
Domain-Specific Optimization Strategy
for Skeleton Programs

Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi

Graduate School of Information Science and Technology
University of Tokyo

{emoto,kmatsu}@ipl.t.u-tokyo.ac.jp
{hu,takeichi}@mist.i.u-tokyo.ac.jp

Abstract. Skeletal parallel programming enables us to develop parallel programs
easily by composing ready-made components calledskeletons. However, a simply-
composed skeleton program often lacks efficiency due to overheads of intermedi-
ate data structures and communications. Many studies have focused on optimiza-
tions by fusing successive skeletons to eliminate the overheads. Existing fusion
transformations, however, are too general to achieve adequate efficiency for some
classes of problems. Thus, a specific fusion optimization isneeded for a specific
class. In this paper, we propose a strategy for domain-specific optimization of
skeleton programs. In this strategy, one starts with a normal form that abstracts
the programs of interest, then develops fusion rules that transform a skeleton pro-
gram into the normal form, and finally makes efficient parallel implementation
of the normal form. We illustrate the strategy with a case study: optimization of
skeleton programs involving neighbor elements, which is often seen in scientific
computations.

1 Introduction

Recently, the increasing popularity of parallel machines like PC clusters and multi-core
CPUs attracts more and more users. However, development of efficient parallel pro-
grams is difficult due to synchronization, interprocessor communications, and data dis-
tribution that complicate the parallel programs. Many researchers have addressed them-
selves to developing methodology of parallel programming with ease. As one promising
solution, skeletal parallel programming [1,2] has been proposed.

In skeletal parallel programming users develop parallel programs by composing
skeletons, which are abstracted basic patterns in parallel programs.Each skeleton is
given as a higher order function that takes concrete computations as its parameters,
and conceals low-level parallelism from users. Therefore,users can develop parallel
programs with the skeletons in a similar way to developing sequential programs.

Efficiency is one of the most important topics in the researchof skeletal parallel
programming. Since skeleton programs are developed in a compositional style, they
often have overheads of redundantly many loops and unnecessary intermediate data. To
make skeleton programs efficient, not only each skeleton is implemented efficiently in
parallel, but also optimizations over multiple skeletons are necessary.

2 K. Emoto et al.

There have been several studies on the optimizations over multiple skeletons based
on fusion transformations[3–7], which were studied in depth in the field of functional
programming [8, 9]. In particular, general fusion optimizations [3–6] have achieved
good results both in theory and in practice. For example, Hu et al. [5] proposed a set of
fusion rules based on a general form of skeletons namedaccumulate.

Although the general fusion optimizations so far are reasonably powerful, there is
still large room for further optimizations. Due to the generality of their fusion trans-
formations, some overheads in skeleton programs are left through the general fusion
optimizations. In many cases such overheads can be removed if we provide a program-
specific implementation. Thus, some specific optimizationsare important for efficiency
of skeleton programs.

In this paper, we study domain-specific optimizations to make skeleton programs
more efficient. The target skeleton programs of these optimizations are domain-specific
in the sense that the programs are built with a fixed set of skeletons and have some spe-
cific way of compositions of the skeletons. With the knowledge of the domain-specific
properties, we expect to develop more efficient domain-specific programs.

The main contribution of the paper is a new strategy for domain-specific optimiza-
tion of skeleton programs. The strategy proposed is as follows. First, we formalize a
normal formthat captures the domain-specific computations. Then, we develop fusion
rules that transform a skeleton program into the normal form. Finally, we provide an
efficientparallel implementationof the normal form.

We confirm the usability and effectiveness of the strategy with a case study of opti-
mizing skeleton programs that involve neighbor elements, which is often seen in scien-
tific computations. We formalize a normal form and fusion rules for the class of skeleton
programs and developed a small system for fusing skeleton programs into the normal
form implemented efficiently in parallel. The experiment results show effectiveness of
the domain-specific optimization.

The rest of this paper is organized as follows. Section 2 explains our strategy for
domain-specific optimization of skeleton programs. Section 3 gives a case study of
optimization for skeleton programs involving neighbor elements. Section 4 discusses
the applicability of our strategy and related work. Section5 concludes this paper.

2 A General Strategy for Domain-Specific Optimization

In skeletal parallel programming, domain-specific programs are often developed with
a fixed set of skeletons composed in a specific manner. Based onthis observation, we
propose the following strategy for developing domain-specific optimizations.

