
Systematic Derivation of Tree Contraction Algorithms

Kiminori Matsuzaki1, Zhenjiang Hu1,2, Kazuhiko Kakehi1, and Masato Takeichi1

1 Graduate School of Information Science and Technology,
University of Tokyo

{Kiminori Matsuzaki,hu,kaz,takeichi}@mist.i.u-tokyo.ac.jp
2 PRESTO21, Japan Science and Technology Coorperation

Abstract. While tree contraction algorithms play an important role in efficient tree
computation in parallel, it is difficult to develop such algorithms due to the strict
conditions imposed on contracting operators. In this paper, we propose a systematic
method of deriving efficient tree contraction algorithms from recursive functions on trees
in any shape. We identify a general recursive form that can be parallelized to obtain
efficient tree contraction algorithms, and present a derivation strategy for transforming
general recursive functions to parallelizable form. We illustrate our approach by deriving
a novel parallel algorithm for the maximum connected-set sum problem on arbitrary
trees, the tree-version of the famous maximum segment sum problem.

Keywords. Tree Contraction, Parallelization, Skeletal Parallelism, Rose Tree, Maxi-
mum Segment Sum Problem.

1 Introduction

Skeletal parallel programming [5, 17] is an elegant model for developing efficient and correct
parallel programs. Although many researchers have devoted themselves to the algorithmic
skeletons on lists [6, 9, 12, 19], not very many studies have been addressed to other datatypes
such as trees and graphs.

Trees are important datatypes, widely used in representing structured documents such
as XML. There are two approaches to parallel computation on trees, the first is the divide
and conquer approach [2], and the second is the tree contraction approach [1, 15, 16, 18]. The
divide and conquer approach simply computes each child tree independently, and its parallel
cost is O(h + w), where h denotes the height of a tree and w denotes the nodes’ maximum
number of children. Therefore, it may be very inefficient if the tree is ill-balanced or a node
has too many children. By contrast, the tree contraction approach provides efficient parallel
algorithms even for ill-balanced trees. The well-known algorithm, the shunt contraction, can
run on binary trees in logarithmic time to their size. However, it requires the tree contracting
operators that have to meet the closure property to be intelligently designed, which is known
to be hard, and thus discourages programmers from using it.

Some attempts have been made on formal specifications for parallel tree algorithms.
Gibbons et al. [8] and Skillicorn [20, 21] defined four skeletons on binary trees and gave
an efficient implementation of them based on the tree contraction algorithm. Skillicorn
also showed the usefulness of these skeletons with some examples of the manipulation of
structured documents [20, 22, 23]. Deldari et al. [7] designed a skeleton for constructive solid
geometry. Matsuzaki et al. [14] proposed a systematic method of composing efficient parallel
programs in terms of the skeletons on binary trees. However, there have really been very
few studies on the formal derivation of parallel tree algorithms.

In this paper, we consider the parallelization of a general tree recursive function, called
(tree) reduction, which can concisely specify the computation of calculating a value through
a bottom-up traversal of the tree. Informally, function f is a reduction, if it is defined in the

following recursive form:

f (RLeaf a) = k1 a
f (RNode b [t1, t2, . . . , tn]) = k2 b [f t1, f t2, . . . , f tn] ,

where k1 and k2 are two functions. As discussed in Skillicorn [21, 23], certain conditions on
k2 are necessary for the existence of efficient parallel algorithms. One condition proposed so
far in [13, 21, 23] is to define k2 in terms of associative operator ⊕ as follows.

reduce (⊕) (RLeaf a) = k′1 a
reduce (⊕) (RNode b [t1, t2, . . . , tn])

= k′2 b⊕ reduce (⊕) t1 ⊕ reduce (⊕) t2 ⊕ · · · ⊕ reduce (⊕) tn

This definition is easy to understand but lacks expressiveness. To demonstrate this, consider
developing an efficient parallel program for XML serialization, which accepts an XML tree
and returns its tagged-formatted string. We may solve this problem with the following
recursive definition:

x2s (RLeaf a) = a
x2s (RNode b [t1, t2, . . . , tn]) = tags b⊕ (x2s t1++x2s t2++ · · ·++x2s tn)

where tags b = (“<” ++ b ++ “>”, “</” ++ b ++ “>”)
(s, e)⊕ t = s ++ t ++ e ,

where ++ is an infix-operator to concatenate two strings. It is not obvious, however, how to
define x2s in terms of reduce, because we need two different binary operators, namely ++
and ⊕, to define k2.

In this paper, we aim at a systematic method of parallelizing a class of useful reductions
to ones that can be efficiently implemented by tree contraction. Our method can deal with
recursive definitions in which k2 is defined using two binary operators. The contributions
this paper makes can be summarized as follows:

– We give a new formalization of the condition for shunt contraction (Theorem 1), which
is more constructive in the sense that tree contracting operators can be automatically
derived from semantic conditions. In addition, to eliminate the limitation where the
shunt contraction can only be applied to binary trees, we show how to transform rose
trees (trees whose nodes can have an arbitrary number of children) to binary trees so
that shunt contraction can be applied.

– We not only recognize the importance of distributivity in the derivation of tree contrac-
tion algorithms, but also give an extension of distributivity that is suited to systematic
derivation with generalization and context-preserving transformation. We particularly
identify a general recursive form that can be parallelized (Theorem 2), and highlight a
derivation strategy for transforming general recursive functions to parallelizable form.

– We demonstrate the effectiveness of our approach by deriving an efficient parallel pro-
gram for the tree version of the maximum segment sum problem [3]. Much work has been
done on the parallelization of the problem: on lists [6, 10], on 2-dimensional arrays [11],
and on binary trees [14]. To the best of our knowledge, this is the first derivation of the
parallel program for rose trees, the most complex data structure ever.

