
Model-checking of a Multi-threaded Operating System

Nicolas Marti † Reynald Affeldt ‡ Akinori Yonezawa †‡
†Department of Computer Science, ‡Research Center for Information Security (RCIS),

University of Tokyo National Institute of Advanced Industrial Science and Technology (AIST)

Model-checking has proved effective to verify low-level properties on isolated parts of operating

systems such as scheduling algorithms or implementations of inter-process communications. In such

situations, the relevant implementation is well-localized in the source code, and the modeling language

usually lends itself very well to formal paraphrase. However, there are high-level properties of operating

systems that require modeling of various parts of the implementation. For example, task isolation,

the property that user threads cannot access kernel memory, requires modeling of thread management,

memory management, hardware protection mechanisms, etc. In this paper, we show how to build in

the Spin model-checker a model of a multi-threaded operating system (namely, Topsy) that covers most

parts of the implementation, thus enabling verification of properties such as task isolation.

1 Introduction

Model-checking has proved effective to verify low-
level properties on isolated parts of operating sys-
tems such as scheduling algorithms or implementa-
tions of inter-process communications (IPCs) [1–3].
In such situations, the relevant implementation is
well-localized in the source code, and the model-
ing language usually lends itself very well to formal
paraphrase.

However, there are high-level properties of oper-
ating systems that require modeling of various parts
of the implementation. For example, task isolation,
the property that user threads cannot access kernel
memory [4], requires modeling of thread manage-
ment, memory management, hardware protection
mechanisms, etc. It is possible to break the veri-
fication of such high-level properties that span the
whole source code into smaller verifications on well-
localized parts of the source code. However, this
approach naturally augments the number of speci-
fications and it introduces the risk of making con-
flicting model assumptions. Ideally, one would pre-
fer a single model, abstract enough to be refined at
will, and that would lend itself easily to verification
of several, possibly orthogonal properties.

In this paper, we show how to build in the Spin
model-checker [5] a model of the Topsy operat-
ing system [6] that covers most parts of the im-
plementation, thus enabling verification of high-
level properties such as task isolation. The main
difficulty of building such a global model is the
trade-off between exhaustivity and tractability: too
fine-grained abstractions would irremediably lead to
state-space explosion. In our model, we provide
abstractions to deal with several aspects of oper-

ating systems, such as scheduling, IPCs, memory
management, hardware interface, and user appli-
cations. We show experimentally that these ab-
stractions enable verifications of several, both low-
level and high-level properties, such as memory pro-
tection and kernel-data consistencies for scheduling
and message passing.

The operating system we deal with in this paper
is Topsy v2 [6], a multi-threaded embedded operat-
ing system. Besides multi-threading, the kernel im-
plements most classical features of general-purpose
operating systems, such as memory allocation, dy-
namic thread creation and message-passing IPCs,
making our approach reusable for other operating
systems. As an embedded operating system, Topsy
does not load dynamically user applications; the
kernel and the user application are compiled and
linked together statically (only one multi-threaded
user application is supported).

This paper is organized as follows. In Sect. 2, we
describe the Topsy operating system together with
its Spin model. In Sect. 3, we discuss the specifica-
tion and verification of several properties, including
task isolation. In Sect. 4, we compare with related
work, and finally conclude.

2 Model

We explain in detail our model in a modular way:
multi-threading in Sect. 2.1, scheduling in Sect. 2.2,
hardware in Sect. 2.3, memory in Sect. 2.4, IPCs
and system calls in Sect. 2.5. For each part, we first
give a general description with possibly specificities
for Topsy, then we describe their model in Spin.

1

日本ソフトウェア科学会第 23回大会（2006年度）論文集 2

2.1 Multi-threading

Definitions A thread is a control-flow imple-
mented by a piece of code and described by a data
structure called thread descriptor. A thread de-
scriptor contains an id that identifies uniquely the
thread, a set of levels of privileges (to control re-
source access and scheduling), a context (the state
of the thread, i.e., the values of the local variables
and the last instruction executed), and status infor-
mation (for scheduling and communication).

A multi-threaded operating system is the control-
flow resulting of the interleaved execution of
threads. A special thread, called the interrupt han-
dler, manages the scheduling and the interaction
between threads; it is activated in-between the ex-
ecution of any other two threads.

