
日本ソフトウェア科学会第 23回大会（2006年度）論文集 1

電子投票プロトコルの匿名性検証のための
関数部分知識モデル

Partial Knowledge of Cryptographic Functions
for Verifying the Anonymity of E-Voting Protocols

川本 裕輔 † 真野 健 †† 櫻田英樹 †† 萩谷 昌己 † ††

Yuusuke KAWAMOTO Ken MANO Hideki SAKURADA Masami HAGIYA

† 東京大学大学院情報理工学系研究科
Graduate School of Information Science and Technology, University of Tokyo

{y kwmt,hagiya}@is.s.u-tokyo.ac.jp
††NTTコミュニケーション科学基礎研究所

NTT Communication Science Laboratories, NTT Corporation
{mano,sakurada}@theory.brl.ntt.co.jp

This paper proposes a method for formalizing and analyzing a partial knowledge of cryptographic
functions by using a temporal epistemic logic within a framework of multi-agent systems. The key
to expressing the agents’ partial knowledge of publicly available cryptographic functions lies in the
distinction between the functions available to the agents and the knowledge of the functions acquired by
the agents. We consider that agents gradually acquire a partial knowledge of cryptographic functions
by performing actions in a multi-agent system model where the interpretation of the cryptographic
functions may vary from possible world to possible world. In such a new model, we present a way of
verifying the anonymity of security protocols, and apply it to a simple electronic voting protocol.

1 Introduction

Formal theories of knowledge based on multi-agent
systems have proved quite useful for formalizing
and verifying the anonymity of security protocols.
Definitions of anonymity are formalized in terms of
knowledge by using an epistemic logic in [9], and the
semantic characterization of anonymity in a frame-
work of multi-agent systems is discussed in [4]. In
such a formalization of anonymity, the anonymity
of Chaum’s Dining Cryptographers protocol, a se-
curity protocol for anonymous broadcast, is verified
in [10]. Although these frameworks are effective for
roughly discussing anonymity, they are insufficient
to argue the knowledge of cryptographic functions.
By introducing the notion of algorithmic knowledge
[7], the knowledge of cryptographic functions can
be expressed as the local algorithms possessed by
agents who use them. However, this formalization
of an agent’s knowledge of cryptographic functions
is not suitable for expressing the partial nature of
the knowledge of functions.

This paper proposes a novel method for formal-
izing a partial knowledge of cryptographic functions
by using a temporal epistemic logic within a frame-
work of multi-agent systems. We consider the pro-
cess whereby agents gradually acquire the partial
knowledge of cryptographic functions by perform-

ing actions. We assume that agents do not have any
knowledge of cryptographic functions at the begin-
ning, and that agents’ knowledge of cryptographic
functions is determined by their own cryptographic
actions corresponding to the functions. To formal-
ize secrecy and anonymity of messages in this frame-
work, we take the interpretation of cryptographic
functions as varying from possible world to possi-
ble world. For example, if a plaintext encrypted in
a message is secret, we consider that one plaintext
is encrypted in the message at one possible world,
and that another plaintext is encrypted at another
possible world.

In this model, we introduce the concept of key-
independence, and define the independence of the
execution of the security protocols containing cryp-
tographic operations. By employing this concept of
independence and the partial knowledge of crypto-
graphic functions, we obtain a method of verifying
the anonymity of security protocols.

We have organized the rest of the paper as fol-
lows. Section 2 introduces a model based on multi-
agent systems and a partial knowledge of crypto-
graphic functions. Section 3 describes syntax and
semantics for a protocol specification. Section 4
presents a method of verifying the anonymity of
security protocols in our model, and apply this
method to a simple electronic voting protocol. Sec-

日本ソフトウェア科学会第 23回大会（2006年度）論文集 2

tion 5 discusses the limitations of our method and
the possibilities of extending our framework.

2 Knowledge in Multi-Agent
Systems

In this section, we present a model based on the
framework of [8] for describing multi-agent systems.
First, we provide a brief review of the framework.
Then, we specify the details of our model such as the
data domain, actions, and cryptographic functions.
Finally, we explain the behavior of the model.

2.1 Overview of Multi-Agent Sys-
tems

A multi-agent system consists of many possible
worlds where each agent is in some local state. We
assume that an agent’s local state contains all the
information accessible to the agent. A tuple of the
local states of all agents is called a global state.
A run is defined as a function from the time do-
main, ranging over the natural numbers, to the set
of global states. Intuitively, a run expresses a se-
quence of global states in chronological order. A
point, or possible world, is a pair (r, m) consist-
ing of a run r and time m. The global state at
a point (r, m) is denoted by r(m), and the local
state of an agent X at a point (r, m) is denoted
by rX(m). The equivalence of two local states s
and s′ is written as s = s′. We say that two points
(r, m) and (r′, m′) are indistinguishable to an agent
X (notation: (r, m) ∼X (r′, m′)), if X has the
equivalent local state at (r, m) and (r′, m′), that
is, rX(m) = r′X(m′). Note that this indistinguisha-
bility relation ∼X is an equivalence relation.

The knowledge of agents in multi-agent systems
can be defined by using the indistinguishability of
global states. Let R be a system, that is, a set of
runs, X be an agent, and KX(r, m) be the set:

KX(r, m) =
{

(r′, m′)
∣∣∣∣ r′ ∈ R, m′ ∈ N ,

r′X(m′) = rX(m)

}
.