This paper is organized as follows. After reviewing the notational conventions and
datatypes, we show how an arbitrary tree is arranged in the form of a binary tree in Sec-
tion 2. We then formalize the conditions for tree contraction in a more constructive way
in Section 3, and give a property which is an extension of distributivity in Section 4. In
Section 5, we give a definition of parallelizable reductions on rose trees, and show how
these reductions are parallelized. Then, we propose a strategy for systematic parallelization
and demonstrate the effectiveness of our approach with a non-trivial example, namely the
maximum connected-sum problem, in Section 6. Finally, we make some concluding remarks.

Fig. 1. Local rearrangement from a rose tree into a binary tree

2 Preliminaries

2.1 Functions and Operators

Function application is denoted by a space and the argument may be written without
brackets. Thus f a means f(a). Functions are curried, and the function application associates
to the left. Thus f a b means (f a) b. The function application binds stronger than any other
operator, so f a⊕b means (f a)⊕b, but not f (a⊕b). Infix binary operators will be denoted
by ⊕, ⊗, and their units are written as ι⊕, ι⊗, respectively, in this paper.

2.2 Datatypes

The cons list is constructed with an empty list or by adding an element to a list. The
datatype for a list where every element has type α is defined as follows.

data List α = Nil | Cons α (List α)

We may use abbreviations, i.e., [α] for datatype List α, [] for Nil , and (a : as) for Cons a as.
A binary tree is a tree whose internal nodes have exactly two children. The datatype for

binary trees where every leaf has type α and every internal node has type β is defined as
follows.

data BTree α β = Leaf α | Node β (BTree α β) (BTree α β)

A rose tree is a tree whose internal nodes have an arbitrary number of children. The
datatype for rose trees where every leaf has type α and every internal node has type β is
defined using a list as follows.

data RTree α β = RLeaf α | RNode β [RTree α β]

2.3 Representation of Rose Trees

Since the tree contraction algorithm only accepts binary trees, rose trees ought to be held
in the shape of binary trees. In this paper, we will use the arrangement (representation) in
Fig. 1. This arrangement turns the leaf and internal node of a rose tree into a leaf and the
root node of the corresponding subtree in the binary tree, respectively. Some dummy nodes
are inserted into this binary tree to unroll the children and to represent the children’s end.
This is almost the same arrangement as in [21], and there have been some discussions about
the implementation of the tree contraction algorithm on these arranged binary trees.

To formally define the arrangement, we initially define two new types.

data R2BLeaf α = OrgLeaf α | OrgNil
data R2BNode β = OrgNode β | Dummy

R2BLeaf represents the types of leaves in the binary tree, and is constructed with the leaf in
the rose tree (OrgLeaf) or the sentinel for the end of the children (OrgNil). R2BNode repre-
sents the types of internal nodes in the binary tree, and is constructed by the internal node
in the rose tree (OrgNode) or the dummy node inserted to expand the children (Dummy).
The function r2b, which performs this arrangement, can be formally defined using auxiliary
function r2b′, as follows.

r2b :: RTree α β → BTree (R2BLeaf α) (R2BNode β)

r2b (RLeaf a) = Leaf (OrgLeaf a)
r2b (RNode b (x : xs)) = Node (OrgNode b) (r2b x) (r2b′ xs)
r2b′ [] = Leaf OrgNil
r2b′ (x : xs) = Node Dummy (r2b x) (r2b′ xs)

Below, we briefly analyze the number of additional nodes in the binary trees after the
above transformation. Let nl be the number of leaves, and nin be the number of internal
nodes in an input rose tree. The binary tree transformed from the rose tree has 2nl+2nin−1
nodes. In brief, the transformed binary tree has 2n − 1 nodes, where n is the number of
nodes in the original rose tree. Consequently, by using tree contraction algorithms, we can
also compute on rose trees in logarithmic parallel time.

3 Tree Contraction Algorithm and its Derivation

Tree contraction algorithms are efficient parallel algorithms to reduce trees. Of the tree con-
traction algorithms, shunt contraction [1] is widely known as a simple and efficient algorithm
on EREW PRAM. The shunt contraction algorithm accepts binary trees, and reduces them
with two symmetric operations, namely ContractL and ContractR. ContractL/ContractR
operation replaces an internal node, its left/right leaf, and its right/left node, with a new
node.

In the following, we assume reduction on the binary tree is defined as follows.

f (Leaf a) = k1 a
f (Node b t1 t2) = k2 b (f t1) (f t2)

To guarantee the overall logarithmic parallel cost of the shunt contraction algorithm, each
local contraction must be done in constant time and space. Such conditions are given in [1]
as follows.

– For every internal node Node b t1 t2, sectioned function k2 b is drawn from an indexed
set of functions G that contains the identity function.

– All functions in G can be applied in constant time.
– If gi and gj are functions in G, for any value l or r, then the two functions λxy.gi l (gj x y)

and λxy.gi (gj x y) r are in G, and their indices can be computed from indices i and j
and values l or r in constant time.

These conditions are too abstract for the programmer to check or use for derivation.
To enable systematic derivation, we introduced the idea of parametrized functions. We

used the notation G[a] for a function embodied from a set of parametrized functions G with
parameter a. For example, if the set of parametrized functions is given as G = { λxy. a +
x+y }, then functions G[1] = λxy. 1+x+y and G[2] = λxy. 2+x+y are the embodiments
with 1 and 2, respectively.

