
日本ソフトウェア科学会第 23回大会（2006年度）論文集 1

E-Origami System Eos

Asem Kasem, Tetsuo Ida, Hidekazu Takahashi, Mircea Marin and Fadoua Ghourabi

We are developing a system called Eos (E -Origami System). Eos does what a human origamist would

do with a piece of origami and moreover assists in reasoning about geometrical properties of origami

construction. It is a collection of Mathematica programs specializing in computational origami. It has

capabilities of symbolic and numeric constraints solving, automated theorem proving, visualization of

origami constructions and web interfacing. In this paper we will describe the basic features of Eos in

details.

1 Introduction

The discipline of studying and manipulating
origami by computer systems has been termed as
Computational Origami. We were interested in the
usage of computers to simulate origami construc-
tions that an orgamist will perform by hand, and
moreover in reasoning about the geometric proper-
ties obtained by these constructions [5, 4]. We will
present in this paper a system called Eos, E-origami
system, which is developed using Mathematica and
has several functionalities to manipulate and reason
about origami computationally.

Eos has capabilities of symbolic and numeric con-
straints solving, automated reasoning and theorem
proving, visualization of origami constructions and
an interface to the web which offers users to have
access to the functionalities of the system using a
web browser.

The paper is organized as follows. In section 2, we
will explain about our computational origami envi-
ronment and its usage to construct origami pieces.
In section 3, we will introduce our approach to use
Eos as a theorem proving environment to prove the
correctness of origami constructions. In section 4,
we explain about webOrigami system that inter-
faces Eos to the web. And in section 5, we draw
some conclusion and point out future research.

2 E-origami system Eos

Eos is developed as Mathematica packages spe-
cialized in origami processing which implements
Huzita’s six axioms [3], and Hatori’s seventh ax-
iom. Those seven axioms are considered the ba-

sic axioms to perform paper folding in our system.
This feature of Eos is represented as a constraint
solving problem to determine fold creases accord-
ing to the constraints specifications that represent
each axiom. These constraints are to be solved nu-
merically to obtain fold creases during what we will
be referring to as construction phase, and to be
stored as geometric properties representing fold op-
erations, and will be used later in reasoning about
the construction, which we will be referring to as
proving phase.

The axioms set is described as follows:

(O1) Given two points, we can make a fold along
the fold line that passes through them.

(O2) Given two points, we can make a fold to bring
one of the points onto the other.

(O3) Given two lines, we can make a fold to su-
perpose the two lines.

(O4) Given a point P and a line m, we can make
a fold along the fold line that is perpendicular
to m and passes through P.

(O5) Given two points P and Q and a line m, we
can make a fold to superpose P and m along
the fold line that passes through Q.

(O6) Given two points P and Q and two lines m
and n, we can make a fold to superpose P and
m, and Q and n, simultaneously.

(O7) Given a point P and two lines m and n, we
can make a fold to superpose P and m, such
that the fold line is perpendicular to n.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 2

Using this set of axioms, Origami constructions
proceed stepwise, where each step indicates a fold
operation that satisfies one of axioms (O1)–(O7).
Eos provides a function Fold to realize folding ax-
ioms. In addition, every call of Fold has two effects:
(1) visualizing the result of the fold step by comput-
ing the fold line and performing the fold, and (2)
recording the geometric constraints that character-
ize the fold operation. In this way, Eos provides
the user with interactive access to a view and ma-
nipulate the origami constructed so far, and to the
collection of geometric constraints that describe this
constructed origami.

Example of Constructing Regular Heptagon:

We provide a stepwise execution of origami folds
to demonstrate how to use Eos to construct reg-
ular heptagon using origami. The construction in-
cludes solving the angle trisection problem, by solv-
ing constraints represented as polynomials of degree
3. This is performed when applying axiom 6 as an
intermediate step.
{Full text of construction steps using Eos is at-
tached in Appendix A}

3 Theorem proving of the construc-

tion

After the origami construction phase using Eos,
we can proceed to prove geometrical properties of
the construction. A typical usage of Eos will pro-
ceed in the following steps:

Premise Generation: Extracting the geometri-
cal properties of the construction and trans-
form them into polynomial equalities and/or
inequalities which form the premise of the the-
orem to be proved.

Conclusion Formulation: Representing the con-
clusion to be proved in polynomial equalities
and/or inequalities.

Theorem Proving: Giving the premise and con-
clusion polynomials to a theorem prover to
prove the conclusion. We distinguish the cases
where the polynomials contain only equalities

or also inequalities, as we will need to choose
appropriate theorem prover for each case. For
example, Theorema system provides Gröbner
basis implementation to prove over equalities,
and one might use Mathematica’s implemen-
tation of cylindrical algebraic decomposition
when the theorem is partly described in in-
equalities.

Proof Generation: Depending on the selected
theorem prover, the user obtains the proof re-
sult, and .

Note: Except for the conclusion formulation, all
other proving steps are automatically performed.

4 webOrigami, Web Interface of Eos

In this section, we will present the current fea-
tures of webOrigami, and we will spot light on the
used technologies and design decisions.

Why webOrigami ?

We developed webOrigami project in order to en-
able origamists all over the world to have access to
Eos functionalities without the need of having Eos
packages or even any Mathematica installation re-
quirements. By using a web browser (JavaScript
Enabled), one can access the system and enjoy cre-
ating origami pieces by a simple interface that im-
plements origami folding axioms, preview already
constructed origami art pieces, and save construc-
tion steps into a Mathematica notebook that can be
used later for reasoning purposes.