Intuitively, X knows a fact ϕ at (r, m) if ϕ is true at
all the points X thinks possible at (r, m), that is,
in all the possible worlds of KX(r, m). It should be
noted that agents’ knowledge is determined solely
by their local states.

To provide a formal definition of knowledge, we
need to undertake some preparations. Suppose Φ
is a set of atomic formulas. The language in our
framework is built up using each atomic formula
p in Φ, Boolean connectives, an unary epistemic
operator KX for each agent X, and unary temporal

operators ⃝, ⃝−1, and 2. The formula of this
language is given by the rule:

ϕ ::= p | ¬ϕ |ϕ ∧ ϕ |KXϕ | ⃝ ϕ | ⃝−1 ϕ |2ϕ.

PX is the dual operator for KX , which is defined
by PXϕ := ¬KX¬ϕ. Repetitions of temporal oper-
ators are abbreviated as
⃝iϕ := ⃝· · ·⃝︸ ︷︷ ︸

i

ϕ and ⃝−i ϕ := ⃝−1 · · ·⃝−1︸ ︷︷ ︸
i

ϕ.

We also use the following abbreviations for disjunc-
tion and implication: ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) and
ϕ → ψ := ¬ϕ∨ψ. An interpreted system I is a pair
(R, π) consisting of a system R and an interpreta-
tion π, which is a truth assignment to each atomic
formula in Φ at each point. The satisfaction of a
formula ϕ is inductively defined as follows:

• (I, r, m) |= p if and only if (π(r, m))(p) =
true,

• (I, r, m) |= ¬ϕ if and only if not (I, r, m) |=
ϕ,

• (I, r, m) |= ϕ∧ψ if and only if (I, r, m) |= ϕ
and (I, r, m) |= ψ,

• (I, r, m) |= KXϕ if and only if (I, r′, m′) |=
ϕ for any (r′, m′) ∈ KX(r, m),

• (I, r, m) |= ⃝ϕ if and only if (I, r, m+1) |=
ϕ,

• (I, r, m) |= ⃝−1ϕ if and only if (I, r, m −
1) |= ϕ and m ≥ 1,

• (I, r, m) |= 2ϕ if and only if (I, r, m′) |= ϕ
for any m′ ≥ m.

2.2 Actions and Cryptography

Any agent can perform a set of actions between any
successive points. Actions are specified by the data
used to perform the actions and the action types.
To clarify the data employed in our model, we define
the data domain D as a sufficiently large set of data
including data representing the names of agents, ac-
tion types, and available cryptographic functions.
We assume that D is identical in all possible worlds.
The types of actions in the model are restricted to
communication actions and internal actions.

Communication actions are actions whereby a
message is sent from one agent to another agent
through a communication channel. Our model
is restricted to the case where messages are nei-
ther lost nor delayed, and are always received by
some agent. We consider two types of communica-
tion channels: normal communication channels and

日本ソフトウェア科学会第 23回大会（2006年度）論文集 3

anonymous communication channels. The receivers
of the messages sent through a normal communica-
tion channel know exactly who are the senders. On
the other hand, communications through an anony-
mous communication channel do not leak any infor-
mation about the senders to any agent other than
the senders themselves. Anonymous communica-
tion channels are often used in electronic voting
protocols [2].

Internal actions in this model are restricted to en-
cryption actions and decryption actions in public-
key cryptography. We sometimes refer to these in-
ternal actions as cryptographic actions. Any cryp-
tographic scheme used in cryptographic actions is
represented by a pair consisting of an encryption
function and a decryption function from D × D
to D. The encryption/decryption functions are
associated with each run. In this cryptographic
scheme, encrypting/decrypting a message is easy
for agents who possess the encryption/decryption
key, while agents who do not possess the encryp-
tion/decryption key cannot access the contents of a
message without requiring a great deal of compu-
tation power, because the data domain D is suffi-
ciently large. In the rest of the paper, cryptographic
schemes are limited to (σenc, σdec) for simplicity,
and all agents can perform encryption actions using
σenc and decryption actions using σdec. Note that
our model can also deal with random encryption
using a nonce by introducing a constant denoting a
nonce. However, this paper does not consider ran-
dom encryption actions for simplicity. Let d be a
message, e be an encrypted message, and kpub and
ksec be the corresponding public and secret keys.
The encryption function σenc and the decryption
function σdec must satisfy five constraints:

• σdec(σenc(d, kpub), ksec) = d

• σdec(σenc(d, ksec), kpub) = d

• σenc(σdec(e, kpub), ksec) = e

• σenc(σdec(e, ksec), kpub) = e

• these two functions are collision-free, that is,
they map distinct pairs consisting of a message
and a key to distinct encrypted/decrypted mes-
sages.

In these constraints, we assume that the crypto-
graphic functions denoted by the same function
symbols may have a different interpretation in dif-
ferent runs. The interpretation of cryptographic
function symbols is mentioned in a later section.

2.3 Local States

Agents observe actions between any successive
points. An action observed between points (r, m−
1) and (r, m) from an agent X’s viewpoint is re-
ferred to as X’s observed action between the two
points. Note that observed actions are not always
the same as actually performed actions. An agent
X’s action observation between points (r, m − 1)
and (r, m) is the set of all of X’s observed actions
between the two points.

