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We consider binary relations weighted over frames to express intermediate degree of relationship. We

reformulate the notions of transition systems, Kripke structures and simulations between them to for-

mulate multi-valued model checking of modal µ-calculus. Discussion on the use of multi-valued model

checking to refine models in the usual sense follows.

1 Introduction

Intermediate truth values are favored. In many

situations the notions of functions, relations etc.

are re-invented upon intermediate or multiple truth

values. Those situations are named under the

adjectives “multi-valued,” “fuzzy,” “probabilistic,”

and “quantum.” The meaning of multi-valuedness

varies in each context, but there seems to be a com-

mon basis for all these situations which is based

upon multi-valued relation.

In fact, a number of ways in formulating such

notions have been proposed and studied indepen-

dently. We seek for a better, more general formula-

tion.

We introduce binary relations weighted over com-

plete Heyting algebras to express intermediate de-

gree of relationship. We extend the notion of Kripke

structures based on weighted binary relations, and

and that of simulations between them to formulate

multi-valued model checking of modal µ-calculus[4].

We also give the semantics for modal µ-calculus and

that for linear-time modal µ-calculus over the ex-

tended Kripke structures. Our main theorem here

is the simulation theorem in this context. We also

mention an application to model refinements [1, 8].

2 Weighted Relations

In this section, we review the category Mat(L),

in which our work in this paper is formulated, fol-

lowing Johnstone[3], §A3.2, A3.3. This is a category

(and even an allegory) whose objects are small sets

and morphisms are binary relations weighted over

the frame (or complete Heyting algebra) L. In the

sequel, references like §A3.2 etc., are all references

to paragraphs in [3].

Relations from a set X to Y are usually formu-

lated by a subset of X × Y , which could be consid-

ered as a function R: X×Y −→ 2, where 2 is the set

with exactly two elements > and ⊥. For each x ∈ X

and y ∈ Y , R holds between them (R(x, y) = >)

or does not (R(x, y) = ⊥). To consider interme-

diate status, 2 could be replaced by a frame L to

obtain relations weighted over L. In fact, small sets

and relations weighted over L form an allegory[2, 3]

Mat(L).

Definition 1 (Allegory Mat(L)). Let L be a frame.

The following data form an allegory Mat(L)[3].

• ob(Mat(L))
def
= small sets.

• Mat(L)(X,Y )
def
= { f : X × Y −→ L |

f is a function }, for X, Y ∈ ob(Mat(L)).

• idX(x, x′)
def
= >L, if x = x′, ⊥L, otherwise.
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• (S ◦ R)(x, z)
def
=

∨

L{S(y, z) ∧L R(x, y) |

y ∈ Y }, for R ∈ Mat(L)(X,Y ) and S ∈

Mat(L)(Y, Z).

• R◦(y, x)
def
= R(x, y).

• (R ∧ S)(x, y)
def
= R(x, y) ∧L S(x, y).

The arrow of Mat(L) is called L-weighted rela-

tion (L-relation). We write R: X # Y for R ∈

Mat(L)(X,Y ), when L is clearly determined from

the context. We sometimes regard R ∈ [S,L] as an

L-relation R: 1 −→ S where 1 is the set with one

element.

At a first glance one might näıvely conclude it is

sufficient for L to be a partially ordered set, but

for the well-formedness of the composition, it has

to be a complete lattice and for the associativity of

composition, it has to be a frame.

The rest of this section is devoted to show why

we look at the allegory Mat(L). Now, the cate-

gory Rel of small sets and binary relations has a

special connection to Set as follows. Rel is an al-

legory which has a unit and satisfies the property

“tabularity,” and Set is a category which satisfies

the property called “regularity.” There is an oper-

ation Map on a tabular allegory with unit to form

a regular category, and an Rel on a regular cate-

gory to form an allegory with a unit. These satisfy

Rel ∼= Rel(Set) and Set ∼= Map(Rel).

Now it would be natural to seek for a regular cat-

egory which is what Mat(L) is to as Rel is to Set.

As we explain below, Mat(L) itself is not tabular,

but its Cauchy completion Mat(L)[Š ] with respect

to the set of all symmetric idempotents is and it

also has a unit. As the name suggests, Mat(L) can

be embedded into Mat(L)[Š ], so the result of ap-

plying Map operation to it deserves to be called a

category of sets and “functions” weighted over L.

