Domain-Specific Optimization Strategy
for Skeleton Programs

Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu, and Masaadédichi

Graduate School of Information Science and Technology
University of Tokyo
{emoto,kmatsu}@ipl.t.u-tokyo.ac. jp
{hu, takeichi}@mist.i.u-tokyo.ac.jp

Abstract. Skeletal parallel programming enables us to develop ghmibgrams
easily by composing ready-made components calketetonsHowever, a simply-
composed skeleton program often lacks efficiency due tdeeets of intermedi-
ate data structures and communications. Many studies bauséd on optimiza-
tions by fusing successive skeletons to eliminate the @aatb. Existing fusion
transformations, however, are too general to achieve adeeficiency for some
classes of problems. Thus, a specific fusion optimizatioreesded for a specific
class. In this paper, we propose a strategy for domain-Spegtimization of
skeleton programs. In this strategy, one starts with a nofonan that abstracts
the programs of interest, then develops fusion rules thastorm a skeleton pro-
gram into the normal form, and finally makes efficient pataltglementation
of the normal form. We illustrate the strategy with a caselgtoptimization of
skeleton programs involving neighbor elements, which fisroseen in scientific
computations.

1 Introduction

Recently, the increasing popularity of parallel machiiiesPC clusters and multi-core
CPUs attracts more and more users. However, developmeliificémt parallel pro-
grams is difficult due to synchronization, interprocesssnmunications, and data dis-
tribution that complicate the parallel programs. Many aeskers have addressed them-
selves to developing methodology of parallel programmiiig ease. As one promising
solution, skeletal parallel programming [1, 2] has beermppsed.

In skeletal parallel programming users develop parallegpams by composing
skeletonswhich are abstracted basic patterns in parallel progré&ash skeleton is
given as a higher order function that takes concrete cortipotaas its parameters,
and conceals low-level parallelism from users. Therefasers can develop parallel
programs with the skeletons in a similar way to developirgusatial programs.

Efficiency is one of the most important topics in the reseachkeletal parallel
programming. Since skeleton programs are developed in gasitional style, they
often have overheads of redundantly many loops and unragastermediate data. To
make skeleton programs efficient, not only each skeletomamented efficiently in
parallel, but also optimizations over multiple skeletoresrecessary.

2 K. Emoto et al.

There have been several studies on the optimizations oviptaiskeletons based
on fusion transformationf3—7], which were studied in depth in the field of functional
programming [8, 9]. In particular, general fusion optintiaas [3—6] have achieved
good results both in theory and in practice. For example, tHl. €5] proposed a set of
fusion rules based on a general form of skeletons narsadnulate.

Although the general fusion optimizations so far are reabbnpowerful, there is
still large room for further optimizations. Due to the geality of their fusion trans-
formations, some overheads in skeleton programs are leftigih the general fusion
optimizations. In many cases such overheads can be remfovedrovide a program-
specific implementation. Thus, some specific optimizatamesmportant for efficiency
of skeleton programs.

In this paper, we study domain-specific optimizations to enslkeleton programs
more efficient. The target skeleton programs of these opéititins are domain-specific
in the sense that the programs are built with a fixed set oésie$ and have some spe-
cific way of compositions of the skeletons. With the knowledd the domain-specific
properties, we expect to develop more efficient domainifipgrograms.

The main contribution of the paper is a new strategy for dorspiecific optimiza-
tion of skeleton programs. The strategy proposed is asvsll&irst, we formalize a
normal formthat captures the domain-specific computations. Then, welaefusion
rules that transform a skeleton program into the normal form. Igineve provide an
efficientparallel implementatiof the normal form.

We confirm the usability and effectiveness of the stratedi wicase study of opti-
mizing skeleton programs that involve neighbor elementsckvis often seen in scien-
tific computations. We formalize a normal form and fusioresfior the class of skeleton
programs and developed a small system for fusing skeletogr@ams into the normal
form implemented efficiently in parallel. The experimerguks show effectiveness of
the domain-specific optimization.

The rest of this paper is organized as follows. Section 2amplour strategy for
domain-specific optimization of skeleton programs. SecBogives a case study of
optimization for skeleton programs involving neighborrets. Section 4 discusses
the applicability of our strategy and related work. SecBaroncludes this paper.