Spin Model We model threads by Spin processes,
whose interleaved execution is provided natively by
Spin. In this setting, each thread is given a unique
Spin process id, and its context is modeled by the
state of the Spin process. A thread descriptor is
represented by a Spin data-structure composed of:
the Spin id (and therefore the associated context),
the execution privilege, scheduling information and
a message queue for communication:

typedef Thread_desc {
byte contextPtr;
bool privilege;
SchedulerInfo schedInfo;
MessageQueue msgQueue;

};

In order to control the interleaving, we use the
special Spin process definition provided, that spec-
ifies a condition under which a process is executed
or not. For example, the kernel service of Topsy in
charge of IOs is modeled as follows:

proctype ioThread()
provided (_curr_ctxt == _pid) { ... };

where _curr_ctxt is the Spin id of the currently
running operating system thread, and _pid is the
Spin id of the currently executing Spin process (this
is a variable natively provided by Spin).

Although Spin has a native feature to spawn a
process, it does not allow to end it dynamically: a
process must reach its last statement to terminate.
In order to model termination of user threads (ker-
nel threads are never killed), we add a clause to the
provided condition that allows for a killed process
to execute to its end:

proctype uThread()
provided (_curr_ctxt==_pid || _killed[_pid])
{ ... };

2.2 Scheduling

Definitions Scheduling is the operation by which
the interrupt handler chooses the next thread to be

run. This decision is based on priorities associated
with threads. There is a wide variety of algorithms
for this purpose.

The Topsy kernel implements a priority-based
round-robin scheduling, by which the highest-
priority ready-thread is always chosen. The sched-
uler uses queues to store the threads according to
their status (RUNNING, READY, or BLOCKED). In addi-
tion, threads in the READY queue are sorted by their
priority: “kernel” > “user” > “idle” (for a special
idle thread executed when no thread is ready).

Spin Model The algorithm implemented in the
model obeys the same priority rules as in Topsy. For
this purpose, we use the scheduling status and prior-
ity that are stored into the schedInfo field of thread
descriptors. The scheduling decision is stored in
a global variable _curr_id that indexes a thread
descriptor, from which one can retrieve the corre-
sponding context (a Spin id).

There is a small difference with the original al-
gorithm: we use a traversal of thread descriptors
instead of queues, so that the scheduling is not fair
anymore. This is not a problem for the properties
we verify in this paper, because they are not related
to the scheduling policy. However, in order to verify
fairness properties, one would need to re-implement
the scheduler with queues.

2.3 Hardware

Definitions The hardware consists essentially of a
processor that provides execution of a single thread
and accesses to resources such as segments of mem-
ory. To control the accesses to resources, the proces-
sor provides privileges (usually, operating systems
privileges map the hardware privileges). In partic-
ular, the execution privilege level of the currently
running process is always kept as a part of the con-
text (usually in a register).

To enable interleaving of executions, the proces-
sor provides interrupts: a mechanism that puts a
value into a special register and triggers switching
of threads. Usually, the hardware includes an inter-
nal clock that can be used by the operating system
to switch a thread after a predetermined execution
period.

Spin Model To provide exclusive execution, we
model the program-counter register of the proces-
sor by the global variable _curr_ctxt, that contains
the Spin id of the current thread. In order to keep
track of the current privilege in our model, there
is a global variable called CPU_MODE; it is set by the
context switch to the execution privilege level of the
running thread.

To switch from one process to another, we use the
provided clause: the execution of a given thread is
triggered by changing the value of _curr_ctxt to the

日本ソフトウェア科学会第 23回大会（2006年度）論文集 3

appropriate Spin id.
To model interrupts, we use a special channel

to store the nature of the interrupt before context
switching. For example, any thread can raise a soft-
ware interrupt by sending a software interrupt mes-
sage on this special channel and switch. In con-
strast, IOs interrupt are raised by external Spin
process (representing some piece of hardware). In
particular, the internal clock is model by a Spin
process that non-deterministically send a time in-
terrupt and switches.