A map in an allegory is a morphism in it which

has a right adjoint. A right adjoint of a morphism

ϕ in an allegory must be ϕ◦ (§A3.2.3), so ϕ is a map

if and only if idA ≤ ϕ◦ϕ and ϕϕ◦ ≤ idB . A lead-

ing example of allegories is of course Rel of small

sets and binary relations. Maps in Rel are exactly

functions, so if one extracts maps from Rel, one

would obtain a category equivalent to Set. Such

an operation Map to allegories is important.

There is also an operation Rel on “regular” cat-

egories (§A1.3) for which Rel(Set) = Rel. This

is based on tables of binary relation. A table of

a binary relation R from A to B is the subset

{ (a, b) | a R b } of A × B. Naturally attached to

the table is the restrictions (a, b) 7→ a and (a, b) 7→ b

of projections to the table. Generalizing this to

arbitrary allegories, a tabulation of a morphism

ϕ: A # B in an allegory is a triple (C, f, g) of an

object C and maps f : C −→ A and g: C −→ B

subject to φ = g ◦ f◦ and (f◦ ◦ f) ∧ (g◦ ◦ g) = idC .

An allegory is tabular if all its morphisms has a

tabulation.

It is known that Mat(L) is not tabular (§A.3.2),

but its Cauchy completion (Karoubi envelope)

Mat(L)[Š ] with respect to the set S of all sym-

metric idempotents in Mat(L) is tabular. More-

over, the category of its maps Map(Mat(L)[Š]) is

known to be a topos (§A.3.4). So this category is

baptised as Set(L) and seems to be a natural basis

for further development of our argument. For the

argument in this paper, however, working within

Mat(L) suffices. Set(L) is mentioned here only to

say it is already known that the allegory Mat(L)

where we work has a natural extension.

3 Weighted Kripke Structures

In this section, we introduce the notion of

weighted Kripke structures based on weighted re-

lations and simulations between them.

Definition 2 (L-Kripke structure). Let L be a

frame. Let Atom be a signature (a set of atomic

propositions). An L-weighted Kripke structure (L-

Kripke structure) is a triple of a set S, an L-relation

→ upon S, and an L-relation ρ: S # Atom; ele-

ments of S are its states, → is its transition rela-

tion, and ρ is its labeling function.

In a locally ordered category C in general, a simu-

lation from an endomorphism A: SA −→ SA to an-

other endomorphism C: SC −→ SC is defined to be

a morphism Σ: SA −→ SC such that C ◦Σ ≤ Σ◦A.

Mat(L) is an allegory, so it is a locally ordered
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category. Therefore, the above definition can be

applied to Mat(L) to obtain a definition of simula-

tions there. Adding the conditions for simulation of

labeling functions (if a simulates c, the set of atomic

propositions holding at c coincides the set of atomic

propositions holding at a), we define the notion of

simulations between L-Kripke structures as follows.

Definition 3 (Simulation). Let A = (SA,→A, ρA)

and C = (SC ,→C , ρC) be L-Kripke structures. An

L-relation Σ: SA # SC is defined to be a simulation

from A to C if and only if the following holds.

→C ◦Σ ≤ Σ◦ →A

ρC ◦ Σ ≤ ρA

ρA ◦ Σ◦ ≤ ρC

SA

→A - SA
�

Σ◦

SC

≤
H

H
H

H
H

ρA

≤ j
SC

Σ
?

→C

- SC

Σ
?

ρC

- Atom

≤ ρC?

4 State Semantics

In this section, we define the truth values of for-

mulae of modal µ-calculus over weighted Kripke

structures, and formulate and prove the simulation

theorem in this context.

Let L be a frame, K = (SK ,→K , ρK) be an L-

Kripke structure for a signature Atom, Var be the

set of variables and V : Var −→ [SK , L] be a val-

uation of variables, where [SK , L] is the frame of

functions from SK to L with the pointwise order. In

this section, we shall define a weighted analogue of

usual semantics for modal µ-calculus. This is called

state semantics, while the semantics we introduce

in the next section is called path semantics.