2 A General Strategy for Domain-Specific Optimization

In skeletal parallel programming, domain-specific progsaare often developed with
a fixed set of skeletons composed in a specific manner. Bastdsoobservation, we
propose the following strategy for developing domain-#jeoptimizations.

1. Design a normal form that abstracts target computations.
2. Develop fusion rules that transform a skeleton programtime normal form.
3. Implement the normal form efficiently in parallel.

In designing a normal form, we should have the following iegments in mind. A

normal form is specified to describe any computation of taugegrams but should not
be too general. A normal form should be specific to the targeggams, and should
enable us to develop efficient implementation for it. In @iddi, a normal form should

Domain-Specific Optimization Strategy for Skeleton Pragsa 3

be closed under the fusion rules to maintain the result afopation in the form. Once
we formalize a normal form with fusion rules and efficient iepentation, we can
perform the optimization easily: we first transform a skameprogram into the normal
form with the fusion rules, and then we translate the prograthe normal form to an
efficient program.

We now demonstrate our strategy with a toy example. We cengitbgrams de-
scribed by compositions of the following two skeletonsp andshifts..

map(f, [alv sy an]) = [f(al)v sy f(an)]

shifts(e, [a1,...,a,]) = [e,a1,. .., an_1]

Here, a list is denoted by lining elements up betweearid ‘]’ separated by,". Skele-
tonmap applies given functiorf to each element of the input list. Skelethift shifts
elements of the input list to the right by one, and insertggivaluee as the leftmost
element. The last element of the input is discarded. An it&taf the target skeleton
programs is shown below. Since one skeleton has one loop imfilementation, this
program has four loops as well as two communication phas@gighifts.s.

ys = shifts (eg, map(f, shifts(e1, map(g, z5)))) .

First, we design a normal form by abstracting computatiotneftarget programs.
Each resulting list consists of two parts in terms of its gatien: some left elements
are computed from constants introduced by skelatofts, and the other elements
are computed by applying functions sfap skeletons to the input list. Thus, we can
define a normal form for the programs as atrifite, . . ., ¢,], [f1, - . -, fm], zs): alist of
constants, a list of functions, and an input list. For examible above example program
for ys can be described in the normal form@s), €}, [g, f], zs) wheree] = f(e1).

Then, we define fusion rules to transform any instance oktgrgograms into the
normal form where each skeleton is fused with the normal form

zs = ([], [], as)
map(fa <[Cla- --7CT]a [fla' --7fm]7$3>) = <[f(cl)7-- .7f(c7’)]a [fvfla- --7fm]7$8>
shifts (e, ([e1, .oy e, [f1s - os fmly28)) = (leseay oo ov el [f1y - ooy fn], 28)

The rule formap applies the given functiolfi to each constant element, and inserts the
function to the list of functions. The rule fehift inserts the given constaato the list

of constants. It is straightforward to check that the inséaabove can be transformed
into the normal form as shown above. It is worth remarking #ray instance of the
target programs can be transformed into the normal forngusiese rules.

Finally, we develop an efficient parallel implementationtloé normal form. The
programs in the normal form above can be implemented withglesioop and a single
communication. For instance, the example program in thenabiorm is implemented
as follows. Here, the input lists is divided into blocks of the lengthsize (>2) and
each processor has one of these blocks. Note that indicesayfastart from one.

if(proc != last_proc) send_to_next_proc(xs[bsize-1], xs[bsize]);
if (proc != first_proc) recv_from_prev_proc(v0, v1);

for(i = 3; i <= bsize; i++) { ysl[il = f(g(xs[i-21)); %

4 K. Emoto et al.

e0; ys[2] = f(el); }
f(g(v0)); ys[2] = £(g(vl)); }

if (proc == first_proc) { ys[1]
else { ysl1]

In this implementation, skeletons of the original prograamdnbeen fused into one
loop with one communication. As illustrated so far, the epskeleton program has
been optimized with the normal form and the fusion rules.

3 A Case Study: Optimizing Skeleton Programs Involving
Neighbor Elements

We demonstrate our strategy by a case study of optimizinigtskeprograms that in-
volve neighbor elements, which is often seen in scientifinpotations. Due to space
limitation, we omit the details of formal definitions. Thetdis can be found in the
technical report [10].

3.1 Target Skeleton Programs

Our target skeleton programs involve neighbor elementsggusbmbination ofhift«,
shifts, zip andmap.