1. Design a normal form that abstracts target computations.
2. Develop fusion rules that transform a skeleton program into the normal form.
3. Implement the normal form efficiently in parallel.

In designing a normal form, we should have the following requirements in mind. A
normal form is specified to describe any computation of target programs but should not
be too general. A normal form should be specific to the target programs, and should
enable us to develop efficient implementation for it. In addition, a normal form should

Domain-Specific Optimization Strategy for Skeleton Programs 3

be closed under the fusion rules to maintain the result of optimization in the form. Once
we formalize a normal form with fusion rules and efficient implementation, we can
perform the optimization easily: we first transform a skeleton program into the normal
form with the fusion rules, and then we translate the programin the normal form to an
efficient program.

We now demonstrate our strategy with a toy example. We consider programs de-
scribed by compositions of the following two skeletonsmap andshift≫.

map(f, [a1, . . . , an]) = [f(a1), . . . , f(an)]
shift≫(e, [a1, . . . , an]) = [e, a1, . . . , an−1]

Here, a list is denoted by lining elements up between ‘[’ and ‘]’ separated by ‘,’. Skele-
tonmap applies given functionf to each element of the input list. Skeletonshift≫ shifts
elements of the input list to the right by one, and inserts given valuee as the leftmost
element. The last element of the input is discarded. An instance of the target skeleton
programs is shown below. Since one skeleton has one loop in its implementation, this
program has four loops as well as two communication phases intwo shift≫s.

ys = shift≫(e0, map(f, shift≫(e1, map(g, xs)))) .

First, we design a normal form by abstracting computation ofthe target programs.
Each resulting list consists of two parts in terms of its generation: some left elements
are computed from constants introduced by skeletonshift≫, and the other elements
are computed by applying functions ofmap skeletons to the input list. Thus, we can
define a normal form for the programs as a triple〈[c1, . . . , cr], [f1, . . . , fm], xs〉: a list of
constants, a list of functions, and an input list. For example, the above example program
for ys can be described in the normal form as〈[e0, e

′
1], [g, f], xs〉 wheree′1 = f(e1).

Then, we define fusion rules to transform any instance of target programs into the
normal form where each skeleton is fused with the normal form.

xs ⇒ 〈[], [], xs〉
map(f, 〈[c1, . . . , cr], [f1, . . . , fm], xs〉)⇒ 〈[f(c1), . . . , f(cr)], [f, f1, . . . , fm], xs〉
shift≫(e, 〈[c1, . . . , cr], [f1, . . . , fm], xs〉)⇒ 〈[e, c1, . . . , cr], [f1, . . . , fm], xs〉

The rule formap applies the given functionf to each constant element, and inserts the
function to the list of functions. The rule forshift≫ inserts the given constante to the list
of constants. It is straightforward to check that the instance above can be transformed
into the normal form as shown above. It is worth remarking that any instance of the
target programs can be transformed into the normal form using these rules.

Finally, we develop an efficient parallel implementation ofthe normal form. The
programs in the normal form above can be implemented with a single loop and a single
communication. For instance, the example program in the normal form is implemented
as follows. Here, the input listxs is divided into blocks of the lengthbsize (>2) and
each processor has one of these blocks. Note that indices of arrays start from one.

if(proc != last_proc) send_to_next_proc(xs[bsize-1], xs[bsize]);
if(proc != first_proc) recv_from_prev_proc(v0, v1);

for(i = 3; i <= bsize; i++) { ys[i] = f(g(xs[i-2])); }

4 K. Emoto et al.

if(proc == first_proc) { ys[1] = e0; ys[2] = f(e1); }
else { ys[1] = f(g(v0)); ys[2] = f(g(v1)); }

In this implementation, skeletons of the original program have been fused into one
loop with one communication. As illustrated so far, the example skeleton program has
been optimized with the normal form and the fusion rules.

3 A Case Study: Optimizing Skeleton Programs Involving
Neighbor Elements

We demonstrate our strategy by a case study of optimizing skeleton programs that in-
volve neighbor elements, which is often seen in scientific computations. Due to space
limitation, we omit the details of formal definitions. The details can be found in the
technical report [10].

3.1 Target Skeleton Programs

Our target skeleton programs involve neighbor elements using combination ofshift≪,
shift≫, zip andmap.