Let us now restrict the indexed set of functions to the set of parametrized functions.
Although some algorithms, in which different functions are applied to internal nodes, may be

1. Number the leaves left to right beginning at 0.

2. Initialize every leaf and internal node by applying ψ1 and ψ2, respectively.

3. Iterate until a node remains.
(a) For every left leaf whose index is even, perform ContractL. If the other

child is a leaf apply a function embodied from G with parent’s value n,
or otherwise apply φL.

(b) For every right leaf whose index is even and not involved in the previ-
ous step, perform ContractR. If the other child is a leaf apply G[n], or
otherwise apply φR.

(c) Renumber the leaves by dividing their indices by two and rounding down.

Fig. 2. Shunt Contraction Algorithm Based on Parametrized Functions

unacceptable under this restriction, numerous tree algorithms represented as tree reductions
can be dealt with. With the notation of parametrized functions, sufficient conditions for
shunt contraction are given by the following theorem.

Theorem 1. If there are a set of parametrized functions G with the identity function, and
three functions ψ2, φL and φR such that the following conditions are satisfied, then we can
use the shunt contraction algorithm.

– For every internal node Node b t1 t2, sectioned function k2 b is semantically equivalent
to function G[ψ2 b].

– All the functions embodied from G can be applied in constant time.
– For any parameters a1 and a2, and any values l and r, the following equations

λxy.G[a1] l (G[a2] x y) = λxy.G[φL a1 l a2] x y
λxy.G[a1] (G[a2] x y) r = λxy.G[φR a1 r a2] x y

hold, and φL and φR are computed in constant time.
2

If a tree algorithm meets these conditions, we can utilize the shunt contraction algorithm
using the functions above, G, ψ2, φL, φR, and function ψ1(= k1) as shown in Fig. 2.
Therefore, we only have to derive the set of parametrized functions G and functions ψ1, ψ2,
φL and φR. To demonstrate how Theorem 1 works, let us illustrate it with a very simple
program.

Example 1. A recursive program that computes the sum of values for all nodes is given as
follows.

sumtree (Leaf a) = a
sumtree (Node b t1 t2) = b + sumtree t1 + sumtree t2

An adequate definition of the set of parametrized functions G is given with parameter a as
G = { λxy.a + x + y }. From the definition above, the initializing functions are ψ1 = id and
ψ2 = id , where id is the identity function. The contracting operations φL and φR become
φL a1 l a2 = a1 + l + a2 and φR a1 r a2 = a1 + r + a2. With Theorem 1, we can utilize the
tree contraction algorithm as shown in Fig. 2 using these functions. 2

4 Extension of Distributive Law

Before discussing the parallelization of reductions, let us now discuss generalization of the
distributive law. It is well known that associativity and distributivity play important roles
in parallelizing programs. For example, the distributivity of × over + enables us to simplify
the expression as:

1 + 2× (3 + 4× x) = 1 + 2× 3 + 2× 4× x = 7 + 8× x .

Borrowing the idea of contexts or normal forms from [4], we extend the characteristic of
normalization to derive parallel program over two operators.

Definition 1. Let operator ⊗ be associative. The function defined with two operators, ⊗
and ⊕, is said to be in distributive normal form, if it is written as

λx.a⊕ (b⊗ x⊗ c) ,

where a, b, and c are constants. 2

Definition 2. Operator ⊗ is said to be extended-distributive over ⊕, if the distributive
normal form is preserved over function composition. In other words, there are appropriate
functions p1, p2, and p3, and for any a1, b1, c1, a2, b2, and c2, the following equation holds:

(λx.a1 ⊕ (b1 ⊗ x⊗ c1)) ◦ (λx.a2 ⊕ (b2 ⊗ x⊗ c2)) = λx.A⊕ (B ⊗ x⊗ C) ,

where A, B, and C are computed with A=p1 (a1, b1, c1, a2, b2, c2), B=p2 (a1, b1, c1, a2, b2, c2),
and C = p3 (a1, b1, c1, a2, b2, c2). These functions p1, p2, and p3 are called characteristic
functions. 2

Although the definition of extended-distributivity is complex, it has many applications.
We can uniformly use this property for the associative operator, the distributive operator, or
other operators as demonstrated in the following examples. In Example 4, we demonstrate
how to derive characteristic functions from the definition.

Example 2. Extended-distributivity can replace associativity. Let operator ⊕ be the same as
associative operator⊗. Then,⊗ is extended-distributive over⊕ (= ⊗) and the characteristic
functions are as follows.

p1(a1, b1, c1, a2, b2, c2) = a1 ⊗ b1 ⊗ a2 ⊗ b2

p2(a1, b1, c1, a2, b2, c2) = ι⊗
p3(a1, b1, c1, a2, b2, c2) = c2 ⊗ c1

2

Example 3. Extended-distributivity is a generalization of the distributive law. Let two oper-
ators ⊗ and ⊕ constitute the ring, that is, let ⊕ be associative and ⊗ be not only associative
but also distributive over ⊕. Then ⊗ is extended-distributive over ⊕ and the characteristic
functions are as follows.

p1(a1, b1, c1, a2, b2, c2) = a1 ⊕ (b1 ⊗ a2 ⊗ c1)
p2(a1, b1, c1, a2, b2, c2) = b1 ⊗ b2

p3(a1, b1, c1, a2, b2, c2) = c2 ⊗ c1
2

To evaluate the extended-distributivity and derive the characteristic functions, we cal-
culate and verify that two expressions E1 and E2 defined as

λx. E1 = (λx.a1 ⊕ (b1 ⊗ x⊗ c1)) ◦ (λx.a2 ⊕ (b2 ⊗ x⊗ c2))
= λx. a1 ⊕ (b1 ⊗ (a2 ⊕ (b2 ⊗ x⊗ c2))⊗ c2)

λx. E2 = λx. A⊕ (B ⊗ x⊗ C)

have the same form by substituting proper expressions for the capital parameters. To demon-
strate the derivation of characteristic functions, we show that operator ++ is extended-
distributive over ⊕ in the definition of x2s in the introduction, and derive the characteristic
functions.