Program ::= map(f, Program) | zip(Program, Program)
| shift<(e, Program) | shifts(e, Program)
|

Here,f means a function; means an element, andneans an input list. We introduce
two skeletongip andshift«< as well as previously defined skeletanap andshifts.
Skeletonzip makes a list of pairs of corresponding elements in the giwenlists of

the same length. Skeletshift< shifts elements to the left and inserts the given value
as the rightmost element. The first element of the input isaded.

zip([ai, ..., an), [b1, ..., bn]) = [(a1,b1),. .., (an,by)]
shift<(e, [a1, ..., an)) = [ag,...,an,€]

Note that any instance dfrogram takes a list and returns a list of the same length, and
that each skeleton has parallel implementation [11].

As our running example, consider a simple program for thiofiohg recurrence
equation obtained by rearranging a difference equatiopligsical simulation. Here,
u? denotes a value of a field at timen and at locatiorn;, and we consider simple
boundary conditionsig = by, anduf,,; = br for a fixed V.

7_L+1

u;

j— n n n
= C—1U;_] T CoU; + C1lU;yy

A skeleton programext that computes the values at the next time form the current
values ofu in parallel is given as follows.

next(u) = let v’ ; = map(c_1 X, shifts(br,u))
v = map(cox,u)
v} = map(cy X, shift<(bg, u))
in map(add, zip (v'_;, map(add, zip(v), v}))))

Domain-Specific Optimization Strategy for Skeleton Pragsa 5

Here, we use intermediate variabl€s,, v{,, andv] for readability, although the def-
inition of target programsrogram does not have variables. The correspondence of
the programnext and the above recurrence equation is as follows. First, neigge a
list corresponding to the first term.;u]_;, we applyshifts to shift the elements, and
apply map to multiply the coefficient_;. Similarly, lists corresponding to the second
and the third terms are generated by usihift< andmap. Then, zipping these three
lists byzip and adding elements byap add, we obtain the final result. Since each of
the three lists are shifted ifts andshift<, theith element of the resulting list is
C—1Uj—1 F CoU; + C1UG41-

In the rest of this paper, we explain our idea by using thisrelanczt.

3.2 Normal Form

The first step of our strategy is to design a normal form that dascribe any com-
putation of target programs. In this section, we give a noifiovan for Program (see
Section 3.1) that involves neighbor elements by usiiag, zip, shifts andshift<.

Generally, any computation of a target skeleton programeisoted by a triple
[s,ce,rs]. Here,ls is a list of computational trees for the left edge of the riésgl
list, ce is a common computational tree for the center part,and a list of computa-
tional trees for the right edge. Thus, we use this triple ashoumal form, and denote
this triple by using special brackets for readability.

For the examplerezt, the leftmost element and the rightmost element of the

—

resulting list are calculated by the following expressidiisre, for a fixed index, [i]
«—

andu[i] denote theéth elements of: from the left and the right respectively.

— —

Iy = add((c—1 ><bL<,_add((co xu[0], 1 xu[l1]))))

P

r1 = add((c—1 xul1], add((co xu[0], c1 XbR))))
— — — —

Each computation involves variableg({] andu[1], oru[1] andu[0]) and a constanbg,
orbr) introduced byhifts orshift<. On the other hand, each element in the center part
is calculated by evaluating the following expressi@nagainst each indek Here, we
omit the index: since only the difference from the index is important. Thusienotes
theith elementu.«; denotes the element on the left of tileelement, and ., denotes
the element on the right.

ce = add((c—1Xu1, add((coXu, c1 Xus1))))

Summarizing these observations, we can denote the wholpwation ofnext by a
triple [[l1], ce, [r1]]. Thus, we use this triple as the normal form. These comuutati
trees have the following structures.

+ + +
N VNG N
c_1X + c_1X + c_1X +
[7/ N\ \ / N\ ! / N\ (1)
br Co‘>< 01‘>< Ugl cogX c1X u[T] CO‘X Cl‘ X

u0] w[l]] o I‘L u>‘>1! uf0] br

6 K. Emoto et al.

map f] - shifts e | -
I I

(a) Fusion ofmap composes the given function to each(b) Fusion ofshift>s discards the rightmost computationgal
tree of the normal form. The structure of the normal tree and introduces a new constant tree to the leftmost.
form is not changed. The amount of shifting in the tree for center part is yp-

dated by one.

