwith(+)) b2 t2))

= { hypo. of induction }
max (zipwith(+) (reduce (zipwith(↑), ) b1) (reduce ( , zipwith(↑)) t1))

↑ max (zipwith(+) (reduce (zipwith(↑), ) b1) (reduce ( , zipwith(↑)) t2))
↑ max (zipwith(+) (reduce (zipwith(↑), ) b2) (reduce ( , zipwith(↑)) t1))

↑ max (zipwith(+) (reduce (zipwith(↑), ) b2) (reduce ( , zipwith(↑)) t2))
= { X with ⊕ =↑,⊗ = + }

max (zipwith(+) (reduce (zipwith(↑), ) (b1−◦ b2)) (reduce ( , zipwith(↑)) (t1 − ◦ t2)))
B.12 Rule XII

max (zipwith4 fs s1 s2 r1 l2)
= max s1 ↑ max s2 ↑ max (zipwith(+) (map reduce(↑, ) r1) (map reduce( , ↑) l2))

where fs s1 s2 r1 l2 = s1 ↑ max (gemm( ,+) r1 l2) ↑ s2

⇐ width of elements of r1 = 1, height of elements of l2 = 1

Proof. First, we prove the following equation by the induction on the structure of abide
trees.

max (zipwith4 fs s1 s2 r1 l2) = max s1 ↑ max s2 ↑ max (zipwith f ′s r1 l2)
where f ′s r1 l2 = max (gemm( ,+) r1 l2)

Proof.

max (zipwith4 fs |s1| |s2| |r1| |l2|)
= { def. of fs, zipwith }

s1 ↑ max (gemm( ,+) r1 l2) ↑ s2

= { def. of f ′s,max , associativity of ↑ }
max |s1| ↑ max |s2| ↑ max (zipwith f ′s |r1| |l2|)

max (zipwith4 fs (s1
1 − ◦ s2

1) (s1
2 − ◦ s2

2) (r1
1 − ◦ r2

1) (l12 − ◦ l22))
= { def. of max , zipwith }

max (zipwith4 fs s1
1 s1

2 r1
1 l12) ↑ max (zipwith4 fs s2

1 s2
2 r2

1 l22)
= { hypo. of induction }

max s1
1 ↑ max s1

2 ↑ max (zipwith f ′s r1
1 l12) ↑ max s2

1 ↑ max s2
2 ↑ max (zipwith f ′s r2

1 l22)
= { def. of f ′s,max , associativity of ↑ }

max (s1
1 − ◦ s2

1) ↑ max (s1
2 − ◦ s2

2) ↑ max (zipwith f ′s (r1
1 − ◦ r2

1) (l12 − ◦ l22))
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The incuntion case for−◦ is proved similarly.
Then, we prove the following equation by the induction on the structure of abide trees.

max (zipwith f ′s r1 l2) = max (zipwith(+) (map reduce(↑, ) r1) (map reduce( , ↑) l2))

Proof.

max (zipwith f ′s |r1| |l2|)
= { def. of max , zipwith, f ′s }

max |max (gemm( ,+) r1 l2)|
= { below }

max (| reduce(↑, ) r1 + reduce(↑, ) l2|)
= { def. of zipwith,map }

max (zipwith(+) (map reduce(↑, ) |r1|) (map reduce( , ↑) |l2|))

max (zipwith f ′s (r1
1 − ◦ r2

1) (l12 − ◦ l22))
= { def. of max , zipwith }

max (zipwith f ′s r1
1 l12) ↑ max (zipwith f ′s r2

1 l22)
= { hypo. of induction }

max (zipwith(+) (map reduce(↑, ) r1
1) (map reduce( , ↑) l12))

↑ max (zipwith(+) (map reduce(↑, ) r2
1) (map reduce( , ↑) l22))

= { def. of max , zipwith,map }
max (zipwith(+) (map reduce(↑, ) (r1

1 − ◦ r2
1)) (map reduce( , ↑) (l12 − ◦ l22)))

To complete the proof of the base case, we prove the next equation by the induction on the
structure of abide trees.

max (gemm( ,+) r1 l2) = reduce(↑, ) r1 + reduce(↑, ) l2

⇐ width r1 = 1, height l2 = 1

Proof.

max (gemm( ,+) |r1| |l2|)
= { def. of gemm,max }

r1 + l2

= { def. of reduce }
reduce(↑, ) |r1|+ reduce(↑, ) |l2|
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max (gemm( ,+) (r1
1−◦ r2