All of the actions any agent observes are recorded
in the local state of the agent. The local state of
any agent X is a triple of the form:

⟨history, data, func⟩,
where history is the sequence of sets of actions that
X has observed at each time, data is the set of
data that X knows, and func is all the crypto-
graphic function information known to X. Each
of the above items of a local state s is sometimes
referred to as s.history, s.data, and s.func, respec-
tively. Two local states s and s′ are equivalent if
s and s′ are constructed from the same items. We
assume that the history and the func of any agent
are empty at time 0, which implies each agent has
no initial knowledge of cryptographic functions.

Hereafter we consider only the case multi-agent
systems are synchronous perfect recall. A multi-
agent system is synchronous if actions take place
between points. All agents have access to a shared
clock, distinguish the present from the future, and
perform actions in synchrony. Agents have per-
fect recall if no agent loses or forgets previously ac-
quired information. In a system with perfect re-
call, rX(m).history is the tuple obtained by ap-
pending X’s action observation between (r, m − 1)
and (r, m) to rX(m − 1).history. Thus, the local
state of any agent encodes everything that has hap-
pened from the agent’s point of view.

To discuss a situation where agents try to over-
come secrecy or anonymity, we introduce the two
types of agents: normal agents and intruder agents.
Normal agents can perform all kinds of actions de-
scribed above, and can observe only their own ac-
tions, including communication actions by which
they receive messages. On the other hand, intruder
agents are allowed to perform only internal actions,
and to observe all their own actions and all the com-
munication actions performed by any agent. Note
that intruder agents cannot observe any internal ac-
tion of any other agent.

We review the model’s behavior for each kind of
action. In the following description, any intruder
agent is denoted by I, and an action is represented
by a quadruple whose first element expresses its ac-
tion type.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 4

When an agent X sends a message d to another
agent Y through a normal communication chan-
nel between points (r, m − 1) and (r, m), X, Y ,
and I observe the same action ⟨sendnorm, d, X, Y ⟩,
where sendnorm is a semantic entity representing
the action type. However, with communications
through an anonymous communication channel, ob-
served actions differ between the sender and the
receiver, because anonymous communication chan-
nels do not leak any information about the senders
to the receivers. When an agent X sends a message
d to another agent Y through an anonymous com-
munication channel between the points (r, m − 1)
and (r, m), X observes ⟨sendano, d, X, Y ⟩, and
Y and I observe ⟨sendano, d, ⊥, Y ⟩, in which the
symbol ⊥ is used to represent the lack of in-
formation about the sender X. The message d
sent in each communication action should be pos-
sessed by the sender X, i.e., should belong to
rX(m − 1).data, or should be a tuple composed of
data in rX(m − 1).data. When the message d is re-
ceived by the receiver Y , it is added to rY (m).data
and rI(m).data. If the received message is a tuple,
it is decomposed and its components are added to
rY (m).data and rI(m).data. The func item of the
local state of any agent is unchanged by communi-
cation actions.

In contrast to communication actions, internal
actions extend the func item of local states. Let
ϵ and δ be the data in D expressing the names
of the cryptographic operations corresponding to
the encryption function σenc and the decryption
function σdec. Let kpub be a public key, and ksec

be the secret key corresponding to kpub. If an
agent X encrypts a message d by using σenc and
kpub and obtains the value e of σenc(d, kpub) be-
tween points (r, m− 1) and (r, m), X observes the
internal action ⟨encrypt, ⟨d, kpub⟩, e, X⟩ and adds
the partial knowledge of cryptographic functions
⟨ϵ, ⟨d, kpub⟩, e⟩ to rX(m).func. As regards X’s de-
cryption actions with σdec and ksec, X observes
⟨decrypt, ⟨e, ksec⟩, d, X⟩ and adds ⟨δ, ⟨e, ksec⟩, d⟩
to rX(m).func. When the message e or d is ob-
tained by the encryption or the decryption, it is
added to rX(m).data. If the message is a tuple,
it is decomposed and its components are added
to rX(m).data. The unencrypted message d or
undecrypted message e and the key kpub or ksec

should be possessed by X, i.e., should belong to
rX(m − 1).data, or should be tuples composed of
data in rX(m − 1).data. From this assumption,
our model does not treat cryptographic actions us-
ing random data, and thus does not allow intruder
agents to perform a guessing attack.

When no actions are observed from an agent’s
point of view, the agent’s action observation is the

empty set, and the data and the func of the agent
remain completely unchanged.

2.4 Knowledge of Cryptographic
Functions

Formalizing the secrecy of cryptography is neces-
sary for discussing the anonymity of security pro-
tocols. To express the secrecy of public-key cryp-
tography by using a temporal epistemic logic, it is
natural to consider a model where the interpreta-
tion of cryptographic function symbols may vary
from run to run.

For example, let d1, · · · dn (n ≫ 2) be disjoint
plaintexts, kpub be a public key, ksec be the secret
key corresponding to kpub, e be an encrypted mes-
sage, and σenc(d1, kpub) = e hold. Suppose that
an agent X knows one of the plaintexts d1, · · · dn

is encrypted in the message e, and that X does not
know the secret key ksec. If X does not know at
all which plaintext is encrypted in e, X thinks it
possible that another plaintext di (2 ≤ i ≤ n) is
encrypted in e. In the model described above, this
intuition is formalized as follows: σenc(d1, kpub) = e
holds at the actual world, σenc(d2, kpub) = e holds
at another world X consider possible, · · · , and
σenc(dn, kpub) = e holds at another possible world.
Note that the interpretation of the encryption func-
tion symbol σenc in this model varies from possible
world to possible world. Since the interpretation of
cryptographic function symbols, in general, cannot
change as time passes, any cryptographic function
symbol at a point has the same interpretation as
those at any other point on the same run. Hence,
it is natural to consider that the interpretation of
cryptographic function symbols varies from run to
run.