Definition 4 (Formulae of modal µ-calculus). For-

mulae of the modal µ-calculus are generated by the

following grammar where P ∈ Atom, X ∈ Var, and

the grammar is subject to the side condition that

both of µX.ϕ and νX.ϕ have no free negative oc-

currences of X in ϕ.

ϕ ::= P | ϕ ⇒ ϕ | 2ϕ | ♦ϕ

| ⊥ | > | X

| ϕ ∨ ϕ | ϕ ∧ ϕ | µX.ϕ | νX.ϕ

Definition 5 (State semantics). We define the

truth value [[ϕ]]K,V ∈ [SK , L] of a formula ϕ of

modal µ-calculus with the signature Atom induc-

tively as follows.

• [[P ]]K,V (s)
def
= ρK(s, P ), for P ∈ Atom

• [[ϕ ⇒ ψ]]K,V
def
= [[ϕ]]K,V ⇒ [[ψ]]K,V

• [[ϕ ∨ ψ]]K,V
def
= [[ϕ]]K,V ∨ [[ψ]]K,V

• [[ϕ ∧ ψ]]K,V
def
= [[ϕ]]K,V ∧ [[ψ]]K,V

• [[⊥]]K,V
def
= ⊥

• [[>]]K,V
def
= >

• [[X ]]K,V
def
= V (X)

• [[µX.ϕ]]K,V
def
=

∧

{W | [[ϕ]]K,V [X 7→W ] ≤W }

• [[νX.ϕ]]K,V
def
=

∨

{W | W ≤ [[ϕ]]K,V [X 7→W ]}

• [[2ϕ]]K,V (s)
def
=

∧

{ (s →K t) ⇒ [[ϕ]]K,V (t) |

t ∈ SK }

• [[♦ϕ]]K,V (s)
def
=

∨

{ (s →K t) ∧ [[ϕ]]K,V (t) | t ∈

SK }

As L is a frame, this definition of truth val-

ues gives an intuitionistic interpretation. However,

when L would moreover be a complete Boolean al-

gebra, i.e., if
[

(x ⇒ ⊥) ⇒ ⊥
]

= x for each x, then

this automatically would give a classical interpreta-

tion, i.e., double negation could be eliminated and

the de Morgan duality would hold.

An analogue to the simulation theorem holds,

even if Kripke structures are replaced by L-Kripke

structures. The usual simulation theorem holds

only for a subclass of formulae [6], and it still is

true in our case.

Definition 6 (2Lµ formulae and ♦Lµ formulae).

2Lµ formulae are formulae of modal µ-calculus with

no negative occurrences of subformulae of the form

2ψ and no positive occurrences of subformulae of

the form ♦ψ. ♦Lµ formulae are defined dually.

Proposition 7. Let A and C be L-Kripke struc-

tures Σ be a simulation from A to C, and VA

and VC , respectively, be a path valuation of A and

C, respectively. Every 2Lµ formula ψ satisfies
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Σ◦[[ψ]]A,VA
≤ [[ψ]]C,VC

if every variable X with some

free positive occurrences in ψ satisfies Σ ◦VA(X) ≤

VC(X) and every variable X with some free negative

occurrences in ψ satisfies Σ◦◦VC(X) ≤ VA(X). Ev-

ery ♦Lµ formula ψ satisfies Σ◦◦ [[ψ]]C,VC
≤ [[ψ]]A,VA

if every variable X with some free positive occur-

rences in ψ satisfies Σ◦◦VC(X) ≤ VA(X) and every

variable X with some free negative occurrences in ψ

satisfies Σ ◦ VA(X) ≤ VC(X).

Proof. It is proved by simultaneous induction on

ψ.

Theorem 8 (Simulation theorem in state seman-

tics). Let ϕ be a closed 2Lµ formula, A and C be

L-Kripke structures Σ be a simulation from A to C,

and VA and VC , respectively, be a path valuation of

A and C, respectively. Then, Σ◦[[ϕ]]A,VA
≤ [[ϕ]]C,VC

.

Proof. It is a corollary of the previous proposition.

The case L = 2, the frame with two values, re-

duces to the standard simulation theorem.