1) (l12 − ◦ l22))
= { def. of gemm,max }

max (gemm( ,+) r1
1 l12) ↑ max (gemm( ,+) r1

1 l22)

↑ max (gemm( ,+) r2
1 l12) ↑ max (gemm( ,+) r2

1 l22)
= { hypo. of induction }

(reduce(↑, ) r1
1 + reduce(↑, ) l12) ↑ (reduce(↑, ) r1

1 + reduce(↑, ) l22)

↑ (reduce(↑, ) r2
1 + reduce(↑, ) l12) ↑ (reduce(↑, ) r2

1 + reduce(↑, ) l22)
= { associativity and distributivity }

(reduce(↑, ) r1
1 ↑ reduce(↑, ) r2

1) + (reduce(↑, ) l12 ↑ reduce(↑, ) l22)
= { def. of reduce }

reduce(↑, ) (r1
1−◦ r2

1) + reduce(↑, ) (l12 − ◦ l22)

B.13 Rule XIII

reduce(⊕,⊗) (map f x)
= f (reduce(⊕,⊗) x) ⇐ f a⊗ f b = f (a⊗ b), f a⊕ f b = f (a⊕ b)

Proof. The induction on the structure of abide trees.

reduce(⊕,⊗) (map f |x|)
= { def. of reduce,map }

f x

= { def. of reduce }
f (reduce(⊕,⊗) |x|)

reduce(⊕,⊗) (map f (x−◦ y))
= { def. of reduce,map }

reduce(⊕,⊗) (map f x))⊕ reduce(⊕,⊗) (map f y)
= { hypo. of induction }

f (reduce(⊕,⊗) x)⊕ f (reduce(⊕,⊗) y)
= { hypo. }

f ((reduce(⊕,⊗) x)⊕ (reduce(⊕,⊗) y))
= { def. of reduce }

f (reduce(⊕,⊗) (x − ◦ y))

The incuntion case for−◦ is proved similarly.
For instance, ⊕ = (don’t care)，⊗ = zipwith(↑) and f = zipwith(+) c1 satisfy the condition

f a⊗ f b = f (a⊗ b) .
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B.14 Rule XIV

reduce(⊕,⊗) (zipwith4 f x y z w)
= f ′ (reduce(⊕1,⊗1) x) (reduce(⊕2,⊗2) y) (reduce(⊕3,⊗3) z) (reduce(⊕4,⊗4) w)

⇐ f a b c d = f ′ a b c d,

f ′ a b c d⊕ f ′ x y z w = f ′ (a⊕1 x) (b⊕2 y) (c⊕3 z) (d⊕4 w)
f ′ a b c d⊗ f ′ x y z w = f ′ (a⊗1 x) (b⊗2 y) (c⊗3 z) (d⊗4 w)

Proof. The induction on the structure of abide trees.

reduce(⊕,⊗) (zipwith4 f |x| |y| |z| |w|)
= { def. of reduce, zipwith }

f x y z w

= { hypo. }
f ′ x y z w

= { def. of reduce }
f ′ (reduce(⊕1,⊗1) |x|) (reduce(⊕2,⊗2) |y|) (reduce(⊕3,⊗3) |z|) (reduce(⊕4,⊗4) |w|)

reduce(⊕,⊗) (zipwith4 f (x1−◦ x2) (y1−◦ y2) (z1−◦ z2) (w1−◦ w2))
= { def. of reduce, zipwith }

reduce(⊕,⊗) (zipwith4 f x1 y1 z1 w1)⊕ reduce(⊕,⊗) (zipwith4 f x2 y2 z2 w2)
= { hypo. of induction }

f ′ (reduce(⊕1,⊗1) x1) (reduce(⊕2,⊗2) y1) (reduce(⊕3,⊗3) z1) (reduce(⊕4,⊗4) w1)
⊕ f ′ (reduce(⊕1,⊗1) x2) (reduce(⊕2,⊗2) y2) (reduce(⊕3,⊗3) z2) (reduce(⊕4,⊗4) w2)

= { hypo. }
f ′ (reduce(⊕1,⊗1) x1 ⊕1 reduce(⊕1,⊗1) x2) (reduce(⊕2,⊗2) y1 ⊕2 reduce(⊕2,⊗2) y2)