By employing an epistemic logic, we can express
the secrecy of d1 with respect to X as the following
formula:

(σenc(d1, kpub) = e)

→
∧

1≤i≤n

PX (σenc(di, kpub) = e).

It should be noted that this formula is similar to
the total secrecy defined in [3], where the secrecy of
cryptography is not treated.

To deal formally with agents’ knowledge of cryp-
tographic functions in multi-agent systems, we con-
sider a system R which satisfies the following con-
ditions:

• the cryptographic functions denoted by the
function symbols σenc and σdec are associated
with each run of R,

• for any interpretation ψ of σenc and σdec, there
exists a run associated with ψ, and

日本ソフトウェア科学会第 23回大会（2006年度）論文集 5

• any constant symbol denotes the same fixed
element of D in any possible world.

The second condition implies that any agent consid-
ers all the interpretations of σenc and σdec possible
at time 0, because the history and the func of any
agent are empty at time 0.

This formalization allows us to consider the
process whereby agents gradually acquire their
partial knowledge of cryptographic functions by
performing cryptographic actions. We assume that
agents’ knowledge of cryptographic functions is
determined by their own cryptographic actions
corresponding to the functions, that is, they never
know the results of encryption/decryption until
they actually perform the encryption/decryption
actions. For example, if an agent X has never
performed either ⟨encrypt, ⟨d1, kpub⟩, e, X⟩ or
⟨decrypt, ⟨e, ksec⟩, d1, X⟩ at a point (r, m), then
X thinks it possible that the encrypted message
e is obtained from the encryption of any plain-
text di, because rX(m).func does not contain
⟨ϵ, ⟨d1, kpub⟩, e⟩. Thus, before performing a
cryptographic action, any agent considers that
there are various possible interpretations of the
cryptographic function symbols that do not agree
with the results of the cryptographic actions the
agent has not performed.

3 Protocol

3.1 Protocol Expressions and their
Semantics

This section describes syntax and semantics for a
protocol specification. We use sansserif letters for
syntax, and italic letters for semantics. The syntax
consists of data expressions, action expressions, and
protocol expressions.

We define the following sets of symbols, which are
mutually exclusive:

• a set I of agent identifier symbols,

• a set Kpub of public key symbols,

• a set Ksec of secret key symbols, and

• a set E of encryption result symbols.

Intuitively, they represent IDs of agents, pub-
lic keys, secret keys, and the results of encryp-
tion/decryption, respectively. We assume that each
element in Kpub is implicitly associated one-to-one
with an element in Ksec, that is, kpub, kpub1, kpub2,
. . . , bpub1, bpub2, . . . in Kpub uniquely correspond to
ksec, ksec1, ksec2, . . . , bsec1, bsec2, . . . in Ksec, respec-
tively. Suppose that K = Kpub ∪Ksec, C = I∪K, and

D = C ∪ E. Each d ∈ D is referred to as a data
expression. The identity relation on D is denoted
by ≡.

To denote action types, we introduce action sym-
bols: sendnorm, sendano, encrypt, and decrypt. We
also use a special action symbol possess to specify
the agents’ initial knowledge of data. Each action
expression has one of the following forms.

possess(X, c1, . . . , cn) (X ∈ I, c1, . . . , cn ∈ C)
sendnorm(d, X, Y) (d ∈ D, X,Y ∈ I)
sendano(d, X, Y) (d ∈ D, X,Y ∈ I)
encrypt(⟨d, k⟩, e, X) (d ∈ D, k ∈ K, e ∈ E, X ∈ I)
decrypt(⟨e, k⟩, d, X) (e ∈ E, k ∈ K, d ∈ D, X ∈ I)

The set of all the action expressions is denoted by
ACT.

A timed action expression is a pair A@m consist-
ing of an action expression A and time m with a sep-
arating symbol @. Any timed action expression with
possess is restricted to the case m = 0. A protocol
expression P is a finite sequence of timed action
expressions A0@m0, A1@m1, . . . , Al@ml satisfying
the following conditions:

1. Ai ∈ ACT for i = 0, . . . , l, and mi ≤ mj if
i ≤ j.

2. For any i > 0, arguments of Ai listed below
also appear in Aj@mj for some mj < mi:

• all its arguments if Ai is a communication
action expression.

• di, ki, and Xi if Ai is of the form
encrypt(⟨di, ki⟩, ei, Xi).

• ei, ki, and Xi if Ai is of the form
decrypt(⟨ei, ki⟩, di, Xi).

Note that the latter three conditions mean that
agents must possess data before performing actions
using them. We identify the order of the timed
action expressions where the same time expression
occurs. The composition of two protocol expres-
sions P1 and P2, denoted by P1 ∗ P2, is the protocol
expression obtained by listing all the timed action
expressions in P1 and P2 in chronological order.