Program ::= map(f ,Program) | zip(Program ,Program)
| shift≪(e,Program) | shift≫(e,Program)
| x

Here,f means a function,e means an element, andx means an input list. We introduce
two skeletonszip andshift≪ as well as previously defined skeletonsmap andshift≫.
Skeletonzip makes a list of pairs of corresponding elements in the given two lists of
the same length. Skeletonshift≪ shifts elements to the left and inserts the given value
as the rightmost element. The first element of the input is discarded.

zip([a1, . . . , an], [b1, . . . , bn]) = [(a1, b1), . . . , (an, bn)]
shift≪(e, [a1, . . . , an]) = [a2, . . . , an, e]

Note that any instance ofProgram takes a list and returns a list of the same length, and
that each skeleton has parallel implementation [11].

As our running example, consider a simple program for the following recurrence
equation obtained by rearranging a difference equation forphysical simulation. Here,
un

i
denotes a value of a fieldu at timen and at locationi, and we consider simple

boundary conditions:un
0 = bL andun

N+1 = bR for a fixedN .

un+1
i

= c−1u
n

i−1 + c0u
n

i
+ c1u

n

i+1

A skeleton programnext that computes the values at the next time form the current
values ofu in parallel is given as follows.

next(u) = let v′−1 = map(c−1×, shift≫(bL, u))
v′0 = map(c0×, u)
v′1 = map(c1×, shift≪(bR, u))

in map(add , zip (v′
−1, map(add , zip(v′0, v

′
1))))

Domain-Specific Optimization Strategy for Skeleton Programs 5

Here, we use intermediate variablesv′
−1, v′0, andv′1 for readability, although the def-

inition of target programsProgram does not have variables. The correspondence of
the programnext and the above recurrence equation is as follows. First, to generate a
list corresponding to the first termc−1u

n

i−1, we applyshift≫ to shift the elements, and
applymap to multiply the coefficientc−1. Similarly, lists corresponding to the second
and the third terms are generated by usingshift≪ andmap. Then, zipping these three
lists byzip and adding elements bymap add , we obtain the final result. Since each of
the three lists are shifted byshift≫ andshift≪, the ith element of the resulting list is
c−1ui−1 + c0ui + c1ui+1.

In the rest of this paper, we explain our idea by using this examplenext .

3.2 Normal Form

The first step of our strategy is to design a normal form that can describe any com-
putation of target programs. In this section, we give a normal form for Program (see
Section 3.1) that involves neighbor elements by usingmap, zip, shift≫ andshift≪.

Generally, any computation of a target skeleton program is denoted by a triple
[[ls , ce, rs]]. Here,ls is a list of computational trees for the left edge of the resulting
list, ce is a common computational tree for the center part, andrs is a list of computa-
tional trees for the right edge. Thus, we use this triple as our normal form, and denote
this triple by using special brackets for readability.

For the examplenext , the leftmost elementl1 and the rightmost elementr1 of the

resulting list are calculated by the following expressions. Here, for a fixed indexi, u
−→
[i]

andu
←−
[i] denote theith elements ofu from the left and the right respectively.

l1 = add((c−1×bL, add((c0×u
−→
[0], c1×u

−→
[1]))))

r1 = add((c−1×u
←−
[1], add((c0×u

←−
[0], c1×bR))))

Each computation involves variables (u
−→
[0] andu

−→
[1], oru

←−
[1] andu

←−
[0]) and a constant (bL

or bR) introduced byshift≫ or shift≪. On the other hand, each element in the center part
is calculated by evaluating the following expressionce against each indexi. Here, we
omit the indexi since only the difference from the index is important. Thus,u denotes
theith element,u≪1 denotes the element on the left of theith element, andu≫1 denotes
the element on the right.

ce = add((c−1×u≪1, add((c0×u, c1×u≫1))))

Summarizing these observations, we can denote the whole computation ofnext by a
triple [[[l1], ce, [r1]]]. Thus, we use this triple as the normal form. These computational
trees have the following structures.

























+

c−1×

bL

+

c0×

u
−→
[0]

c1×

u
−→
[1]









,

+

c−1×

u≪1

+

c0×

u

c1×

u≫1
,









+

c−1×

u
←−
[1]

+

c0×

u
←−
[0]

c1×

bR

























(1)

6 K. Emoto et al.

⇓
map f

⇓
shift≫ e

(a) Fusion ofmap composes the given function to each
tree of the normal form. The structure of the normal
form is not changed.

(b) Fusion ofshift≫ discards the rightmost computational
tree and introduces a new constant tree to the leftmost.
The amount of shifting in the tree for center part is up-
dated by one.