Example 4. Let operator ⊕ be defined with associative operator ++ as (s, e)⊕ t = s++t++e.
This operator ++ is not distributive over ⊕ as is easily demonstrated as follows:

(s, e)⊕ (x++y) = s++x++y++e
((s, e)⊕ x)++((s, e)⊕ y) = s++x++e++s++y++e

To verify extended-distributivity, we first expand the two expressions E1 and E2 above.

E1 = (s1, e1)⊕ (t1++((s2, e2)⊕ (t2++x++t′2))++t′1)
= (s1, e1)⊕ (t1++s2++t2++x++t′2++e2++t′1)
= s1++t1++s2++t2++x++t′2++e2++t′1++e1

E2 = (S,E)⊕ (T++x++T ′)
= S++T++x++T ′++E

From calculation result above, the correspondences of capital variables are,

S++T = s1++t1++s2++t2 , and
T ′++E = t′2++e2++t′1++e1 .

There are many solutions to the equations above, and one of those is as follows, which can
also be considered as a set of characteristic functions.

p1 ((s1, e1), t1, t′1, (s2, e2), t2, t′2) = (S, E) = (s1++t1++s2++t2, t
′
2++e2++t′1++e1)

p2 ((s1, e1), t1, t′1, (s2, e2), t2, t′2) = T = []
p3 ((s1, e1), t1, t′1, (s2, e2), t2, t′2) = T ′ = []

We can also show extended-distributivity and derive the characteristic functions for
general ⊕ defined with associative operator ⊗. 2

If operator⊗ is also commutative, then we can simplify the definitions for the distributive
normal form and extended-distributivity. Here, distributive normal form λxy.a⊕ (b⊗x⊗ c)
can be simplified to λxy.a ⊕ (b′ ⊗ x) by reversing x and c, and substituting b′ for b ⊗ c.
Extended-distributivity is also defined in this form, and we say ⊗ is extended-distributive
over ⊕ if there are appropriate functions p1 and p2 such that for any a1, b1, a2, and b2 the
following equation holds. The characteristic functions are minimized into two functions p1

and p2 in this case.

(λx.a1 ⊕ (b1 ⊗ x)) ◦ (λx.a2 ⊕ (b2 ⊗ x)) = λx.A⊕ (B ⊗ x)
where A = p1 (a1, b1, a2, b2)

B = p2 (a1, b1, a2, b2)

5 Parallelizable Reduction

In this section, we present a class of reductions that can be systematically parallelized based
on the tree contraction algorithm. A reduction represents a class of computation which
collapses the tree into a single value, and the general definition for reduction is as follows.

f (RLeaf a) = k1 a
f (RNode b [t1, t2, . . . , tn]) = k2 b [f t1, f t2, . . . , f tn]

Definition 3. Let ⊗ be an associative operator. A function is said to be parallelizable
reduction, if the function is defined in the following form.

f (RLeaf a) = k1 a
f (RNode b [t1, t2, . . . , tn]) = k2 b ⊕ (f t1 ⊗ f t2 ⊗ · · · ⊗ f tn)

We can rephrase this using auxiliary function f ′ more formally.

f (RLeaf a) = k1 a
f (RNode b ts) = k2 b⊕ f ′ ts
f ′ [] = ι⊗
f ′ (t : ts) = f t⊗ f ′ ts 2

Parallelizable reduction is defined in two steps for each node. First, the siblings are
collapsed with associative operator ⊗, which is the same operation as the reduction on lists.
Then, computation on the previous result and parent are done with another operator ⊕.
We can write many reductions in this form, for example, the XML serialization that was in
the Introduction, the sum of values for all nodes, and the height of the tree.

In the following, we will demonstrate that parallelizable reduction can efficiently be
computed with the tree contraction algorithm on arranged binary trees. Let the set of
parametrized functions G be defined as:

G[(a, b, c)] = λxy.a⊕ (b⊗ x⊗ y ⊗ c) .

Using the embodiments of this set of parametrized functions G, we can describe new function
h on the arranged binary trees as follows.

h (Leaf (OrgLeaf a)) = k1 a
h (Leaf OrgNil) = ι⊗
h (Node (OrgNode b) t1 t2) = G[(k2 b, ι⊗, ι⊗)] (h t1) (h t2)
h (Node Dummy t1 t2) = G[(ι⊕, ι⊗, ι⊗)] (h t1) (h t2)

Let us first confirm the correctness of the computation of h on the arranged binary trees.

Lemma 1. Function h defined above satisfies h ◦ r2b = f , h ◦ r2b’ = f ′.
Proof : We can prove this lemma by structural induction over the rose tree: base cases for
RLeaf a and [], and inductive cases for RNode b (t : ts) and (t : ts), respectively. 2

Next, let us confirm that the set of parametrized functions G satisfies the conditions for
the tree contraction algorithm.

Lemma 2. Let ⊗ be an associative operator and be distributive over ⊕ with the charac-
teristic functions p1, p2, and p3. Then, for any parameters a1, b1, c1, a2, b2, c2, and values l
and r,

λxy.G[(a1, b1, c1)] l (G[(a2, b2, c2)] x y) = λxy.G[φL (a1, b1, c1) l (a2, b2, c2)] x y
λxy.G[(a1, b1, c1)] (G[(a2, b2, c2)] x y) r = λxy.G[φR (a1, b1, c1) r (a2, b2, c2)] x y

holds for appropriate functions φL and φR.
Proof : We can define the two functions φL and φR using ⊗, p1, p2, and p3 as follows.

