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Regular model checking is a framework for verifying parameterized and infinite-state systems. Tech-
niques for regular model checking such as quotienting require a well-specified transition relation where
the invariant of the system is represented implicitly. To relax the restriction, we propose a technique,
which we call refinement of transition relation, and reconstruct and extend regular model checking by
the technique. We apply the technique to a token-passing system and a program that dynamically
mutates a heap structure.

1 Introduction

Regular model checking[6] is a framework for veri-
fying parameterized and infinite-state systems. In
regular model checking, sets of configurations and
transition relations are represented by finite au-
tomata. Each step of a transition is computed by
ordinary operations on finite automata.

For example, we consider a simple token-passing
system. It consists of a finite but unbounded num-
ber of linearly connected processes. Each process
either has a token or not. In a transition of the
system, the process having a token passes it to the
right. A sequence of transitions in the system is
represented by a matrix. An example of a matrix
is shown in Fig.1. Horizontal arrows represent the
neighboring relation, and vertical arrows represent
local transitions. Processes having a token or not

t → n → n → n
↓ ↓ ↓ ↓
n → t → n → n
↓ ↓ ↓ ↓
n → n → t → n
↓ ↓ ↓ ↓
n → n → n → t

Figure 1: Token-Passing System
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Figure 2: Finite Automaton for the Transition Re-
lation of the Token-Passing System

are indicated by the letter ‘t’ or ‘n,’ respectively. A
configuration of the system is represented by a word
over the set Σ = {t, n}. For example, the initial
state in Fig.1 is represented by tnnnn. The transi-
tion relation is represented by the automaton over
Σ×Σ shown in Fig.2. A transition from s1 · · · sn to
s′1 · · · s′n is possible if and only if (s1, s

′
1) · · · (sn, s′n)

is accepted by the automaton. We refer to such
transition relations as regular transition relations.
The composition of a pair of regular transition re-
lations is computed by the ordinary operations on
automata. The result is also a regular transition re-
lation. We can therefore calculate the n-fold com-
position Tn of a transition relation T for a given
constant n.

To verify safety or liveness[7] of a system in reg-
ular model checking, we need to calculate the tran-
sitive closure T+ of the transition relation T , which
is not in general regular. Even if it is regular, it
may not be computable by iterations. Some tech-
niques have been proposed to calculate or approx-
imate transitive closures under certain conditions.
Quotienting is techniques to exactly calculate tran-
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sitive closures and has been applied for verifying
many systems. In the example above, we obtain
the transitive closure shown in Fig.3.
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(n, n)

Figure 3: Finite Automaton for the Closure of the
Transition Relation of the Token-Passing System

However, to obtain the expected result by quo-
tienting, we need to provide a well-specified tran-
sition relation that implicitly contains the informa-
tion about the invariant of the system. In the ex-
ample, the automaton of the transition relation is
well-specified because it contains the information
about the invariant: only one token appears in each
reachable configuration. If we provide the transition
relation where multiple tokens are passed (Fig.4)
instead, we can not obtain the transitive closure,
which is not regular, by quotienting, although the
set of reachable configurations remains the same as
of the original transition relation.
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Figure 4: Finite Automaton for the Transition Re-
lation where Multiple Tokens are Passed

In this paper, we relax such restriction by in-
troducing a technique which we call refinement of
transition relation. Moreover, we reconstruct regu-
lar model checking by the technique so that we can
(semi-) automatically derive the invariant of a tran-
sition relation and compute its transitive closure.
We also extend regular model checking to analyze
dynamic heap structures. Specifically we make the
following contributions:

• We present a technique called refinement of
transition relation. We compute the invariant
of the token-passing system and refine states of
the processes. We also give a refined transition
relation and represent it as a set of tiles.

• From the refined transition relation, we calcu-
late an approximation of the transitive closure

of the system by constructing a neighborhood
graph of the system. We also show that the ap-
proximation coincides with the exact transitive
closure.