5 Path Semantics

Linear-time temporal logic (LTL)[5] and compu-

tational tree logic (CTL)[5] are temporal logics in-

tensively used for model-checking. While the for-

mulae of CTL and those of modal µ-calculus are

state formulae which are interpreted as sets of states

(state semantics), the formulae of LTL are path for-

mulae which are interpreted as sets of paths (path

semantics). In this section, we introduce a variant

of linear-time modal µ-calculus [7] and define path

semantics with respect to an L-Kripke structure.

We then prove the simulation theorem for linear-

time modal µ-calculus under some condition of L.

A path in an L-Kripke structure (S,→, ρ) is a

countable sequence of states. In the context of or-

dinary Kripke structures, a countable sequence of

states is defined to be a path, if each of its states is

related to the next state by the transition: σ(n) →

σ(n + 1) = >. In our context, however, the transi-

tion may have intermediate degree. It is not natural

to regard only the sequences related by > as real

paths. Instead, we define Weight(K) ∈ [[ω, S], L]

by Weight(K)(σ)
def
=

∧

n<ω(σ(n) → σ(n+ 1)).

Given an L-Kripke structure, one can construct

another L-Kripke structure by taking the paths of

the original structure.

Definition 9 (Path construction). Let L be a frame

and K = (S,→, ρ) be an L-Kripke structure. We

define an L-Kripke structure Path(K) = (S ′,→′

, ρ′) as follows:

• S′
def
= [ω, S], i.e., elements of S ′ are countable

sequences of elements of S.

• σ →′ τ
def
=











> if τ(n) = σ(n+ 1)

for all n < ω,

⊥ otherwise.

• ρ′(σ)
def
= ρ(σ(0)).

[ω,Σ]: [ω, SA] # [ω, SC ] is defined to be a natu-

ral, elementwise extension of Σ: SA # SC to count-

able sequences. Let HeadA: [ω, SA] # SA assign >

to the pairs of the path and the first element and

assign ⊥ to the other pairs.

We define the class of frames that have the suffi-

cient structure to satisfy the simulation theorem in

path semantics.

Definition 10 (path-extendable). A frame L is

path-extendable if (Head◦

C ◦ IC) ∧ Weight(C) ≤

[ω,Σ] ◦ ((Head◦

A ◦ IA) ∧ Weight(A)) for L-relations

Σ: SA # SC , →A: SA # SA, →C : SC # SC, IC ∈

[SC , L], and IA ∈ [SA, L] satisfying IC ≤ Σ◦IA and

→C ◦Σ ≤ Σ◦ →A.

When L = 2, L-relation (Head◦

C◦IC)∧Weight(C)

corresponds to the set of real paths starting from

states of IC . The frame 2 is path-extendable, since

the simulation Σ from A to C which is also a surjec-

tive relation to IC from IA extends to the pointwise

relation [ω,Σ] which is surjective from the set of

real paths starting from states of IA. Similarly, the

pointwise frame L = 2n is also path-extendable for

each natural number n.

Not all frames are path-extendable. L = ω+ 1 =

ω∪{ω} is one of the counterexamples. Let L = ω+

1, SC = {∗}, →C= >, IC = >, SA = ω+1, IA = >,

Σ(x, ∗) = x, and a→A b = > if a > b and a→A b =
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⊥ otherwise. Then, they satisfy IC ≤ Σ ◦ IA and

→C ◦Σ ≤ Σ◦ →A, but (Head◦

C ◦ IC)∧Weight(C) =

> and [ω,Σ] ◦ ((Head◦

A ◦ IA) ∧ Weight(A)) = ⊥.

Path semantics can be given only to a subset

of modal µ-calculus, called linear-time modal µ-

calculus.

Definition 11 (Formulae of linear-time modal

µ-calculus). Formulae of linear-time modal µ-

calculus are those of modal µ-calculus without the

2 operator.

Given a linear-time modal µ-calculus formula, its

truth value is defined in terms of state semantics

and Path(K) as follows.