φL (a1, b1, c1) l (a2, b2, c2) = (p1 tupL, p2 tupL, p3 tupL)
where tupL = (a1, b1 ⊗ l, c1, a2, b2, c2) ,

φR (a1, b1, c1) r (a2, b2, c2) = (p1 tupR, p2 tupR, p3 tupR)
where tupR = (a1, b1, r ⊗ c1, a2, b2, c2) .

Then, we can prove these two equations with simple calculations. 2

Theorem 2. Function f defined in Definition 3 can be parallelized by the tree contrac-
tion algorithm on binary trees as arranged in Section 2.3, if operator ⊗ is associative and
extended-distributive over ⊕.
Proof : Since operator ⊗ is associative and extended-distributive over ⊕, we assume that
the characteristic functions of extended-distributivity are p1, p2, and p3. We can construct
the initialize functions ψ1 and ψ2, the contracting operations φL and φR, and the set of
functions G in the following way. In the rest of this paper, due to space limitations, we will
place the definitions of ψ1 and ψ2 side by side.

ψ1 (OrgLeaf a) = k1 a ψ2 (OrgNode b) = (k2 b, ι⊗, ι⊗)
ψ1 OrgNil = ι⊗ ψ2 Dummy = (ι⊕, ι⊗, ι⊗)
φL (a1, b1, c1) l (a2, b2, c2) = (p1 tupL, p2 tupL, p3 tupL)
φR (a1, b1, c1) r (a2, b2, c2) = (p1 tupR, p2 tupR, p3 tupR)

where tupL = (a1, b1 ⊗ l, c1, a2, b2, c2)
tupR = (a1, b1, r ⊗ c1, a2, b2, c2)

G[(a, b, c)] = λxy.a⊕ (b⊗ x⊗ y ⊗ c)

It follows from Lemmas 1 and 2 that the theorem holds. 2

To illustrate an application of this theorem, let us derive a parallel algorithm from the
definition of x2s in the introduction.

Example 5. Function x2s can be computed in parallel because operator ++ is not only as-
sociative but also extended-distributive over ⊕ as mentioned in Example 4. We can derive
a parallel program by utilizing the result of Example 4 for Theorem 2, and the derived
program is as follows.

ψ1 (OrgLeaf a) = a ψ2 (OrgNode b) = (tags b, [], [])
ψ1 OrgNil = [] ψ2 Dummy = (([], []), [], [])

φL ((s1, e1), t1, t′1) l ((s2, e2), t2, t′2) = ((s1++t1++l++s2++t2, t
′
2++e2++t′1++e1), [], [])

φR ((s1, e1), t1, t′1) r ((s2, e2), t2, t′2) = ((s1++t1++s2++t2, t
′
2++e2++r++t′1++e1), [], [])

G[((s, e), t, t′)] = λxy.s++t++x++y++t′++e 2

In some cases, we can optimize the derived parallel program. If all the values for a
variable in the definitions of ψ2, φL, and φR are the same, we can remove the variable after
substituting the value into the definitions. For example, in the parallel program above, the
second and the third variables, i.e. t and t′, are always the empty string, []. Therefore we
can remove the variables after substituting [] for t1, t′1, t2, and t′2. The optimized program
is as follows.

ψ1 (OrgLeaf a) = a ψ2 (OrgNode b) = tags b
ψ1 OrgNil = [] ψ2 Dummy = ([], [])

φL (s1, e1) l (s2, e2) = (s1++l++s2, e2++e1)
φR (s1, e1) r (s2, e2) = (s1++s2, e2++r++e1)

G[(s, e)] = λxy.s++x++y++e

We will give some specializations of Theorem 2 for the operators examined in Examples 2
and 3 in the following.

Corollary 1. Let operator ⊕ in the parallelizable reduction be the same as ⊗. We can then
utilize the tree contraction algorithm with the following functions.

ψ1 (OrgLeaf a) = k1 a ψ2 (OrgNode b) = (k2 b, ι⊗)
ψ1 OrgNil = ι⊗ ψ2 Dummy = (ι⊗, ι⊗)

φL (a1, b1) l (a2, b2) = (a1 ⊗ l ⊗ a2, b2 ⊗ b1)
φR (a1, b1) r (a2, b2) = (a1 ⊗ a2, b2 ⊗ r ⊗ b1)

G[(a, b)] = λxy.a⊗ x⊗ y ⊗ b
2

Corollary 2. Let operators ⊗ and ⊕ in the parallelizable reduction constitute a ring, that
is, let ⊗ and ⊕ be associative, and ⊗ be distributive over ⊕. We can then utilize the tree
contraction algorithm with the following functions.

ψ1 (OrgLeaf a) = k1 a ψ2 (OrgNode b) = (k2 b, ι⊗, ι⊗)
ψ1 OrgNil = ι⊗ ψ2 Dummy = (ι⊕, ι⊗, ι⊗)

φL (a1, b1, c1) l (a2, b2, c2) = (a1 ⊕ (b1 ⊗ l ⊗ a2 ⊗ c1), b1 ⊗ l ⊗ b2, c2 ⊗ c1)
φR (a1, b1, c1) r (a2, b2, c2) = (a1 ⊕ (b1 ⊗ a2 ⊗ r ⊗ c1), b1 ⊗ b2, c2 ⊗ r ⊗ c1)

G[(a, b, c)] = λxy.a⊕ (b⊗ x⊗ y ⊗ c)
2

If operator ⊗ is not only associative but also commutative, then we can derive a parallel
program more simply as the following corollary shows.