Next, we define the semantics of a proto-
col expression. Recall that σenc and σdec are
two binary function symbols denoting the encryp-
tion/decryption functions associated with each run.
The conditions for the cryptographic functions de-
scribed in Section 2.2 are represented by the follow-
ing set Γ of equations.

Γ = { σdec(σenc(x, kpub), ksec) = x,
σenc(σdec(x, ksec), kpub) = x,
σdec(σenc(x, ksec), kpub) = x,
σenc(σdec(x, kpub), ksec) = x
| kpub ∈ Kpub, ksec ∈ Ksec }

日本ソフトウェア科学会第 23回大会（2006年度）論文集 6

A data assignment ψ associated with each run r is a
mapping that assigns an element in the data domain
D to every d ∈ D, and the encryption/decryption
functions associated with r to σenc and to σdec. For
any term t constructed from D ∪ {σenc, σdec}, the
assignment of an element in D to t by ψ is defined
as usual.

We say that a run r with its data assignment ψ
follows a protocol expression P at time m, denoted
by (r, m) |= follow(P), if the following conditions
are satisfied:

• If possess(X, c1, . . . , cn)@0 appears in P, then
rX(0).data = {ψ(c1), . . . , ψ(cn)}.

• If sendnorm(d, X, Y)@i appears in P, then the
action ⟨sendnorm, ψ(d), ψ(X), ψ(Y)⟩ is per-
formed between (r, m + i − 1) and (r, m + i).

• If sendano(d, X, Y)@i appears in P, then the ac-
tion ⟨sendano, ψ(d), ψ(X), ψ(Y)⟩ is performed
between (r, m + i − 1) and (r, m + i).

• If encrypt(⟨d, k⟩, e, X)@i appears in P, then
the action ⟨encrypt, ⟨ψ(d), ψ(k)⟩, ψ(e), ψ(X)⟩
is performed between (r, m+i−1) and (r, m+
i).

• If decrypt(⟨e, k⟩, d, X)@i appears in P, then
the action ⟨decrypt, ⟨ψ(e), ψ(k)⟩, ψ(d), ψ(X)⟩
is performed between (r, m+i−1) and (r, m+
i).

• If a timed action expression A@i of a nor-
mal agent does not appear in P, then the nor-
mal agent does not perform the action between
(r, m + i − 1) and (r, m + i).

• If either d or k is not occurred in A0@m0, · · · ,
Ai@mi of P, then no intruder agent can per-
form the cryptographic actions using both ψ(d)
and ψ(k) between (r, m+mi) and (r, m+mi +
1).

In such a case, we also say that P is valid with
respect to ψ.

3.2 Standard Data Assignment

To argue secrecy syntactically, we need to avoid an
interpretation of terms where two distinct expres-
sions accidentally denote the same value. Thus, in
this section, we describe a standard way of defining
the data domain D and data assignments.

Let Term(C) be the set of all terms constructed
from C ∪ {σenc, σdec}. We write the quotient set
of Term(C) by the equivalence derived from Γ as
Term(C)/Γ, and the element in Term(C)/Γ contain-
ing a term t as [t]Γ. Let Θ be the set of all bijections

from Term(C)/Γ to D satisfying θ([c]Γ) = c for any
θ ∈ Θ and any c ∈ C. Given θ ∈ Θ, the standard
data assignment ψθ is defined as the following:

• D = D.

• For any d1, d2 ∈ D, ψθ(σenc)(d1, d2) =
θ([σenc(t1, t2)]Γ), where ti ∈ θ−1(di) (i = 1, 2).

• For any d1, d2 ∈ D, ψθ(σdec)(d1, d2) =
θ([σdec(t1, t2)]Γ), where ti ∈ θ−1(di) (i = 1, 2).

Note that, in the above definition, [σenc(t1, t2)]Γ and
[σdec(t1, t2)]Γ are uniquely determined whichever
ti ∈ θ−1(di) is chosen. By the above construction,
for any standard data assignment ψ, it holds that

• ψ(σenc) and ψ(σdec) are collision-free,

• all the equations in Γ hold for ψ,

• for any d1, d2 ∈ D, d1 ̸≡ d2 implies ψ(d1) ̸=
ψ(d2), and

• for any t1, t2 ∈ Term(C), Γ ̸⊢ t1 = t2 implies
ψ(t1) ̸= ψ(t2).

Moreover, we can prove the following basic prop-
erty concerning secrecy.

Lemma 3.1 For any standard data assignment ψ,
intruder agents cannot know ψ(c) by observing the
execution of P if c ∈ C does not appear in P syntac-
tically.

Proof It is easy to see that c occurs syntactically
in t for any t ∈ [c]Γ. Suppose c does not appear in
P. Then every symbol in P denotes a value that
is denoted by some c-free term in Term(C). Thus,
all values obtained by the arbitrary repetition of
encryption/decryption actions are also represented
by c-free terms in Term(C), which cannot denote
ψ(c).

4 Anonymity

In this section, we describe a method of verifying
the anonymity of security protocols in the afore-
mentioned model by using standard data assign-
ments.