. |]
_ . . 2P| ' i \
shift< e | | |] U !

(c) Fusion ofshift< discards the leftmost computational (d) Fusion ofzip instantiates the shaded parts so that the
tree and introduces a new constant tree to the rightmost. sizes of lists of trees for edges become uniform, and
The amount of shifting in the tree for center part is up- zips the corresponding trees.
dated by—1.

Fig. 1. An image of fusion rules. Rectangles show the resulting.liBhe three parts separated by
vertical lines correspond to the triple of a normal form. @dped parts are shaded.

3.3 Fusion Rules for Transformation to a Normal Form

The second step of our strategy is to define fusion rulessfivam a skeleton program
to a normal form. These rules should be able to transform &tlgeotarget skeleton
programs to a normal form. In this section, we give fusioesub transform a skeleton
programProgram (see Section 3.1) into the normal form.

The transformation is done one by one using fusion rulesrgig shows an image
of the fusion rules (formal definitions can be found in thehtgcal report [10]). Since
our target program involves four kinds of skeletons, theeefaur fusion rules. As an
explanation of these rules, we transform the examjple into the normal form.

The base case is the transformation of the argument.liétlist © needs only the
common computational treethat is just the element af. So,

w=[{],u[1]-

Next, we fuseshifts to transformshifts (bz,). Sinceshifts introduces the con-
stantb;, to the leftmost element, a new computational tree of the teoné;, is in-
troduced to the new normal form. Also, the amount of shifiimghe common tree is
updated by one.

shifts (b, [[],u, []]) = [[be], us1,[]]
Then, we fusenap to the above result to get the following normal form.
map (c—1X, [[br], ws1, [1]) = [le—1xbr], ccixusy, []]

The constanty, is replaced by x by, and the functior_ x is composed to the root
of the common tree. Similarly, applicationsgiift< andmap to the input listu result

Domain-Specific Optimization Strategy for Skeleton Pragsa 7

in these normal forms:

map (cox,u) = [[],co x u,[]],
map (c1 X, shift«(br,u)) = [[],c1 X u<1,[c1 X br]] -

In the last transformation, a new tree is introducedloft< to the rightmost, and the
amount of shifting in the common tree is updated by one tosfte |
Next, we perform fusion ofip to transform the following program part.

zip(v(’),v'l) = Zip([[[]ch X U, []]]7[[[]761 X Uk, [01 X bR”])

Since the lengths of edge lists of two normal forms to be ziggre not the same (i.g]
and[c; x bg] for the right edges), we have to make the lengths uniform btairtiating
the common trees for center parts. The instantiation meaffix the indices in the
common trees for elements on the edges. The instantiationhenzip of trees result
in the following normal forrr)_. Here, the instantiation of tbemmon tree of the first

normal fromey x u is ¢o x u[0], and it is zipped with the rightmost tree of the second
normal form to make the new rightmost tree.

L[], (co X u,e1 X ugr), [(co x ul0],e1 x br)]]

Similarly, we obtain the following normal form faiip (v”_;, map(add, zip(v(), v}))):

[[(c—1 x bz, add((co x u[0],e1 x u[1])))] , _ _

(c—1 X ux1, add((co X u,c1 X us1))) ,[(c—1 X u[l], add((co x u[0],c1 X br)))]]

Continuing these fusions, we finally obtain the normal foffithe examplerext, which
is shown in Eq. (1) of Section 3.2.

These four fusion rules and the base case rule can transforiskaleton program
defined byProgram into the normal form. We conclude this fact as a theorem.

Theorem 1. Any skeleton program defined Wrogram can be transformed into the
normal form by using the four fusion rules and the base cake ru

Proof. This is proven by induction on the structureffogram. The base case is shown
by the transformation of an input list. Induction cases ams by the four fusion rules.
A formal proof is given in the technical report [10]. O

3.4 Parallel Implementation of Normal Form

The third step of our strategy is to design parallel impletagon of the normal form.
In this section, we explain it briefly. The details are showthie technical report [10].

Based on parallel implementation of existing skeleton$,[@& design parallel im-
plementation of the normal form with four steps: (1) digitibn of input lists, (2) the
first local computation, (3) global communication, (4) tleeend local computation.
Figure 2 shows an image of computation of the normal formgisiro processors.