Corollary 3. Let operator ⊗ in the parallelizable reduction be both associative and com-
mutative. If operator ⊗ is extended-distributive over ⊕ with characteristic functions p1 and
p2, then we can utilize the tree contraction algorithm with the following functions. Here,
contracting operations φL and φR have the same definition, namely φ.

ψ1 (OrgLeaf a) = k1 a ψ2 (OrgNode b) = k2 b
ψ1 OrgNil = ι⊗ ψ2 Dummy = (ι⊕, ι⊗)

φ (a1, b1) x (a2, b2) = (p1 (a1, b1 ⊗ x, a2, b2), p2 (a1, b1 ⊗ x, a2, b2))

G[(a, b)] = λxy.a⊕ (b⊗ x⊗ y)
2

6 Parallelization Strategy

Although we have extended-distributivity and parallelizable reduction in hand, users’ pro-
grams may not be exactly compatible with them. Even so, we can still derive parallel pro-
grams systematically with the following strategy.

1. Write specification: In the first step, we write the specification as a recursive function
in the form of parallelizable reduction. In this step, the operators used in the function
do not need to be associative or extended-distributive. We derive the program in the
form of parallelizable reduction by applying calculational techniques such as tupling or
normalization of conditions.

2. Derive associative operator : In the second step, we derive an associative operator for ⊗,
by applying the parallelization techniques that have been proposed for lists, for example,
the fusion and tupling technique proposed by Hu et al. [10] or the context preservation
technique proposed by Chin et al. [4].

3. Derive extended-distributive operator : In the third step, we derive operator ⊕ such that
operator ⊗ is extended-distributive over ⊕. We derive such an operator by iterated
generalization and verification. To avoid inconsistency over the ⊗, we only generalize
the definition of ⊕ for the left argument in this step.

4. Derive parallel program: In the final step, we derive the contracting operations from the
result for the previous step based on Theorem 2, and do some optimizations if possible.

In the following, to demonstrate the capability of our parallelization strategy, we demon-
strate the derivation of an efficient parallel program for the maximum connected-set sum
problem on trees with arbitrary shapes, which is the tree version of the maximum segment
sum problem [3]. The maximum connected-set sum problem involves finding the maximum
sum of all connected sets. A connected-set of a tree is a set of nodes where every two nodes
are connected by following the nodes in the set.

Write the specification

We first write a recursive function for the problem. For the maximum connected-set sum
problem, we can write a program using the dynamic programming technique, where the
following two values are computed for each subtree.

– r: The maximum sum of all connected sets that include the root of the subtree. We can
compute this value by adding the value of the root node to the sum of all positive r
values of the root’s immediate subtrees.

– s: The maximum sum of all connected sets that do not include the root of the subtree. We
can compute this value by selecting the maximum r and s values of the root’s immediate
subtrees.

With this idea, we can define the following function, where operator ↑ returns the larger
value.

mcs t = let
(

r
s

)
= mcs ′ t in r ↑ s

mcs ′ (RLeaf a) =
(

a
0

)

mcs ′ (RNode b [t1, t2, . . . , tn]) = b⊕ (g (mcs ′ t1)⊗ g (mcs ′ t2)⊗ · · · ⊗ g (mcs ′ tn))

where b⊕
(

r
s

)
=

(
b + r

s

)

g

(
r
s

)
=

(
r ↑ 0
r ↑ s

)

(
r
s

)
⊗

(
r′

s′

)
=

(
r + r′

s ↑ s′

)

The function above is not in the form of parallelizable reduction, since there are extra
calls of g for each subtree. To obtain a function in the form of parallelizable reduction, we
fuse functions g and mcs ′ and introduce function mcs2 ′ defined as mcs2 ′ t = g (mcs ′ t) and
operator ⊕′ defined as b⊕′ t = g (b⊕ t), that is, b ⊕′ (r, s)> = ((b+ r) ↑ 0, (b+ r) ↑ s)>. For
the top-level call of mcs2 ′, we select the second value with function snd . We then obtain
the following definition, which is in the form of parallelizable reduction.

mcs2 t = snd (mcs2 ′ t)
mcs2 ′ (RLeaf a) = (a ↑ 0, a ↑ 0)>

mcs2 ′ (RNode b [t1, t2, . . . , tn]) = b⊕′ (mcs2 ′ t1 ⊗mcs2 ′ t2 ⊗ · · · ⊗mcs2 ′ tn)

Derive associative operator

The ⊗ operator in the definition above is fortunately not only associative but also com-
mutative, because of the associativity and commutativity of ↑ and +. The unit of ⊗ is
ι⊗ = (0,−∞)>.

Derive extended-distributive operator

To evaluate whether operator ⊗ is extended-distributive over operator ⊕′, we match the
following expression E1 to E2, by simplifying them.

E1 = a⊕′
((

r
s

)
⊗

(
a′ ⊕′

((
r′

s′

)
⊗

(
xr

xs

))))
E2 = A⊕′

((
R
S

)
⊗

(
xr

xs

))

Due to space limitations, we will only provide the results of calculation.