2.4 Memory

Definitions For security reasons, processors allow
to partition memory into independent regions asso-
ciated with a memory access privilege level. When
a thread attempts a memory access, the proces-
sor compares its execution privilege with the ac-
cess privilege of the corresponding region. If the
execution privilege is equal or higher, the access is
granted, otherwise the processor stops the execu-
tion and raises an interrupt.

To use its memory efficiently, a kernel usually ap-
peals to dynamic memory allocation. For example,
dynamic memory allocation is used for dynamic cre-
ation and destruction of threads. Typically, such an
allocator maintains a partition of free and allocated
blocks inside the kernel data memory.

Since Topsy uses only one multi-threaded user
application, the memory is split in two regions to
separate the kernel from the user application.

Spin Model We model the memory access mech-
anism by (1) an array that associates each region
with its privilege level and (2) a set of macros
that models memory accesses. At each memory ac-
cess, these macros check the current mode processor
(CPU_MODE). If the access is allowed, the Spin assign-
ments are executed, otherwise a memory-fault in-
terrupt is raised and the context is switched.

In order to model a memory allocator that manip-
ulates several types of data structures, we provide
a macro that creates an instance of a specialized
memory allocator for a given data-structure:

#define HL(type,size,data,used,hmlock,
hmInit,hmAlloc,hmFree)

type data[size];
bool used[size];
chan hmlock = lock;
inline hmInit(i) { ... };
inline hmAlloc(return) { ... };
inline hmFree(return) { ... };
};

For illustration, the memory allocator of the kernel
is instantiated by:

HL(Thread_desc, MEMBLOCK_N, mem, used, hmlock,
hmInit, hmAlloc, hmFree)

The effect of the macro expansion above is to build
an array mem of thread descriptors, an array used to
keep track of which thread descriptors are free or al-
located, and a set of functions hmInit, hmAlloc and
hmFree. The initialization function hmInit sets all
the data-structures to Free. The allocation function
hmAlloc tries to find a free data-structure, declares
it Allocated and returns its index. The deallocation
function hmFree sets a data-structure of a given in-
dex to Free.

2.5 Kernel Services

2.5.1 IPCs

Definitions IPCs are a message passing mech-
anism that allows threads to communicate with
each other. To use this mechanism, a thread sets
its register to appropriate values (id of the re-
ceiver/sender, address of a buffer where the body of
the message is stored or have to be stored), and then
raises a software interrupt. This interrupt switches
the context of the thread with the context of the
interrupt handler. The latter routes the message,
make a scheduling decision and finally restore the
running thread by switching the context.

Spin Model A global channel is used to pass ar-
guments from a thread to the interrupt handler,
whereas the response is sent back to the thread
through a private channel whose pointer is passed
as the reply argument of the message receiving and
sending functions:

inline recvmsg(from, smsg, reply) { ... };
inline sndmsg(to, smsg, reply) { ... };

These two functions make use of the msgQueue field
of the thread descriptor to store messages and com-
munication status information. Let us explain in
more details their implementations.

When a thread wants to receive a message, the
interrupt handler looks into its message queue. If
an adequate message is present, it is dequeued and
sent back to the thread, otherwise the thread is
blocked and declared waiting for a message, and
the IPC arguments are saved. Concretely, the in-
terrupt handler sets the thread to a status called
WAITING (msgPendingStatus field of msgQueue), saves
the expected sender id (threadIdPending field) and
the pointer of the channel where to send back the
message (msgPendingPtr field).

When a thread wants to send a message, the in-
terrupt handler tries to find the receiver. If it is not
an existing thread, the IPC fails, otherwise the in-
terrupt handler checks whether the receiving thread
is waiting for this message. If this is the case, the
message is sent directly to the thread which is un-
blocked, otherwise it is inserted into the thread mes-
sage queue msgQueue.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 4

2.5.2 System Calls

Definitions In Topsy, system calls (such as
threads creation and destruction) are provided by
kernel threads. More precisely, a thread makes a
system call by sending a request to the appropriate
kernel threads via an IPC message, whose body
contains the name of the system call and its
arguments. In the same way, the result is sent back
into a message.

Spin Model The kernel threads are defined as
Spin processes, and therefore are managed like the
other threads. Yet, they belong to the kernel code
and hence can manipulate directly its data. These
threads are implemented as infinite loops which re-
ceive and parse a message, execute the system call
code, and send back a response.