We will briefly explain the parallel implementation by theaemplenext. First, we
distribute the input list: by dividing it into two partsu = u; -+ us. Each processor has

8 K. Emoto et al.

|]
@ / dist \
| | |

@ - U eval’ ' U eval! —

| — = |
) NS

[— combine

@ 7N\

[] [

(1) Input lists in a normal form are divided into two parts ®distributed to processors.

(2) Each processor calculates elements that can be cadulgtocal data.

(3) To calculate the elements on the edges, communicatjoerfermed to complete the necessary data.
(4) Perform calculation of the elements on the edges. Coerthie edge elements to the other elements.

Fig. 2. An image of parallel implementation of the normal form (twogessors).

a part of the divided list. Second, in the first local compotatprocessors calculate par-
tial results in parallel. This is the main part of the wholemputation. The computation
is performed in a single loop in which the common computatitnee of the center part
is evaluated against each index. Therefore, creating nmdsht intermediate data, the
main part of the computation is efficient. Since elementseretiges of the distributed
results need elements of bathandu,, these elements are calculated after global com-
munication. Third, in the global communication, neighbgrprocessors communicate
incomplete trees to each other to complete trees for thgieedOf course, the first lo-
cal computation can hide the time of this communication ph&surth, in the second
local step, each processor calculates the elements on ¢fes &dth those completed
trees to complete the resulting distributed list. Aftersiadour steps, these completed
results are gathered to the root processor, or become a meaw tm another normal
form. Distribution of input will be skipped in the latter eas

3.5 Experimental Result

We implemented a small domain-specific optimizer for thecdsdy. The system reads
a skeleton program written with our parallel skeleton ligr@keTo [11], and generates
an optimized C++ code. For the example:t, we measured running times of a skeleton
program written with SkeTo and an optimized program. We ws&L cluster where
each node connected with Gigabit Ethernet has a CPU ofin¥étonR)2.80GHz and
2GB memory, with Linux 2.4.21, GCC 4.1.1, and mpich 1.2.7.

Table 1 shows measured running times and speedups. Rummiadstof applying
next 100 times to an input list of 10,000,000 elements. A speeslagratio of running
time of a sequential program to running time of a parallefpao.

The optimized program achieves ten times faster running tinan the original
skeleton program, and the same running time as a sequeraigbm on one processor.
This improvement was gained by elimination of redundargrimediate data and by
covering communication time by the computation of centetspa a loop. Also, the
optimized program achieves good speedups against the mwhpeocessors. These
results show effectiveness of the proposed optimization.

Domain-Specific Optimization Strategy for Skeleton Progga 9

Table 1. Running times and speedups of parallel programs againstiier of processors.

#processors 1 2 4 8 16 24 32 48 64
next time (s) | 210.25 100.84 48.12 24.41 13.31 8.86 6.52 4.70 3.50
speedup 0.094 0.20 041 0.81 1.49 224 3.04 4.23 5.67
nextopt time(s)| 19.86 9.64 493 244 126 087 0.70 054 0.47
speedup 1.00 2.06 4.03 8.14 15.79 22.76 28.26 36.73 42.22

4 Discussion and Related Work

One of the simplest fusion optimizations so far uses a géfama called catal [6].
This cataJ has a function applied to each element of the input list, andssociative
binary operator used to perform reduction on elements. Tdats) can describe any
computation written as composition of any numbemafp and at most oneeduce
(a skeleton to perform reduction) at the last. In this sease,) is a normal form of
skeleton programs of such compositions.

Hu et al. [5] proposed a general fusion optimization usingeaegal form called
accumulate and a set of fusion rules. Thecumulate can describe skeletanan, which
calculates an accumulation of the input list with an assiveidinary operator, as well
asmap andreduce. So, it can be a normal form of skeleton programs describé wi
compositions of these skeletons. Althougftumulate can describe alsehifts and
shift<, it causes some overheads due to lack of consideration ofesls on edges.
Main overheads are as follows: (1) extensions of elementsrfilorm manipulation by
the associative binary operator, and (2) logarithmic stéjisterprocessor communica-
tions for general implementation of accumulation. Thusyeed to consider a specific
fusion optimization, i.e. a normal form, fusion rules anficént implementation.

The normal form of the case study extends these fusions @gatiions with con-
sideration of elements on edges introducedHbfts andshift«. The normal form sep-
arates computation of edges from that of center part, satthaes not introduce the
overheadaccumulate causes. The normal form, instead, cannot deal weith.