• We extend the construction to analyze a pro-
gram that operates on a heap. As an example,
we prove the termination of a program that re-
verses linear lists.

2 Refinement of Transition Relation

We start with the token-passing system with an ar-
bitrary number of tokens that has the rule: a pro-
cess has a token after a transition if and only if it has
a left neighbor that has a token before the transi-
tion. We assume that only the leftmost process has
a token in the initial configuration.

In our refinement, we first give a set of atomic
predicates on processes and then we calculate the
temporal evolution of the properties represented
in first-order logic. For our example, we give the
atomic predicates as follows.

t0(x): Process x has a token.

n0(x): There is a process with a token that is
reachable from process x by traversing one or
more links from left to right.

m0(x): There is a process with a token that is
reachable from process x by traversing one or
more links from right to left.

We also use a binary relation → and its transitive
closure ³. We have x → y if and only if x is the
left neighbor of process y. We have the following
logical equivalences among the atomic predicates.

n0(x) = ∃y.(x ³ y ∧ t0(y))
m0(x) = ∃y.(y ³ x ∧ t0(y))

We refer to a Boolean combination of the atomic
predicates as a (refined) state. The initial configu-
ration is represented by states as follows.

t0∧¬n0∧¬m0 → ¬t0∧¬n0∧m0 → ¬t0∧¬n0∧m0 → · · ·

The transition rule of the system is represented as
follows.

wp(t0(x)) = ∃y.(y → x ∧ t0(y))

The left-hand side wp(t0(x)) is the weakest precon-
dition of t0(x), i.e. t0(x) holds after a transition if
and only if wp(t0(x)) holds before the transition.



日本ソフトウェア科学会第 23回大会（2006年度）論文集 3

The weakest preconditions of n0 and m0 are calcu-
lated as follows.

wp(n0(x)) = ∃y.(x ³ y ∧ wp(t0(x)))
= ∃y, z.(x ³ y ∧ z → y ∧ t0(z))
= t0(x) ∨ n0(x)

wp(m0(x)) = ∃y.(y ³ x ∧ wp(t0(x)))
= ∃y, z.(y ³ x ∧ z → y ∧ t0(z))
= ∃y.(y → x ∧ m0(y))

From these equations, we calculate the second con-
figuration as follows.

t0∧¬n0∧¬m0 → ¬t0∧¬n0∧m0 → ¬t0∧¬n0∧m0 → · · ·
↓ ↓ ↓

¬t0∧n0∧¬m0 → t0∧¬n0∧¬m0 → ¬t0∧¬n0∧m0 → · · ·

Let t = t0 ∧ ¬n0 ∧ ¬m0, m = ¬t0 ∧ ¬n0 ∧ m0,
and n = ¬t0 ∧ n0 ∧ ¬m0. By calculating the third
configuration in the same way, we notice that the
processes in the subsequent configurations are ei-
ther in t, m, or n state. Therefore t ∨ m ∨ n is the
invariant. This implies that at most one process
holds a token in any configurations reachable from
the initial configuration.

We can also calculate the set of possible tran-
sitions, which we call tiles, on two neighboring
processes. A tile is a pair (s1, s

′
1)(s2, s

′
2) of pairs

of states such that s1(x) ∧ s′1(x) ∧ wp(s′2(x)) ∧
wp(s′2(x)) is satisfiable. The set of tiles of the
token-passing system is shown in Fig.5. We say

(A)
n → n

→

↓ ↓
n → n

→
(B)

n → t
↓ ↓
n → n

→
(C)

t → m
↓ ↓
n → t

(D)

→
m → m
↓ ↓
t → m

(E)

→
m → m
↓ ↓

→
m → m

Figure 5: Tiles of the Token-Passing System

a state s requires a right or left neighbor, which is
indicated by an arrow as right or left superscript of
the state in tiles, if and only if s(x) ⊃ ∃y.x → y or
s(x) ⊃ ∃y.y → x is true for any process x, respec-
tively. In our example, n and m require a right and
left neighbor, respectively.