4.1 Detailed Example: Electronic
Voting Protocols

To simplify the discussion, hereafter we consider the
following simple protocol, which covers certain es-
sential aspects of complex electronic voting proto-
cols, and assume that there is only one intruder

日本ソフトウェア科学会第 23回大会（2006年度）論文集 7

agent I.

vote1(bsec1, v1, e′1):
encrypt(⟨bsec1, kpub1⟩, e1, A) @1
sendnorm(e1, A, V1) @2
decrypt(⟨e1, ksec1⟩, bsec1, V1) @3
encrypt(⟨v1, bsec1⟩, e′1, V1) @4
sendano(e′1, V1, C) @5

This voting protocol is constituted by the actions of
normal agents A (the voting administrator), V1, V2,
V3 (voters), C (the vote collector), and the intruder
agent I. Data expressing the names of candidates
are denoted by agent identifier symbols B1, . . . , B5.
We use the meta variables v1, v2, v3, each denoting
one of the candidates. The protocol is divided into
two steps. In the first step, the administrator A en-
crypts a secret key bsec1 to obtain a message e1 by
using the encryption function σenc and a public key
kpub1. At the next time, A sends e1 to the voter V1

through a normal communication channel. In the
second step, V1 decrypts the message e1 to obtain
the key bsec1 by using the decryption function σdec

and a secret key ksec1. Then V1 encrypts the con-
tents of vote v1 to obtain an encrypted message e′1
by using the encryption function σenc and the key
bsec1 received from A. At the end of this protocol,
V1 sends e′1 to the collector C through an anony-
mous communication channel. In the same way,
we define two voting protocols vote2(bsec2, v2, e′2)
and vote3(bsec3, v3, e′3). Note that these proto-
cols have parameters. In a later section, we con-
sider variant protocols of vote1(bsec1, v1, e′1) such as
vote1(bsec2, v2, e′2).

From the notation of these voting protocols, we
omit the initial knowledge of data for brevity. We
assume that each agent in these protocols possesses
the following data before executing the protocols.

Agent Initial Knowledge of Data
A A, V1, V2, V3, C, B1, . . . , B5,

kpub1, kpub2, kpub3, bpub1, bpub2, bpub3,
bsec1, bsec2, bsec3

V1 A, V1, V2, V3, C, B1, . . . , B5,
kpub1, kpub2, kpub3, bpub1, bpub2, bpub3,
ksec1

V2 A, V1, V2, V3, C, B1, . . . , B5,
kpub1, kpub2, kpub3, bpub1, bpub2, bpub3,
ksec2

V3 A, V1, V2, V3, C, B1, . . . , B5,
kpub1, kpub2, kpub3, bpub1, bpub2, bpub3,
ksec3

C A, V1, V2, V3, C, B1, . . . , B5,
kpub1, kpub2, kpub3, bpub1, bpub2, bpub3

I A, V1, V2, V3, C, B1, . . . , B5,
kpub1, kpub2, kpub3, bpub1, bpub2, bpub3

4.2 Anonymity Verification Method

This section defines the anonymity of protocols in
this paper. Then we formally introduce notions for
anonymity verification, namely, secrecy and key-
independence. We also introduce a proof method
based on a swap of secret keys.

Definition 4.1 The two sequences x1 and x2 of
the parameters occurring in a protocol P(x1, x2)
are called interchangeable with respect to the in-
truder agent I at time m, if the formula

⃝−mfollow(P(x1, x2)) → PI⃝−mfollow(P(x2, x1))

is satisfied at point (r, m) for any r.

For example, suppose x1 = (bsec1, v1, e′1) and x2

= (bsec2, v2, e′2). Let P(x1, x2) be the composed
protocol vote1(bsec1, v1, e′1) ∗ vote2(bsec2, v2, e′2),
and x1 and x2 in P(x1, x2) be interchange-
able with respect to I at time m. If the formula
⃝−mfollow(vote1(bsec1, v1, e′1) ∗ vote2(bsec2, v2, e′2))
is satisfied at (r, m), ⃝−mfollow(vote1(bsec2, v2, e′2)∗
vote2(bsec1, v1, e′1)) is satisfied at a point I con-
siders possible at (r, m). Thus, I does not know
which of the voters V1 and V2 sent the vote v1.
This is the anonymity we want to show in the next
section.

Next, we introduce notions for verifying
anonymity. We call data secret if the intruder
agent I does not know them. To represent the
secrecy of a secret key ksec with respect to I, we
use the formula secret(ksec). Formally, secret(ksec)
is true at a point (r, m), if the value of ksec is
not in rI(m).data. Hereafter we assume that the
interpretation of terms follows a standard data
assignment. Also, the satisfaction of formulas is
considered in an interpreted system with the truth
assignment of secret and follow defined so far, and
with all runs obtained by all protocol expressions.

Then we present a basic way of proving secrecy.

Definition 4.2 Two protocol expressions are key-
independent if any secret key symbol occurring in
one protocol expression does not occur in the other.

An important property of key-independence is
that the composition of key-independent protocol
expressions also preserves the secrecy of secret keys.

Proposition 4.3 Let P and Q be key-independent
protocol expressions. Suppose that a key k
appears syntactically in P, and that the for-
mula follow(P) → 2(secret(k)) holds. Then
follow(P ∗ Q) → 2(secret(k)) also holds.

Proof This property is proved by a similar syn-
tactic argument to that of Lemma 3.1.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 8

Finally, we introduce a simulation proof method
for anonymity based on a swap of secret key sym-
bols.

Definition 4.4 A run r′ simulates r if r′I(m) =
rI(m) for any m.