As extension of the normal form, we can addn to the domain of target programs.
The extended normal form has an associative binary opeaatwell as the triple of the
normal form of the case study. Using this normal form, we aastessfully optimize,
for example, a skeleton program for solving tridiagonal nmegquations. The details
are shown in [10].

5 Conclusion

In this paper, we proposed a general strategy for domaiodspeptimization of skele-
ton programs, and showed a case study for programs invohgighbor elements. Our
strategy consists of the following three: (1) a normal fohattabstracts computation
of target skeleton programs, (2) a set of fusion rules tosfiam a skeleton program
into the normal form, and (3) efficient parallel implemerdatof the normal form. The
optimization is performed by transforming skeleton pragsanto normal forms with
efficient implementation. A small system has been impleertand experiment results

10

K. Emoto et al.

show effectiveness of proposed optimization. It is our fetwork to develop support
tools for easy development of various domain-specific ogtiions.

6

Acknowledgment

We are grateful to the referees for their detailed and hetfmments. This work was
partially supported by Japan Society for the Promotion aéi&me, Grant-in-Aid for
Scientific Research (B) 17300005 , and the Ministry of EdocatCulture, Sports,
Science and Technology, Grant-in-Aid for Young Scient{Bjs18700021.

References

10.

11.

. Cole, M.: Algorithmic Skeletons: Structural Managemeftarallel Computation. Research

Monographs in Parallel and Distributed Computing. MIT RBrek989)

. Rabhi, FA., Gorlatch, S., eds.: Patterns and SkeletonsPfrallel and Distributed

Computing. Springer (2002)

. Gorlatch, S., Wedler, C., Lengauer, C.: Optimizatiorsubr programming with collective

operations. In 13th International Parallel Processing [®sium / 10th Symposium on
Parallel and Distributed Processing (IPPS / SPDP '99), @ 2Aril 1999, San Juan, Puerto
Rico, Proceedings. IEEE Computer Society (1999)

. Wedler, C., Lengauer, C.: On linear list recursion in paka Acta Informatica35(10).

Springer (1998)

. Hu, Z., lwasaki, H., Takeichi, M.: An accumulative paeaikeleton for all. In Métayer, D.L.,

ed.: Programming Languages and Systems, 11th EuropeanaSimpon Programming,
ESOP 2002, held as Part of the Joint European Conference earyltand Practice of
Software, ETAPS 2002, Grenoble, France, April 8-12, 2002¢céedings. Volume 2305
of Lecture Notes in Computer Science. Springer (2002)

. Matsuzaki, K., Kakehi, K., lwasaki, H., Hu, Z., Akashi,: YA fusion-embedded skeleton

library. In Danelutto, M., Vanneschi, M., Laforenza, D.,sedEuro-Par 2004 Parallel
Processing, 10th International Euro-Par Conference, Relg, August 31-September 3,
2004, Proceedings. Volume 3149 of Lecture Notes in Com&tamnce. Springer (2004)

. Grelck, C., Scholz, S.B.: Merging compositions of arr&glstons in SaC. Parallel

Computing32(7-8). Elsevier (2006)

. Wadler, P.: Deforestation: Transforming programs tmglate trees. In Ganzinger, H., ed.:

ESOP '88, 2nd European Symposium on Programming, NancycEréarch 21-24, 1988,
Proceedings. Volume 300 of Lecture Notes in Computer SeieBpringer (1988)

. Gill, AJ., Launchbury, J., Jones, S.L.P.: A short cut &fodestation. In FPCA '93

Conference on Functional Programming Languages and Cemp#étrchitecture,

Copenhagen, Denmark, 9-11 June 1993. ACM Press (1993)

Emoto, K., Matsuzaki, K., Hu, Z., Takeichi, M.: Domaipegific optimization for skeleton
programs involving neighbor elements. Technical ReporfTRE007-05, Department of
Mathematical Informatics, University of Tokyo. (2007)

Matsuzaki, K., lwasaki, H., Emoto, K., Hu, Z.: A library oonstructive skeletons for
sequential style of parallel programming. In InfoScale:'@&oceedings of the 1st
international conference on Scalable information syst&isime 152 of ACM International
Conference Proceeding Series. ACM Press (2006)