E1 =
(

((a + r + a′ + r′) + xr) ↑ ((a + r) ↑ 0)
(((a + r + a′ + r′) ↑ (a′ + r′)) + xr) ↑ ((a + r) ↑ s ↑ s′) ↑ xs

)

E2 =
(

(A + R + xr) ↑ 0
(A + R + xr) ↑ S ↑ xs

)

Operator ⊗ is not extended-distributive since there are two conflicts in the calculation
above. The first is that E2 includes two (A + R)’s but the corresponding parts in E1 have
difference definitions. The other is that E2 includes constant value 0 but the corresponding
part in E1 is not constant. To resolve these conflicts, we generalize the definition of ⊕′ by
assigning two variables a and b to the two occurrences of a respectively, and variable c for
constant 0. The definition for generalized operator ⊕′′, its unit ι⊕′′ , and the function that
converts the left argument of ⊕′ to that of ⊕′′ are given as follows.

a
b
c

⊕′′

(
r
s

)
=

(
(a + r) ↑ c
(b + r) ↑ s

)
, ι⊕′′ =

0
−∞
−∞

 , conv a =

a
a
0

With operator ⊕′′ and function conv , we can rewrite the definition of mcs2 ′ as:

mcs2 ′ (RNode b [t1, t2, . . . , tn]) = conv b⊕′′ (mcs2 ′ t1 ⊗mcs2 ′ t2 ⊗ · · · ⊗mcs2 ′ tn) .

Now, we can again evaluate whether ⊗ is extended-distributive over the newly defined
⊕′′ by simplifying the following two expressions, and finding the matches between them.

E1 =

a1

b1

c1

⊕′′

(
r1

s1

)
⊗

a2

b2

c2

⊕′′

((
r2

s2

)
⊗

(
xr

xs

))

E2 =

A
B
C

⊕′′

((
R
S

)
⊗

(
xr

xs

))

Now again, we only show the results of calculation.

E1 =
(

((a1 + r1 + a2 + r2) + xr) ↑ ((a1 + r1 + c2) ↑ c1)
(((b1 + r1 + a2 + r2) ↑ (b2 + r2)) + xr) ↑ ((b1 + r1 + c2) ↑ s1 ↑ s2) ↑ xs

)

E2 =
(

(A + R + xr) ↑ C
(B + R + xr) ↑ S ↑ xs

)

From these results, we obtain the following correspondences.

A + R = a1 + r1 + a2 + r2

B + R = (b1 + r1 + a2 + r2) ↑ (b2 + r2)
C = (a1 + r1 + c2) ↑ c1

S = (b1 + r1 + c2) ↑ s1 ↑ s2

Since there are many solutions to the correspondences above, we obtain one solution by
fixing R as 0, for example. We can then derive the following characteristic functions from
the correspondences above.

p1

a1

b1

c1

 ,

(
r1

s1

)
,

a2

b2

c2

 ,

(
r2

s2

)
 =

a1 + r1 + a2 + r2

(b1 + r1 + a2 + r2) ↑ (b2 + r2)
(a1 + r1 + c2) ↑ c1

p2

a1

b1

c1

 ,

(
r1

s1

)
,

a2

b2

c2

 ,

(
r2

s2

)
 =

(
0

(b1 + r1 + c2) ↑ s1 ↑ s2

)

Derive parallel program

Since we have verified the extended-distributivity of ⊗ over ⊕′′ and derived characteristic
functions p1 and p2 in the previous step, we are ready to derive a parallel algorithm based
on Corollary 3. Simply substituting the operators and functions for Corollary 3, we obtain
the following parallel algorithm. Here, the two contracting operations, φL and φR, have the
same definition, namely φ.

ψ1 (OrgLeaf a) =
(

a ↑ 0
a ↑ 0

)
ψ2 (OrgNode b) =

b
b
0

 ,

(
0
−∞

)

ψ1 OrgNil =
(

0
−∞

)
ψ2 Dummy =

0
−∞
−∞

 ,

(
0
−∞

)

φ

a1

b1

c1

 ,

(
r1

s1

)

(
xr

xs

)

a2

b2

c2

 ,

(
r2

s2

)

=

a1 + r1 + xr + a2 + r2

(b1 + r1 + xr + a2 + r2) ↑ (b2 + r2)
(a1 + r1 + xr + c2) ↑ c1

 ,

(
0

(b1 + r1 + xr + c2) ↑ s1 ↑ xs ↑ s2

)

G

a
b
c

 ,

(
r
s

)

 = λ

(
xr

xs

)(
yr

ys

)
.

a
b
c

⊕′′

((
r
s

)
⊗

(
xr

xs

)
⊗

(
yr

ys

))

Observing the definitions of ψ2 and φ above, we can find that r (the first value of
the second tuple) returned by both ψ2 and φ is always 0. It follows that we can remove
variable r from the definition after substituting 0 for every occurrence of r, r1, and r2.
Substituting 0 and simplifying the expressions, we successfully derive the following efficient
parallel program.

ψ1 (OrgLeaf a) =
(

a ↑ 0
a ↑ 0

)
ψ2 (OrgNode b) =

b
b
0

 ,−∞

ψ1 OrgNil =
(

0
−∞

)
ψ2 Dummy =

0
−∞
−∞

 ,−∞

φ

a1

b1

c1

 , s1

(
xr

xs

)

a2

b2

c2

 , s2

=

a1 + xr + a2

(b1 + xr + a2) ↑ b2

(a1 + xr + c2) ↑ c1

 , (b1 + xr + c2) ↑ s1 ↑ xs ↑ s2

G

a
b
c

 , s

 = λ

(
xr

xs

)(
yr

ys

)
.

a
b
c

⊕′′

((
0
s

)
⊗

(
xr

xs

)
⊗

(
yr

ys

))

We know that we need four values in the parallel program for the maximum segment sum
problem on lists [6, 10] and the maximum independent sum problem on binary trees [14].
The derived parallel program with our approach is reasonably efficient, since it also uses
four values despite its applicability to trees with arbitrary shapes.