From the set of tiles, we generate matrices where
each 2× 2 segment is tiles and the leftmost and the
rightmost states do not require right or left neigh-
bors, respectively. By construction, for any transi-
tion sequence of a system, there exists a generated

matrix that is satisfied by the sequence. We say
that a generated matrix is satisfied by a transition
sequence if and only if the height and the width of
the matrix is identical to the length and the num-
ber of processes of the sequence, respectively, and
for any (i, j) element l of the matrix, l(x) holds for
the i-th process x in the j-th configuration in the
sequence.

The converse does not hold in general. It however
holds for our example: for any generated matrix the
first row of which is satisfied by the initial configu-
ration, it is satisfied by the transition sequence that
is constructed by letting each process in state t has
a token. The proof is by induction on the height of
the matrix. We show n0(x) holds for process x in
a configuration if x corresponds to an occurrence of
state n in the matrix. Other cases are proved sim-
ilarly. Because n does not appear in the rightmost
column of the matrix, either tiles (A), (B), or (C)
occurs at the position where the occurrence of n in
question corresponds to the bottom-left letter of the
tile. In case of (B) and (C), n0(x) trivially holds.
In case of (A), the letter above the occurrence of n
in question is also n. By the induction hypothesis,
n0(x) holds in the previous configuration. This im-
plies that there is a process y that has a token and
is reachable from x. In the current configuration,
the right neighbor of y has a token. Therefore n0(x)
holds.

3 Closure Construction by Vertical
Tiling

In this section, we show that we can construct the
transitive closure of a transition relation from ver-
tical compositions of tiles.

We first define the neighboring relation → be-
tween histories. A history is a sequence of refined
states of a system. For histories h = s0s1 · · · sl

and h′ = s′0s
′
1 · · · s′l, we have h → h′ if and only if

(si, s
′
i)(si+1, s

′
i+1) is a tile for all i = 0, 1, . . . , k − 1.

For example, we have tnn → mtn, which is depicted
as follows.

t → m
↓ ↓
n → t
↓ ↓
n → n

A pair of neighboring histories s0s1 · · · sl →
s′0s

′
1 · · · s′l can be seen as a sequence

(s0, s
′
0)(s1, s

′
1) · · · (sl, s

′
l). We therefore identify

the neighboring relation as a language over the
set of pairs of states. The language is regular
because it is generated from a finite set of tiles.
More precisely, it is a local language (Sect.6.1 of
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[10]) over the set of pairs of refined states that
is generated from a set of tiles. The neighboring
relation is extended over sets of histories. We have
L → L′ if and only if there exists h ∈ L and h′ ∈ L′

such that h → h′.
The neighboring relation of the token-passing sys-

tem is given as a union of the relations shown in the
first column of Tab.1. The second and the third
columns are the sets of left and right neighbors in
each relation, respectively.

Table 1: Neighboring Relation Over the Histories
of the Token-Passing System

Relation Left Right
(m,m)+ m+ m+

(m,m)+(t,m) m+t m+m
(m,m)+(t,m)(n, t) m+tn m+mt
(m,m)+(t,m)(n, t)(n, n)+ m+tnn+ m+mtn+

(t,m) t m
(t,m)(n, t) tn mt
(t,m)(n, t)(n, n)+ tnn+ mtn+

(n, t) n t
(n, t)(n, n)+ nn+ tn+

(n, n)+ n+ n+

By merging overlapping sets of left or right
neighbors in Tab.1, we obtain the languages
m+,m+t,m+tn+, t, tn+, and n+. From the lan-
guages we construct the neighborhood graph of the
token-passing system shown in Fig.6. The edges
in the graph represent the neighboring relation be-
tween languages.