⇓
shift≪ e

zip

⇓

(c) Fusion ofshift≪ discards the leftmost computational
tree and introduces a new constant tree to the rightmost.
The amount of shifting in the tree for center part is up-
dated by−1.

(d) Fusion ofzip instantiates the shaded parts so that the
sizes of lists of trees for edges become uniform, and
zips the corresponding trees.

Fig. 1.An image of fusion rules. Rectangles show the resulting lists. The three parts separated by
vertical lines correspond to the triple of a normal form. Changed parts are shaded.

3.3 Fusion Rules for Transformation to a Normal Form

The second step of our strategy is to define fusion rules to transform a skeleton program
to a normal form. These rules should be able to transform any of the target skeleton
programs to a normal form. In this section, we give fusion rules to transform a skeleton
programProgram (see Section 3.1) into the normal form.

The transformation is done one by one using fusion rules. Figure 1 shows an image
of the fusion rules (formal definitions can be found in the technical report [10]). Since
our target program involves four kinds of skeletons, there are four fusion rules. As an
explanation of these rules, we transform the examplenext into the normal form.

The base case is the transformation of the argument listu. A list u needs only the
common computational treeu that is just the element ofu. So,

u⇒ [[[], u, []]].

Next, we fuseshift≫ to transformshift≫(bL, u). Sinceshift≫ introduces the con-
stantbL to the leftmost element, a new computational tree of the constant bL is in-
troduced to the new normal form. Also, the amount of shiftingin the common tree is
updated by one.

shift≫(bL, [[[], u, []]])⇒ [[[bL], u≫1, []]]

Then, we fusemap to the above result to get the following normal form.

map (c−1×, [[[bL], u≫1, []]])⇒ [[[c−1×bL], c−1×u≫1, []]]

The constantbL is replaced byc−1×bL, and the functionc−1× is composed to the root
of the common tree. Similarly, applications ofshift≪ andmap to the input listu result

Domain-Specific Optimization Strategy for Skeleton Programs 7

in these normal forms:

map (c0×, u)⇒ [[[], c0 × u, []]] ,

map (c1×, shift≪(bR, u))⇒ [[[], c1 × u≪1, [c1 × bR]]] .

In the last transformation, a new tree is introduced byshift≪ to the rightmost, and the
amount of shifting in the common tree is updated by one to the left.

Next, we perform fusion ofzip to transform the following program part.

zip(v′0, v
′

1) = zip([[[], c0 × u, []]], [[[], c1 × u≪1, [c1 × bR]]])

Since the lengths of edge lists of two normal forms to be zipped are not the same (i.e.[]
and[c1× bR] for the right edges), we have to make the lengths uniform by instantiating
the common trees for center parts. The instantiation means to fix the indices in the
common trees for elements on the edges. The instantiation and the zip of trees result
in the following normal form. Here, the instantiation of thecommon tree of the first

normal fromc0 × u is c0 × u
←−
[0], and it is zipped with the rightmost tree of the second

normal form to make the new rightmost tree.

[[[], (c0 × u, c1 × u≪1), [(c0 × u
←−
[0], c1 × bR)]]]

Similarly, we obtain the following normal form forzip (v′−1, map(add , zip(v′0, v
′
1))):

[[[(c−1 × bL, add((c0 × u
−→
[0], c1 × u

−→
[1])))] ,

(c−1 × u≪1, add((c0 × u, c1 × u≫1))) , [(c−1 × u
←−
[1], add((c0 × u

←−
[0], c1 × bR)))]]]

Continuing these fusions, we finally obtain the normal form of the examplenext , which
is shown in Eq. (1) of Section 3.2.

These four fusion rules and the base case rule can transform any skeleton program
defined byProgram into the normal form. We conclude this fact as a theorem.

Theorem 1. Any skeleton program defined byProgram can be transformed into the
normal form by using the four fusion rules and the base case rule.

Proof. This is proven by induction on the structure ofProgram . The base case is shown
by the transformation of an input list. Induction cases are shown by the four fusion rules.
A formal proof is given in the technical report [10]. ⊓⊔

3.4 Parallel Implementation of Normal Form

The third step of our strategy is to design parallel implementation of the normal form.
In this section, we explain it briefly. The details are shown in the technical report [10].