7 Conclusion

We developed a new methodology to systematically derive efficient parallel programs on trees
with arbitrary shapes. Our methodology consists of three foundations: a new formalization
of conditions for shunt contraction (Theorem 1), an extended-distributive property that
replaces associativity and distributivity, and the parallelization of a class of reduction on
rose trees (Theorem 2). The formalization of conditions for shunt contraction enables us
to make a parallel program based on the tree contraction approach in a more constructive
way. The extended-distributive property is very powerful since it can uniformly deal with
associative operators, distributive operators, and other operators. Furthermore, we can find
an extended-distributive operator more systematically by generalizing the definition and
examining matching. The definition of parallelizable reduction is so practical that we can
apply it to many programs.

The power of our method was demonstrated in the derivation of a parallel program
for the maximum connected-sum problem. This problem first motivated us to develop the
methodology, since we could not derive a parallel program for the problem using the tech-
niques that have been proposed so far: operators ⊕ and ⊗ do not satisfy the distributive law
although + and ↑ do, and the definition is not simple enough to enable us to parallelize it
instinctively. In Section 6, we discussed how we systematically derived a parallel program,
which is reasonably efficient. To the best of our knowledge, this is the first derivation of a
parallel program for the maximum connected-sum problem.

We are currently working on generalizing this methodology so that we can deal with
recursive datatypes more efficiently. In addition, we are working on applying the extended-
distributive property to other situations: for example, fusing of successive calls of parallel
skeletons on lists and deriving more general skeletons for nested lists.

References

1. K. Abrahamson, N. Dadoun, D. G. Kirkpatrik, and T. Przytycka. A simple parallel tree con-
traction algorithm. Journal of Algorithms, 10(2):287–302, June 1989.

2. J. Ahn and T. Han. An analytical method for parallelization of recursive functions. Parallel
Processing Letters, 10(1):87–98, 2000.

3. J. Bentley. Column7: Algorithm design techniques. In Programming Pearls, pages 69–80.
Addison-Wesley, 1986.

4. W.N. Chin, A. Takano, and Z. Hu. Parallelization via context preservation. IEEE Computer
Society International Conference on Computer Languages (ICCL’98), pages 153–162, May 1998.

5. M. Cole. Algorithmic skeletons : a structured approach to the management of parallel computa-
tion. Research Monographs in Parallel and Distributed Computing, Pitman, London, 1989.

6. M. Cole. Parallel programming, list homomorphisms and the maximum segment sum problems.
Report CSR-25-93, Department of Computing Science, The University of Edinburgh, May 1993.

7. H. Deldari, J. R. Davy, and P. M. Dew. Parallel csg, skeletons and performance modelling. In
the Second Annual CSI Computer Conference (CSICC’96), pages 115–122, 1996.

8. J. Gibbons, W. Cai, and D. B. Skillicorn. Efficient parallel algorithms for tree accumulations.
Science of Computer Programming, 23(1):1–18, 1994.

9. S. Gorlatch. Systematic efficient parallelization of scan and other list homomorphisms. In Annual
European Conference on Parallel Processing, LNCS 1124, pages 401–408, LIP, ENS Lyon, France,
August 1996. Springer-Verlag.

10. Z. Hu, H. Iwasaki, and M. Takeichi. Construction of list homomorphisms by tupling and fusion.
In 21st International Symposium on Mathematical Foundation of Computer Science, LNCS 1113,
pages 407–418, Cracow, September 1996. Springer-Verlag.

11. Z. Hu, H. Iwasaki, and M. Takeichi. Formal derivation of parallel program for 2-dimensional
maximum segment sum problem. In Annual European Conference on Parallel Processing, LNCS
1123, pages 553–562, LIP, ENS Lyon, France, August 1996. Springer-Verlag.

12. Z. Hu, H. Iwasaki, and M. Takeichi. Formal derivation of efficient parallel programs by con-
struction of list homomorphisms. ACM Transactions on Programming Languages and Systems,
19(3):444–461, 1997.

13. Z. Hu, M. Takeichi, and H. Iwasaki. Towards polytypic parallel programming. Technical Report
METR 98-09, University of Tokyo, 1998.

14. K. Matsuzaki, Z. Hu, and M. Takeichi. Parallelization with tree skeletons. In Annual European
Conference on Parallel Processing (Euro-Par 2003), LNCS 2790, pages 789–798, Klagenfurt,
Austria, Aug 2003. Springer-Verlag.

15. G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In 26th Annual
Symposium on Foundations of Computer Science, pages 478–489, Portland, OR, October 1985.
IEEE Computer Sociery Press.

16. G. L. Miller and J. H. Reif. Parallel tree contraction part 2: Further applications. SIAM Journal
on Computing, 20(6):1128–1147, December 1991.

17. F. Rabhi and S. Gorlatch. Patterns and Skeletons for Parallel and Distributed Computing.
Springer-Verlag New York Inc., 2002.

18. J. H. Reif and S. R. Tate. Dynamic parallel tree contraction. In Proceedings of the Symposium
on Parallel Algorithms and Architecture, pages 114–121, 1994.

19. D. B. Skillicorn. The bird-meertens formalism as a parallel model. In J. S. Kowalik and
L. Grandinetti, editors, Software for Parallel Computation, volume 106 of NATO ASI Series
F, pages 120–133. Springer-Verlag, 1993.

20. D. B. Skillicorn. Foundations of Parallel Programming. Cambridge University Press, 1994.

21. D. B. Skillicorn. Parallel implementation of tree skeletons. Journal of Parallel and Distributed
Computing, 39(2):115–125, 1996.

22. D. B. Skillicorn. A parallel tree difference algorithm. Information Processing Letters, 60(5):231–
235, 1996.

23. D. B. Skillicorn. Structured parallel computation in structured documents. Journal of Universal
Computer Science, 3(1):42–68, 1997.