Figure 6: Neighborhood Graph of the Token-
Passing System

A sequence of transitions of a system can be
represented as a sequence of neighboring histories

h1 → h2 → · · · → hk, where k is the number of
processes in the sequence. By construction of the
neighborhood graph, for any such sequence, there
exists a finite path L1 → L2 → · · · → Lk in the
neighborhood graph that satisfies the following con-
ditions:

1. hi ∈ Li for any i = 1, . . . , k, and

2. Any state that appears in a history belonging
to L1 or Lk does not require a left or right
neighbor, respectively.

The inverse also holds for the token-passing system.
It is shown by the similar discussion to [9, 1, 6, 8].
In general, for any finite path in the neighborhood
graph of a system, there exists a sequence of neigh-
boring histories of the system that corresponds to
the finite path if there exists a relation ∼ over his-
tories that satisfies the following conditions for any
horizontal edge L1 → L2:

1. For any history h1 ∈ L1, there exists h′
1 ∈ L1

and h2 ∈ L2 such that h1 ∼ h′
1 → h2, and

2. ∼ is a backward simulation, i.e. for any histo-
ries h1 ∈ L1 and h2, h

′
2 ∈ L2, if h1 → h2 ∼ h′

2,
then there exists h′

1 ∈ L1 such that h′
1 → h′

2.

For our example, the least congruence ∼ that con-
tains n ∼ nn satisfies these conditions. The re-
lation ignores the number of the repetition of the
left-copying state n.

4 Application to Heap Analysis

In this section, we apply the technique developed in
the previous section to a heap analysis problem. We
prove the termination of a program that operates on
a heap. We derive contradiction by assuming there
is infinite sequence of transitions.

A heap is a set of cells that may refer to one an-
other. Here we restrict a cell to refer to at most
one cell. Cells may also be referred to from some
program variables. The references in a heap may
change through an execution of a program. We
consider reverse program (Fig.7) as an example of
a program that operates on a heap. It reverses a
list, a sequence of cells each of which refers to the
next one, referred to from variable t and the result
is referred to from variable u. With an execution of
the block in the while loop, the first cell in the list
referred to from t is prepended to the list referred to
from u (Fig.9). For simplicity, we consider a modi-
fied version (Fig.8) of reverse where assignments are
executed simultaneously.

Let us choose atomic propositions:

t0: referred to from variable t,
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u:=nil;

while (t != nil) do

begin

v := u;

u := t;

t := t.next;

u.next := u

end

Figure 7: List Reverse

u:=nil;

while (t != nil) do

begin

(t, u, t.next) := (t.next, t, u)

end

Figure 8: List Reverse by Simultaneous Assignment

t → → →
↓ ↓ ↓ ↓
u t → →
↓ ↓ ↓ ↓

← u t →
↓ ↓ ↓ ↓

← ← u t
↓ ↓ ↓ ↓
t ← ← ← u

Figure 9: Execution of reverse

u0: referred to from variable u,

m0: reachable from variable t,

n0: reachable from variable u,

1: referred to from exactly one cell and

0: referred to from no cell.

From the atomic propositions, let t, u, m, and n be
the propositions defined as follows.

t = t0 ∧ ¬u0 ∧ 0

u = u0 ∧ ¬t0 ∧ 0

m = m0 ∧ ¬t0 ∧ ¬u0 ∧ 1

n = n0 ∧ ¬t0 ∧ ¬u0 ∧ 1

As for the propositions and their weakest precondi-
tions, we have:

(∃y.t(y) ∧ y → x) ∧ m(x) ⊃ wp(t(x))
u(x) ⊃ wp(∃y.u(x) ∧ y → x)

(∃y.m(y) ∧ y → x ∧ m(x) ⊃ wp(m(x))
t(x) = wp(u(x))

n(x) ∨ u(x) ⊃ wp(n(x)).