Based on parallel implementation of existing skeletons [11], we design parallel im-
plementation of the normal form with four steps: (1) distribution of input lists, (2) the
first local computation, (3) global communication, (4) the second local computation.
Figure 2 shows an image of computation of the normal form using two processors.

We will briefly explain the parallel implementation by the examplenext . First, we
distribute the input listu by dividing it into two parts:u = u1 ++u2. Each processor has

8 K. Emoto et al.

ւ ց

⇓ ⇓

ւց

ցւ

(1)

(2)

(3)

(4)

dist

eval
′

eval
′

combine

(1) Input lists in a normal form are divided into two parts to be distributed to processors.
(2) Each processor calculates elements that can be calculated by local data.
(3) To calculate the elements on the edges, communication isperformed to complete the necessary data.
(4) Perform calculation of the elements on the edges. Combine the edge elements to the other elements.

Fig. 2. An image of parallel implementation of the normal form (two processors).

a part of the divided list. Second, in the first local computation, processors calculate par-
tial results in parallel. This is the main part of the whole computation. The computation
is performed in a single loop in which the common computational tree of the center part
is evaluated against each index. Therefore, creating no redundant intermediate data, the
main part of the computation is efficient. Since elements on the edges of the distributed
results need elements of bothu1 andu2, these elements are calculated after global com-
munication. Third, in the global communication, neighboring processors communicate
incomplete trees to each other to complete trees for their edges. Of course, the first lo-
cal computation can hide the time of this communication phase. Fourth, in the second
local step, each processor calculates the elements on the edges with those completed
trees to complete the resulting distributed list. After these four steps, these completed
results are gathered to the root processor, or become a new input to another normal
form. Distribution of input will be skipped in the latter case.

3.5 Experimental Result

We implemented a small domain-specific optimizer for the case study. The system reads
a skeleton program written with our parallel skeleton library SkeTo [11], and generates
an optimized C++ code. For the examplenext , we measured running times of a skeleton
program written with SkeTo and an optimized program. We useda PC cluster where
each node connected with Gigabit Ethernet has a CPU of IntelR© XeonR©2.80GHz and
2GB memory, with Linux 2.4.21, GCC 4.1.1, and mpich 1.2.7.

Table 1 shows measured running times and speedups. Running time is of applying
next 100 times to an input list of 10,000,000 elements. A speedup is a ratio of running
time of a sequential program to running time of a parallel program.

The optimized program achieves ten times faster running time than the original
skeleton program, and the same running time as a sequential program on one processor.
This improvement was gained by elimination of redundant intermediate data and by
covering communication time by the computation of center parts in a loop. Also, the
optimized program achieves good speedups against the number of processors. These
results show effectiveness of the proposed optimization.

Domain-Specific Optimization Strategy for Skeleton Programs 9

Table 1.Running times and speedups of parallel programs against thenumber of processors.

#processors 1 2 4 8 16 24 32 48 64
next time (s) 210.25 100.84 48.12 24.41 13.31 8.86 6.52 4.70 3.50

speedup 0.094 0.20 0.41 0.81 1.49 2.24 3.04 4.23 5.67
next opt time (s) 19.86 9.64 4.93 2.44 1.26 0.87 0.70 0.54 0.47

speedup 1.00 2.06 4.03 8.14 15.79 22.76 28.26 36.73 42.22

4 Discussion and Related Work

One of the simplest fusion optimizations so far uses a general form calledcataJ [6].
This cataJ has a function applied to each element of the input list, and an associative
binary operator used to perform reduction on elements. Thus, cataJ can describe any
computation written as composition of any number ofmap and at most onereduce

(a skeleton to perform reduction) at the last. In this sense,cataJ is a normal form of
skeleton programs of such compositions.

Hu et al. [5] proposed a general fusion optimization using a general form called
accumulate and a set of fusion rules. Theaccumulate can describe skeletonscan, which
calculates an accumulation of the input list with an associative binary operator, as well
asmap andreduce. So, it can be a normal form of skeleton programs described with
compositions of these skeletons. Althoughaccumulate can describe alsoshift≫ and
shift≪, it causes some overheads due to lack of consideration of elements on edges.
Main overheads are as follows: (1) extensions of elements for uniform manipulation by
the associative binary operator, and (2) logarithmic stepsof interprocessor communica-
tions for general implementation of accumulation. Thus, weneed to consider a specific
fusion optimization, i.e. a normal form, fusion rules and efficient implementation.