(reduce(⊕3,⊗3) z1 ⊕3 reduce(⊕3,⊗3) z3) (reduce(⊕4,⊗4) w1 ⊕4 reduce(⊕4,⊗4) w2)
= { def. of reduce }

f ′ (reduce(⊕1,⊗1) (x1−◦ x2)) (reduce(⊕2,⊗2) (y1−◦ y2))
(reduce(⊕3,⊗3) (z1−◦ z2)) (reduce(⊕4,⊗4) (w1−◦ w2))

The incuntion case for − ◦ is proved similarly.
For instance, f ′ a b c d = (a − ◦ gemm(↑,+) c d)−◦ (NIL − ◦ b), ⊗1 = zipwith(↑), ⊗2 = zipwith(↑),

⊗3 = − ◦ and ⊗4 = −◦ satisfy the condition for f a b c d = (a − ◦ gemm( ,+) c d)−◦ (NIL − ◦ b),
⊗ = zipwith(↑) and ⊕ = .

B.15 Rule XV

map (reduce(⊕, )) (gemm( , zipwith(⊗)) x y)
= gemm(⊕,⊗) (tr (reduce ( − ◦, )) x) (reduce ( , − ◦) y)
⇐ width of x and its elements = 1,width of y’s elements = 1, height y = 1
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Proof. The induction on the structure of abide trees.

map (reduce(⊕, )) (gemm( , zipwith(⊗)) |x| |y|)
= { def. of map, gemm }
| reduce(⊕, ) x y|

= { below }
gemm (⊕,⊗) (tr x) y

= { def. of reduce }
gemm (⊕,⊗) (tr (reduce ( − ◦, ) |x|)) (reduce ( , − ◦) |y|)

map (reduce(⊕, )) (gemm( , zipwith(⊗)) (x1−◦ x2) (y1 − ◦ y2))
= { def. of map, gemm }

(map (reduce(⊕, )) (gemm( , zipwith(⊗)) x1 y1) − ◦ map (reduce(⊕, )) (gemm( , zipwith(⊗)) x1 y2))
−◦ (map (reduce(⊕, )) (gemm( , zipwith(⊗)) x2 y1) − ◦ map (reduce(⊕, )) (gemm( , zipwith(⊗)) x2 y2))

= { hypo. of induction }
(gemm (⊕,⊗) (tr (reduce ( − ◦, ) x1)) (reduce ( , − ◦) y1)

− ◦ gemm (⊕,⊗) (tr (reduce ( − ◦, ) x1)) (reduce ( , − ◦) y2))
−◦ (gemm (⊕,⊗) (tr (reduce ( − ◦, ) x2)) (reduce ( , − ◦) y1)

− ◦ gemm (⊕,⊗) (tr (reduce ( − ◦, ) x2)) (reduce ( , − ◦) y2))
= { def. of gemm }

gemm (⊕,⊗) (tr (reduce ( − ◦, ) x1) − ◦ tr (reduce ( − ◦, ) x2)) (reduce ( , − ◦) y1 − ◦ reduce ( , − ◦) y2))
= { def. of tr , reduce }

gemm (⊕,⊗) (tr (reduce ( − ◦, ) (x1−◦ x2))) (reduce ( , − ◦) (y1 − ◦ y2))

To complete the proof, we prove the following equation by the induction on the structure
of abide trees.

| reduce(⊕, ) (zipwith(⊗) x y)| = gemm(⊕,⊗) (tr x) y

⇐ width x = 1,width y = 1

Proof.

| reduce(⊕, ) (zipwith(⊗) |x| |y|)|
= { def. of zipwith, reduce }
|x⊗ y|

= { def. of gemm, tr }
gemm(⊕,⊗) (tr |x|) |y|
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| reduce(⊕, ) (zipwith(⊗) (x1−◦ x2) (y1−◦ y2))|
= { def. of zipwith, reduce }
| reduce(⊕, ) (zipwith(⊗) x1 y1)⊕ reduce(⊕, ) (zipwith(⊗) x2 y2)|

= { def. of zipwith }
zipwith(⊕) | reduce(⊕, ) (zipwith(⊗) x1 y1)| | reduce(⊕, ) (zipwith(⊗) x2 y2)|

= { hypo. of induction }
zipwith(⊕) (gemm(⊕,⊗) (tr x1) y1) (gemm(⊕,⊗) (tr x2) y2)

= { def. of gemm, tr }
gemm(⊕,⊗) (tr (x1−◦ x2)) (y1−◦ y2)

B.16 Rule XVI

map (reduce( ,⊕)) (gemm( , zipwith(⊗)) x y)
= gemm(⊕,⊗) (reduce (−◦, ) x) (tr(reduce ( ,−◦) y))
⇐ width x = 1, height of x’s elements = 1, height of y and its elements = 1

Proof. Silimar to Rule XV.