Definition 4.5 Let bsec1, bsec2, ksec1, and ksec2 be
key symbols, and ψθ be a standard data assignment.
The key swap of ψθ between bsec1 and bsec2 guarded
by ksec1 and ksec2 is a standard data assignment ψθ′

defined by the following θ′:

θ′([t]Γ) = θ([swap(t)]Γ) (for i = 1, 2),

where swap(t) is the term obtained from the mini-
mum1 term t̂ in [t]Γ by replacing every occurrence
of σenc(bseci, kpubj) in t̂ with σenc(bsec3−i, kpubj) for
i, j = 1, 2.

Proposition 4.6 Suppose that a run r with a stan-
dard data assignment ψθ follows a protocol expres-
sion P at time 0. Assume that key symbols bsec1,
bsec2, ksec1, and ksec2 are secret in r. Let P′ be a
protocol expression which is identical to P with re-
spect to communication actions. Assume also that
P′ is valid with respect to the key swap ψθ′

of ψθ

between bsec1 and bsec2 guarded by ksec1 and ksec2.
Then, there exists a run r′ with ψθ′

such that r′

simulates r and (r′, 0) |= follow(P′) holds.

Proof We assume there does not exist such
a simulation, and derive a contradiction. Since
communication actions are the same, the first ac-
tion that cannot be simulated must be an encryp-
tion/decryption action performed by I. First, sup-
pose that I performs

• an action encrypt(⟨d, k⟩, e, I) in r, and

• an action encrypt(⟨d, k⟩, e′, I) in r′.

From the definition of θ′, d must be bsec1 or bsec2 if
e ̸= e′. However, I cannot perform that action in
r, because bsec1 and bsec2 are secret. Next, suppose
that I performs

• an action decrypt(⟨e, k⟩, d, I) in r, and

• an action decrypt(⟨e, k⟩, d′, I) in r′.

Similarly, from the definition of θ′, k must be ksec1

or ksec2 if d ̸= d′. However, I cannot perform that
action in r, because ksec1 and ksec2 are secret. This
leads to a contradiction, and thus the result follows.

1Roughly speaking, the minimum term is the normal form
of t when we use equations in Γ as a left-to-right rewrite rules.

4.3 Deriving Anonymity by Inter-
changeability

In this section, we discuss a method of deriv-
ing anonymity by using the partial knowledge of
cryptographic functions in the example of the vot-
ing protocols described above: vote1(bsec1, v1, e′1)
and vote2(bsec2, v2, e′2). Note that these two pro-
tocol expressions are key-independent. Let P
be the protocol expression vote1(bsec1, v1, e′1) ∗
vote2(bsec2, v2, e′2), and Q be a protocol expression
that is key-independent of P. Suppose that the ex-
ecution of these protocols terminates at time mmax.
We assume the secrecy of secret keys:

• follow(vote1(bsec1, v1, e′1))
→ 2(secret(bsec1) ∧ secret(ksec1)), and

• follow(vote2(bsec2, v2, e′2))
→ 2(secret(bsec2) ∧ secret(ksec2)).

By Proposition 4.3, we obtain

• follow(P ∗ Q)
→ 2(secret(bsec1) ∧ secret(ksec1)), and

• follow(P ∗ Q)
→ 2(secret(bsec2) ∧ secret(ksec2)).

Let r be such a run that (r, 0) |= follow(P ∗
Q). Then we have (r, mmax) |= secret(bsec1) ∧
secret(ksec1) ∧ secret(bsec2) ∧ secret(ksec2). Since
agents cannot encrypt or decrypt what they do not
possess in this model, the following actions are not
performed by I.

• encrypt(⟨bsec1, kpub1⟩, ...)

• decrypt(⟨e1, ksec1⟩, ...)

• encrypt(⟨bsec2, kpub2⟩, ...)

• decrypt(⟨e2, ksec2⟩, ...)

Therefore, I does not acquire the following knowl-
edge of cryptographic functions in rI(mmax).func.

• ⟨ϵ, ⟨bsec1, kpub1⟩, e1⟩

• ⟨δ, ⟨e1, ksec1⟩, bsec1⟩

• ⟨ϵ, ⟨bsec2, kpub2⟩, e2⟩

• ⟨δ, ⟨e2, ksec2⟩, bsec2⟩

Thus, I thinks there are various possible inter-
pretations of the function symbols σenc and σdec

which do not agree with this function knowledge.
In fact, let us consider the protocol expression
vote1(bsec2, v2, e′2) ∗ vote2(bsec1, v1, e′1), denoted by
P′. Then it follows from Proposition 4.6 that we

日本ソフトウェア科学会第 23回大会（2006年度）論文集 9

can construct a run r′ that simulates r in I’s view-
point, and thus, we have (r′, 0) |= follow(P′ ∗
Q). Since r′I(mmax) ∼I rI(mmax) holds, we have
(r, mmax) |= PI ⃝−mmax follow(P′ ∗ Q). Hence, we
obtain

(⃝−mmax follow(vote1(bsec1, v1, e′1)
∗ vote2(bsec2, v2, e′2) ∗ Q))

→ PI ⃝−mmax follow(vote1(bsec2, v2, e′2)
∗ vote2(bsec1, v1, e′1) ∗ Q),

that is, (bsec1, v1, e′1) and (bsec2, v2, e′2) occurring in
P ∗ Q are interchangeable with respect to I. Let Q
be the protocol expression vote3(bsec3, v3, e′3). As
Q is key-independent of P, we obtain

(⃝−mmax follow(vote1(bsec1, v1, e′1)
∗ vote2(bsec2, v2, e′2)
∗ vote3(bsec3, v3, e′3))

→ PI ⃝−mmax follow(vote1(bsec2, v2, e′2)
∗ vote2(bsec1, v1, e′1)
∗ vote3(bsec3, v3, e′3)).