The normal form of the case study extends these fusions optimizations with con-
sideration of elements on edges introduced byshift≫ andshift≪. The normal form sep-
arates computation of edges from that of center part, so thatit does not introduce the
overheadsaccumulate causes. The normal form, instead, cannot deal withscan.

As extension of the normal form, we can addscan to the domain of target programs.
The extended normal form has an associative binary operatoras well as the triple of the
normal form of the case study. Using this normal form, we can successfully optimize,
for example, a skeleton program for solving tridiagonal matrix equations. The details
are shown in [10].

5 Conclusion

In this paper, we proposed a general strategy for domain-specific optimization of skele-
ton programs, and showed a case study for programs involvingneighbor elements. Our
strategy consists of the following three: (1) a normal form that abstracts computation
of target skeleton programs, (2) a set of fusion rules to transform a skeleton program
into the normal form, and (3) efficient parallel implementation of the normal form. The
optimization is performed by transforming skeleton programs into normal forms with
efficient implementation. A small system has been implemented and experiment results

10 K. Emoto et al.

show effectiveness of proposed optimization. It is our future work to develop support
tools for easy development of various domain-specific optimizations.

6 Acknowledgment

We are grateful to the referees for their detailed and helpful comments. This work was
partially supported by Japan Society for the Promotion of Science, Grant-in-Aid for
Scientific Research (B) 17300005 , and the Ministry of Education, Culture, Sports,
Science and Technology, Grant-in-Aid for Young Scientists(B) 18700021.

References

1. Cole, M.: Algorithmic Skeletons: Structural Managementof Parallel Computation. Research
Monographs in Parallel and Distributed Computing. MIT Press (1989)

2. Rabhi, F.A., Gorlatch, S., eds.: Patterns and Skeletons for Parallel and Distributed
Computing. Springer (2002)

3. Gorlatch, S., Wedler, C., Lengauer, C.: Optimization rules for programming with collective
operations. In 13th International Parallel Processing Symposium / 10th Symposium on
Parallel and Distributed Processing (IPPS / SPDP ’99), 12–16 April 1999, San Juan, Puerto
Rico, Proceedings. IEEE Computer Society (1999)

4. Wedler, C., Lengauer, C.: On linear list recursion in parallel. Acta Informatica35(10).
Springer (1998)

5. Hu, Z., Iwasaki, H., Takeichi, M.: An accumulative parallel skeleton for all. In Métayer, D.L.,
ed.: Programming Languages and Systems, 11th European Symposium on Programming,
ESOP 2002, held as Part of the Joint European Conference on Theory and Practice of
Software, ETAPS 2002, Grenoble, France, April 8–12, 2002, Proceedings. Volume 2305
of Lecture Notes in Computer Science. Springer (2002)

6. Matsuzaki, K., Kakehi, K., Iwasaki, H., Hu, Z., Akashi, Y.: A fusion-embedded skeleton
library. In Danelutto, M., Vanneschi, M., Laforenza, D., eds.: Euro-Par 2004 Parallel
Processing, 10th International Euro-Par Conference, Pisa, Italy, August 31–September 3,
2004, Proceedings. Volume 3149 of Lecture Notes in ComputerScience. Springer (2004)

7. Grelck, C., Scholz, S.B.: Merging compositions of array skeletons in SaC. Parallel
Computing32(7–8). Elsevier (2006)

8. Wadler, P.: Deforestation: Transforming programs to eliminate trees. In Ganzinger, H., ed.:
ESOP ’88, 2nd European Symposium on Programming, Nancy, France, March 21–24, 1988,
Proceedings. Volume 300 of Lecture Notes in Computer Science. Springer (1988)

9. Gill, A.J., Launchbury, J., Jones, S.L.P.: A short cut to deforestation. In FPCA ’93
Conference on Functional Programming Languages and Computer Architecture,
Copenhagen, Denmark, 9–11 June 1993. ACM Press (1993)

10. Emoto, K., Matsuzaki, K., Hu, Z., Takeichi, M.: Domain-specific optimization for skeleton
programs involving neighbor elements. Technical Report METR2007-05, Department of
Mathematical Informatics, University of Tokyo. (2007)

11. Matsuzaki, K., Iwasaki, H., Emoto, K., Hu, Z.: A library of constructive skeletons for
sequential style of parallel programming. In InfoScale ’06: Proceedings of the 1st
international conference on Scalable information systems. Volume 152 of ACM International
Conference Proceeding Series. ACM Press (2006)