Our model implements the thread manager (re-
sponsible for creation and deletion of threads), the
IO manager (that acts as a directory for IO drivers),
and the network manager (network IO driver) but
not the memory management kernel thread (whose
purpose is to manage pages of virtual memory, but
Topsy v2 uses a flat memory model and there is no
implementation yet).

3 Experiments
We present several verifications done on the

Topsy model described in the previous section:
“status correctness” is a low-level property that
only deals with the scheduler, “status consistency”
and ‘reply consistency” are high-level properties
that deal with both the scheduler and the IPCs, and
“task isolation” is a high-level property that deals
with execution privilege and memory management.

3.1 A Generic Test Program

Verifications are done using a test program. This
test program is an echo server that is generic in the
sense that it uses all the kernel services provided
by the model of the Topsy thread manager and IO
manager (see Sect. 2.5.2).

The main thread of the echo server repeatedly
does the following: it tries to create a child-thread
using the Topsy thread manager and waits for a
message by which the child-thread indicates it is
about to terminate. The child-thread does the fol-
lowing. When it starts, it tries to open a network
connection by sending a request to the Topsy IO
manager; the response it gets is the id of a ker-
nel thread managing the network. Via this kernel
thread, the child-thread eventually receives a net-
work packet, sends it back (the echo service), and
sends a closing message to the IO manager. Then,
it sends a message to its father indicating it will
make an exit system-call.

3.2 Status Correctness

The status correctness property states that the
kernel always restores the thread that has been
scheduled. Put formally, “whenever a thread is ex-
ecuting (threadrun assertion below), its scheduling
status is RUNNING (runningthreadcurr assertion)”:
#define threadrun

(_curr_ctxt == (mem[curr_id].contextPtr) &&
_syst_run)

#define runningthreadcurr (used[curr_id] &&
mem[curr_id].schedInfo.status == RUNNING)

[](threadrun -> runningthreadcurr)

3.3 Status Consistency

This property states that a thread waiting for a
message can never be scheduled. Put formally, “if
a thread is waiting for a message (waitingthread
assertion below), its scheduling status must be
BLOCKED (blockedthread assertion)”:
#define waitingthread (used[ut_init_id] &&

mem[ut_init_id].msgQueue.msgPendingStatus ==
WAITING)

#define blockedthread (used[ut_init_id] &&
mem[ut_init_id].schedInfo.status == BLOCKED)

[]((waitingthread && threadrun) ->
blockedthread)

In this specification, threadrun ensures that this
is not the interrupt handler that is executing. This
is essential to distinguish this situation because the
interrupt handler precisely may break this property
when updating the thread status.

The Topsy thread id of the user thread is hard-
wired (ut_init_id variable). This is not a limitation
of our approach because in Spin it is always possible
to construct by hand a never-claim with an implicit
quantification over a range of thread ids. However,
this is not directly expressible in LTL.

3.4 Reply Consistency

The reply consistency property states that the
return channel for an IPC is not changed until
the thread is unblocked and the expected message
is sent. Put formally, “if a thread is waiting for
a message, the value of its return channel (field
msgPendingPtr below) does not change until the
thread is NOT_WAITING”:
#define notwaitingthread (used[ut_init_id] &&

mem[ut_init_id].msgQueue.msgPendingStatus ==
NOT_WAITING)

#define pendingPtrval (used[ut_init_id] &&
mem[ut_init_id].msgQueue.msgPendingPtr ==

_reply_chan[ut_init_id])

[](waitingthread ->
(pendingPtrval U notwaitingthread))

日本ソフトウェア科学会第 23回大会（2006年度）論文集 5

3.5 Task Isolation

The task isolation property is important for op-
erating system verification because it implies that
only the kernel can change its data. For a multi-
threaded OS such as Topsy (only one user applica-
tion), the task isolation means that whenever a user
thread is running, it must not have a privilege level
that grants him access to the memory of the ker-
nel. Put formally, “whenever a user thread is run-
ning (userthreadrun assertion below), the current
privilege does not allow access to kernel memory
(kernelaccess assertion)”:

#define kernelaccess
((CPU_MODE == segment[0]) || kernelmode)

#define userthreadrun
(_curr_ctxt == (mem[curr_id].contextPtr) &&
_user_thread[curr_id] && _syst_run)

[](userthreadrun -> !kernelaccess)

3.6 Results

Despite its completeness, the size of the model is
reasonable: 770 lines of code for Topsy and 80 lines
for the echo server (the whole Spin development is
available online [7])

We measure1 resource consumption in function
of the number of child-threads created by the echo
server for the properties of the previous sections.