B.17 Rule XVII

map(reduce(↑, )) (zipwith3 fr r1 r2 ro2) = zipwith3 f ′r (reduce (↑) r1) ro2 (reduce (↑, )r2)
where fr r1 r2 ro2 = map (+ro2) r1 − ◦ r2

f ′r r1 ro2 r2 = (r1 + ro2) ↑ r2

Proof. Rule VII and follwing calculation.

reduce(↑, ) (fr r1 r2 ro2)
= { def. of fr }

reduce(↑, ) ((map (+ro2)r1) − ◦ r2)
= { def. of reduce }

reduce(↑, ) (map (+ro2)r1) ↑ r2

= { + distributes over ↑ }
((reduce(↑, ) r1) + ro2) ↑ r2

B.18 Rule XVIII

reduce( , − ◦) (map (zipwith(+) (right ′ x)) y)
= mapc (zipwith(+) (right (reduce( , − ◦) x))) (reduce( , − ◦) y)
⇐ height x = 1,width of x’s elements = 1

Proof. First, we prove the next equation by the induction on the structure of abide trees.

reduce( , − ◦) (map f x) = mapc f (reduce( , − ◦) x)
⇐ height x = 1,width of x’s elements = 1
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Proof.

reduce( , − ◦) (map f |x|)
= { def. of reduce,map }

f x

= { def. of mapc, height x = 1 }
mapc f x

= { def. of reduce }
mapc f (reduce( , − ◦) |x|)

reduce( , − ◦) (map f (x1 − ◦ x2))
= { def. of reduce,map }

map f x1 − ◦ map f x2

= { hypo. of induction }
mapc f (reduce( , − ◦) x1) − ◦ mapc f (reduce( , − ◦) x2)

= { def. of mapc }
mapc f (reduce( , − ◦) (x1 − ◦ x2))

To complete the proof, we prove the next equation by the induction on the structure of
abide trees.

right ′ x = right (reduce( , − ◦) x)
⇐ height x = 1,width of x’s elements = 1

Proof.

right ′ |x|
= { def. of right ′ }

x

= { def. of right , width x = 1 }
right x

= { def. of reduce }
right (reduce( , − ◦) |x|)

right ′ (x1 − ◦ x2)
= { def. of right ′ }

right ′ x2

= { hypo. of induction }
right (reduce( , − ◦) x2)

= { def. of right }
right (reduce( , − ◦) x1 − ◦ reduce( , − ◦) x2)

= { def. of reduce }
right (reduce( , − ◦) (x1 − ◦ x2))
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B.19 Rule XIX

reduce( − ◦, ) (map (zipwith(+) (top ′ x)) y)
= mapc (zipwith(+) (top (reduce( − ◦, ) x))) (reduce( − ◦, ) y)
⇐ width x = 1,width of x’s elements = 1

Proof. Similar to Rule XVIII.

B.20 Rule XX

reduce( , − ◦) (zipwith f x y)
= mapr (zipwith(+) (top (reduce( , − ◦) y))) (reduce( − ◦, ) x)−◦ (reduce( − ◦, ) y)
⇐ height x = 1, height y = 1,width of x and y’s elements = 1

f x y = map (+(top ′ y)) x−◦ y

Proof. Rule XIV with f ′ a b = mapr (zipwith(+) (top b)) a−◦ b and ⊗ = − ◦, ⊗1 = − ◦, ⊗2 = − ◦ .
B.21 Rule XXI

reduce( , − ◦) (zipwith f x y)
= mapr (zipwith(+) (top (reduce( , − ◦) y))) (reduce( − ◦, ) x)−◦ (reduce( − ◦, ) y)
⇐ width x = 1,width y = 1,width of x and y’s elements = 1

f x y = map (+(top ′ y)) x−◦ y

Proof. Rule XIV with f ′ a b = mapr (zipwith(+) (top b)) a−◦ b and ⊕ = − ◦, ⊕1 = − ◦, ⊕2 = − ◦ .
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