The heap structure may change in each step of the
program execution. We therefore define a dynamic
tile by extending the definition of a tile. A dy-
namic tile is a pair (s1, l1, s

′
1)(s2, l2, s

′
2) of triples

such that s1(x) ∧ l1(x, y) ∧ s′1(y) ∧ wp(s2(x)) ∧
wp(l2(x, y)) ∧ wp(s′2(y)) is satisfiable, where li is
either →, ←, or nolink and both of l1 and l2 must
not be nolink. Binary predicate nolink is de-
fined as nolink(x, y) = ¬(x → y) ∧ ¬(y → x).
The set of dynamic tiles of reverse are shown in
Fig.10. The definition of neighboring relation →

n ← n
←

↓ ↓
n ← n

←

n ← u
↓ ↓
n ← n

←

u t
↓ ↓
n ← u

t → m
↓ ↓
u t

→
m → m
↓ ↓
t → m

→
m → m
↓ ↓

→
m → m

Figure 10: Dynamic Tiles of reverse

over histories is also extended. For histories h =
(s0, s1, . . . , sn) and h′ = (s′0, s

′
1, . . . , s

′
n), we have

h → h′ if and only if there is a sequence of triples
(s0, l0, s

′
0) · · · (sn, ln, s′n) that satisfies:
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1. l0 is →, and

2. (si, li, s
′
i)(si+1, li+1, s

′
i+1) is a dynamic tile for

each i = 0, . . . , n − 1.

We prove the termination of reverse by construct-
ing the neighborhood graph of infinite histories of
the system instead of finite histories. The neigh-
boring relation over infinite histories is constructed
from the following infinite sequences of triples.

(m → m)ω

(m → m)+(t → m)(u,nolink , t)(n ← u)(n ← n)ω

(t → m)(u,nolink , t)(n ← u)(n ← n)ω

(u,nolink , t)(n ← u)(n ← n)ω

(n ← u)(n ← n)ω

(n ← n)ω

Let us observe a cell x whose history is tunω. When
the cell is in state n, it must be referred to by an-
other cell y. The possible histories of the two cells
are uniquely determined as follows by the set of
tiles.

x y

t → m
↓ ↓
u t
↓ ↓
n ← u
↓ ↓
n ← n
↓ ↓
...

...

Therefore x must refer to y in the initial config-
uration. Similarly, a cell x whose history belongs
to m+tunω must refer to another cell in the initial
configuration. Therefore a path in the neighbor-
hood graph of infinite histories (Fig.11) that starts
at tunω never terminates. This implies either there
is a loop in the initial configuration or there are an
infinite number of cells. This contradicts our as-
sumptions.

m+tunωnω unω tunω mωm+tunωnω unω tunω mω

Figure 11: Neighborhood Graph of reverse

5 Conclusion and Future Work

We have so far proposed a technique called refine-
ment of transition relation. We have shown that
it can be used in regular model checking to refine
the states of processes and to compute the invariant

from a simple specification of the system. We have
also applied the technique to analysis of a program
that dynamically mutates a heap structure.

Our approximation of transitive closures seems
to be related to abstract regular model checking[5].
One of the differences is that we refine transition
relations so that approximation becomes more pre-
cise. Another difference is that we first calculate
the set of histories to build transitive closures while
in abstract regular model checking configurations
are abstracted after each step of transitions. The
detailed comparison is left as future work.

The heap structure considered in this paper has
no sharing and consists of cells each of which refer
to at most one cell. Regular model checking has
been applied to heap structures with sharing[3] and
with cells each of which may refer to several cells[4].
Our technique might be useful in combination with
these results.

The authors plan to extend our technique to a
nonregular class of languages. In such an exten-
sion, symbolic representations of nonregular sets of
histories and transitive closures are needed. One of
the candidates of such representations is CQDD[2].
A CQDD consists of finite automata with linear
arithmetical constraints on number of occurrences
of symbols. CQDDs have been used to represent
nonregular sets of configurations in the analysis of
FIFO-channel systems. The extension would be
useful, for example, in verifying a system whose
safety depends on synchronization of components
of the system such as counters.
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