Definition 12 (Path Semantics). Let ϕ be a for-

mula in linear-time modal µ-calculus, K be an L-

Kripke structure, σ be a path in K, and V be a func-

tion from Var to [[ω, S], L]. The truth value {|ϕ|} of

ϕ under path semantics in K with V is defined as

follows:

{|ϕ|}K,V (σ)
def
= Weight(K)(σ) ⇒ [[ϕ]]Path(K),V (σ)

When L = 2, the boolean algebra consisting of

exactly two values, the truth value under path se-

mantics coincides with the standard path semantics

for the standard Kripke structures, provided they

are total.

By the definition of Path(K), every formula

of modal µ-calculus satisfies [[♦ϕ]]Path(K),V =

[[2ϕ]]Path(K),V
. Therefore, the linear-time modal

µ-calculus formula can be translated into the 2Lµ

formula that has the same path semantics.

The simulation theorem in path semantics can be

formulated as follows.

Theorem 13 (Simulation theorem in path seman-

tics). Let L be path-extendable, A and C be L-

Kripke structures, Σ be a simulation from A to

C, and IC ∈ [SC , L] and IA ∈ [SA, L] satisfy

IC ≤ Σ◦IA. Let ϕ be a closed formula in linear-time

modal µ-calculus, and VA and VC , respectively, be

a path valuation of A and C, respectively. Then,

Head◦

C ◦ IC ≤ {|ϕ|}C,VC
provided Head◦

A ◦ IA ≤

{|ϕ|}A,VA
.

Proof. The conditions ρC ◦ Σ ≤ ρA and ρA ◦

Σ◦ ≤ ρC imply that [ω,Σ] is a simulation from

Path(A) to Path(C). By the simulation theorem

in state semantics, we have [ω,Σ]◦ [[ϕ]]Path(A),VA
≤

[[ϕ]]Path(C),VC
. Assume Head◦

A ◦ IA ≤ {|ϕ|}A,VA
.

Then, [ω,Σ] ◦ ((Head◦

A ◦ IA) ∧ Weight(A)) ≤

[[ϕ]]Path(C),VC
holds. Since L is path-extendable,

we have (Head◦

C ◦IC)∧Weight(C) ≤ [[ϕ]]Path(C),VC
.

That is logically equivalent to Head◦

C ◦ IC ≤

{|ϕ|}C,VC
.

6 An Application to Refinement of

Models

Model checking of L-Kripke structures for L = 2n

is regarded as multi-valued model checking. This

section explains how to apply it to refinement of

standard (non-weighted) Kripke structures.

Assume we are to verify some information pro-

cessing system and construct a standard Kripke

structure M which reflects it, set up a formula ϕ

which corresponds to the property to be verified

and examine whether M |= ϕ.

On the one hand, if M |= ϕ does not hold, then

there is (or there often is, at least) a counterexample

and we can proceed by analyzing it. On the other

hand, M |= ϕ turns out to hold, we cannot conclude

the system satisfies ϕ, because M may not properly

reflect the system to be examined. It might be that

M does not reflect the original system, and the orig-

inal system does not satisfy ϕ, but M |= ϕ holds.

In other words, M |= ϕ holds as a result of multiple

errors.

So, let Dϕ be the set of all (standard) Kripke

structures M ′ which share the state set S and label-

ing function with M such that M ′ |= ϕ. Consider

the partial order on this set defined by

N ≤ N ′ ⇐⇒ idS is a simulation from N to N ′.

Take all Kripke structures which are larger than M

and maximal under this order; that is, take those

M ′ such that M ≤M ′ and

(∀N)M ′ ≤ N ⇒ N = M ′.

One might hope that by observing those M ′ it

might be judged more easily whether it reflects the
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original system, because these M ′ are at “bound-

ary” of Kripke structures which validates ϕ.

To enumerate these M ′, one can prepare Kripke

structures M1, M2, . . ., Mn by changing only the

transition relation of M , and compute

〈[[M1 |= φ]], [[M2 |= φ]], . . . , [[Mn |= φ]]〉

by multi-valued model checking. The paper [8] is

based on this approach.

7 Conclusion

Following the allegory Mat(L)[3], we defined

weighted relations, weighted Kripke structures, sim-

ulations, state semantics of modal µ-calculus, path

semantics of linear-time modal µ-calculus. We

proved that all frames satisfy the simulation the-

orem in state semantics, however, not all frames do

it in path semantics. Deep analysis of frames that

satisfy the simulation theorem in path semantics is

future work.
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