(1)

In the same way, we have

(⃝−mmax follow(vote1(bsec2, v2, e′2)
∗ vote2(bsec1, v1, e′1)
∗ vote3(bsec3, v3, e′3))

→ PI ⃝−mmax follow(vote1(bsec2, v2, e′2)
∗ vote2(bsec3, v3, e′3)
∗ vote3(bsec1, v1, e′1)).

(2)

It follows from (1) and (2) that

(⃝−mmax follow(vote1(bsec1, v1, e′1)
∗ vote2(bsec2, v2, e′2)
∗ vote3(bsec3, v3, e′3))

→ PI ⃝−mmax follow(vote1(bsec2, v2, e′2)
∗ vote2(bsec3, v3, e′3)
∗ vote3(bsec1, v1, e′1)).

In this way, we obtain the anonymity of the proto-
col.

5 Discussion

The computational aspects of knowledge are also
important in terms of capturing a wide variety of
problems in a framework of reasoning about knowl-
edge. The limitation of agents’ computational abil-
ities has been examined in many studies. For ex-
ample, in the algorithmic knowledge approach [7],

agents can possess algorithms in their local states,
and the limitation of agents’ computational abilities
is expressed by the outputs of the algorithms. How-
ever, it should be noted that this approach is not
suitable for expressing the process whereby agents
gradually acquire a partial knowledge of crypto-
graphic functions.

On the other hand, our approach describes the
limitation of agents’ computational abilities as two
conditions.

First, the cryptographic operations available to
agents are restricted. We consider only the two
cryptographic functions σenc and σdec, and any in-
ternal action is forbidden except for the crypto-
graphic actions corresponding to these functions.
This restriction means that attack is limited to de-
cryption actions using secret keys or a huge number
of repeated encryption actions.

Second, we restrict the cryptographic actions
that agents can perform: agents cannot encrypt or
decrypt a message if they do not possess the mes-
sage or the key. As agents cannot encrypt or de-
crypt random data, this restriction may be strong.
To model cryptographic actions using random data,
we need a probabilistic approach, in which secrecy
and anonymity are expressed by employing proba-
bility measures on the runs of systems. A way of
introducing probability to a multi-agent system is
presented in [6] and [5].

Furthermore, in the model where agents’ knowl-
edge of cryptographic functions is determined by
their own cryptographic actions, the following con-
dition on agents’ computational abilities are im-
plicitly assumed: agents’ computation power is too
weak to derive any knowledge of secret plaintexts or
keys from encryption actions using other plaintexts
and decryption actions using other secret keys.

6 Conclusion

We have introduced a method for formalizing the
partial knowledge of cryptographic functions, and
have shown that this framework enables us to verify
the anonymity of security protocols. Although this
paper has dealt only with a simple security protocol,
it provides a starting point for discussing the knowl-
edge of complex security protocols. Our future re-
search will provide a computational justification for
our verification method in a similar way as in [1],
and employ probability to discuss the knowledge of
cryptographic functions.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 10

Acknowledgements

We thank the members of Computing Theory Re-
search Group at NTT and Hagiya Laboratory for
helpful suggestions.

References

[1] M. Abadi and P. Rogaway. Reconciling two views
of cryptography (the computational soundness of
formal encryption). Journal of Cryptology, Vol. 15,
No. 2, pp. 103 – 127.

[2] A. Fujioka, T. Okamoto, and K. Ohta. A prac-
tical secret voting scheme for large scale elections.
In Advances in Cryptography–AUSCRYPT ’92, pp.
244–251, 1992. LNCS 718.

[3] J. Y. Halpern and K. R. O’Neill. Secrecy in mul-
tiagent systems. In CSFW 2002, pp. 32–48, 2002.

[4] J. Y. Halpern and K. R. O’Neill. Anonymity
and information hiding in multiagent systems. In
CSFW 2003, pp. 75–88, 2003.

[5] J. Y. Halpern and K. R. O’Neill. Anonymity and
information hiding in multiagent systems. Journal
of Computer Security, Vol. 13, No. 3, pp. 483–514,
2005.

[6] J. Y. Halpern and M. R. Tuttle. Knowledge, prob-
ability, and adversaries. Journal of the ACM,
Vol. 40, No. 4, pp. 917–962, 1993.

[7] Y. Moses J. Y. Halpern and M. Y. Vardi. Algo-
rithmic knowledge. In Proceedings of the 5th Con-
ference on Theoretical Aspects of Reasoning about
Knowledge, pp. 255–266, 1994.

[8] Y.Moses R. Fagin, J. Y. Halpern and M. Y. Vardi.
Reasoning about Knowledge. MIT Press, 1995.

[9] P. F. Syverson and S. G. Stubblebine. Group prin-
cipals and the formalization of anonymity. In Pro-
ceedings of the World Congress on Formal Methods
in the Development of Computing Systems, Vol. I,
pp. 814–833, 1999.

[10] R. van der Meyden and K. Su. Symbolic model
checking the knowledge of the dining cryptogra-
phers. In CSFW 2004, pp. 280–291, 2004.