The verifications of “status correctness”, “status
consistency” and “task isolation” use almost the
same amount of ressource, linear in both space and
time (that is why we merge these three graphs into
only one in Fig. 1).

In contrast, the verification of “reply consistency”
uses more ressource. The space consumption is still
linear, but around three times larger because state
formulas of the LTL formula contain more informa-
tion. The time consumption is quadratic because
the two temporal modalities nested in the LTL for-
mula require an additional nested traversal of the
state-space.

4 Related Work
Contrary to our work, all Spin-based verification

of operating systems focus on only one property. In
consequence, the proposed models are specification-
oriented and does not enable verification of high-
level properties.

In [1], the inter-task communication facility of the
RUBIS micro-kernel is modeled to build test pro-
grams. Verifications check properties such as con-
sistency of flags or validity of the status, similarly
to “status correctness” and “status consistency” we
checked in Sect. 3.

1Experiments done on an Opteron (64-bit) 2.4GHz ma-
chine with 16GB of RAM.

In [2], the Fluke kernel is modeled by a set of
macros and used in several test programs. These
programs are decorated with assertions checking
the return values of kernel functions. Although the
model spans a wide part of the kernel, it does not
include any modeling of the hardware.

In [3], the VFiasco IPCs are modeled to verify
the communication mechanism of the kernel. The
approach is to translate directly the source code
in Spin. The modeled scenario is composed of two
communicating threads, modeled as Spin processes.
All the tests focus on the consistency of flags used
by the communication mechanism.

5 Conclusion
In this paper, we have model-cheked several prop-

erties of a multi-threaded operating system. The
originality of our model is to enable verification of
high-level properties, i.e., properties whose verifica-
tion requires modeling of several parts of the system
(not only the operating system but also its under-
lying hardware). In particular, this model made it
possible to verify the task isolation propery of the
Topsy operating system. Despite the richness of the
model, our experiments showed that resource con-
sumption during verification is reasonable enough
to be performed on standard computer.

References
[1] G. Duval and J. Julliand. Modeling and Verifi-

cation of the RUBIS µ-kernel with SPIN. In 1st
SPIN Workshop (SPIN 1995).

[2] P. Tullmann, J. Turner, J. McCorquodale, J. Lep-
reau, A. Chitturi, and G. Back. Formal Meth-
ods: A Practical Tool for OS Implementors. In
6th Workshop on Hot Topics in Operating Systems
(HotOS-VI 1997).

[3] Endrawaty. Verification of the Fiasco IPC Imple-
mentation. Master Thesis. Desden University of
Technology. 2005.

[4] W. R. Bevier. A Verified Operating System Kernel.
Ph. D. Thesis. University of Texas at Austin. 1987.

[5] G. J. Holzmann. The Spin Model Checker. Addi-
son Wesley. 2003.

[6] L. Ruf, C. Jeker, B. Lutz, and B. Plattner. Topsy
v3: A NodeOS For Network Processors. In 2nd
International Workshop on Active Network Tech-
nologies and Applications (ANTA 2003).

[7] R. Affeldt and N. Marti. Spin model of
Topsy available at: http://staff.aist.go.jp/

reynald.affeldt/seplog/.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 6

time (2)

time (1)

1×104

2×104

3×104

4×104

space (2)

space (1)

0 50 100 150 200 250

200

400

600

800

1000

1200

1400

1600

number of threads

sp
ac

e
in

m
eg

ab
y
te

s

ti
m

e
in

se
co

n
d
s

Figure 1: Resource consumption (memory space and execution time). Graphs (1) are for the “reply
consistency” property. The results for the properties “status correctness”, “status consistency”, and
“task isolation” are merged in graphs (2).