Figure. 1 shows a snapshot of the webOrigami
page that you can access on the following URL:

http://weborigami.score.cs.tsukuba.ac.jp

What is webOrigami ?

webOrigami is our portal of computational
origami project on the web. Basically, it is a
client-server web application developed using the
standard Java technology for web development,
Java Servlets and Java Server Pages (JSP), in
corporation with webMathematica technology.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 3

Figure 1: Web page of webOrigami

Servlets are special Java programs that run in a
Java-enabled web server, which is typically called a
Servlet container. JSP technology provides a sim-
plified fast way to create dynamic web content, by
embedding Java code pieces in a normal HTML
page. And webMathematica, which is based on
Java’s JSPs and Servlets, allows a site to deliver
HTML pages that are enhanced by the addition of
Mathematica commands. Currently we are using
webOrigami Apache Tomcat 5.5 as our web server
and Servlet container.

An overview of how webOrigami site works is
shown in Figure. 2.

1. A user sends request using a web browser to
webOrigami located on a web server, request-
ing for specific origami operation.

2. webOrigami analyzes the request and acquires
Mathematica kernel from a pool of available
kernels through webMathematica.

3. The kernel then executes the requested oper-
ation using Eos packages and generates the

proper output.

4. The web server returns the output to the user’s
web browser.

webOrigami Features and Design Decisions

webOrigami offers most features of Eos system
to the web for constructing origami pieces. Those
features include:

• webOrigami separates concurrent users by a
username and password authentication.

• webOrigami enables users to create origami
pieces with specific color choices for both faces
of origami.

• Possibility to choose between classical origami
folds and mathematical folds based on Huzita’s
axioms. Classical folds include mountain and
valley folds which are specified by the fold line
to fold through. Valley fold brings the faces
separated by the fold line to face each other
from the top view of the user, while mountain

日本ソフトウェア科学会第 23回大会（2006年度）論文集 4

Figure 2: webOrigami simplified work flow

fold brings the backside of these faces to each
other.

• 3D image view of the constructed origami.

• Usage of LiveGraphics3D that generates
origami as a 3D Java object, which can be
manipulated by user’s mouse to perform 3D
rotations. This requires the browser to be
Java enabled in order to view 3D objects.

• Saving user’s session work for the purpose of
later use.

• Saving the construction as Mathematica note-
book that includes user’s specification for fold
operations. This notebook is generated accord-
ing to Eos syntax, and can be used to simulate
the construction on Mathematica frontend and
perform reasoning and theorem proving. This
of course requires Mathematica installation and
Eos packages.

• Viewing of pre-made origami pieces that helps
in learning about construction steps.

• A set of useful functions like duplicating or
deleting points, unfolding origami, turning it
over, or rolling back to a previous step.

• Other viewing options and useful information
that can be configured during construction
steps.

Although our system can be classified as a client-
server application, it requires some special process-
ing on server side that traditional applications don’t
need to bother about. The reason for this is the
origami structure and information that must be
saved during all steps of construction. Every con-
struction is performed in a context and data struc-
tures that shouldn’t be overlapped with other’s of
concurrent constructions. The size of this required
data is big enough not to be considered as classical
session environment. Our implementation for we-
bOrigami provides a transparent layer to separate
users from each other using a username, or user
identifier, without the need to modify Eos imple-
mentation. Thus, each construction process is car-
ried out in private context allocated for the user
on server side, and lasts during the session time of
logged user.

Currently we are working on the integration of
AJAX technology into webOrigami, which will al-

日本ソフトウェア科学会第 23回大会（2006年度）論文集 5

low asynchronous connection with the server and
enhanced client interface.

5 Conclusion and Future Work

We have presented computational origami sys-
tem, Eos, which not only simulates origami folds,
but also computes and proves geometric properties
of the construction. Eos keeps track of the geo-
metrical properties during the construction phase,
and then translates them into polynomial algebraic
constraints which are supplied to theorem provers
in the proving phase. We also explained about we-
bOrigami project and its features.

Our experience with Eos shows that the number
of polynomials grows very rapidly as the number
of origami construction steps grows, which makes
theorem provers run out of computing resources.
These limitations can be overcome by adopting a
computational framework with access to networked
resources.

We are directing our research to grid computing
as the web provides support for distributed theo-
rem provers, which do not have the restrictions of
one PC or workstation, and therefore they can cope
with large systems of constraints.

Acknowledgements

This research is supported in part by the JSPS
Grants-in-Aid for Scientific Research No. 17300004
and No. 17700025, and by MEXT Grant-in-Aid for
Exploratory Research NO. 17650003. We also ac-
knowledge the contribution of Dorin TEPENEU, a
former PhD student in our laboratory, in the devel-
opment of webOrigami system.

References
[1] R. Geretschläger. Geometric Constructions in

Origami. Morikita Publishing Co., 2002. In
Japanese, translation by Hidetoshi Fukagawa.

[2] T. Hull. Origami and geometric constructions. 2005.
http://www.merrimack.edu/̃ thull/omfiles/geoconst.html.

[3] H. Huzita. Axiomatic Development of Origami Ge-
ometry. In H. Huzita ed, editor, Proceedings of the
First International Meeting of Origami Science and
Technology, pages 143–158.

[4] T. Ida, D. Ţepeneu, B. Buchberger, and J. Robu.
Proving and Constraint Solving in Computational
Origami. In Proceeding of the 7th International
Symposium on Artificial Intelligence and Symbolic
Computation (AISC 2004), volume 3249 of Lecture
Notes in Artificial Intelligence, pages 132 – 142,
2004.

[5] T. Ida, H. Takahashi, D. Ţepeneu, and M. Marin.
Morley’s Theorem Revisited through Computa-
tional Origami. In Proceedings of the 7th Interna-
tional Mathematica Symposium (IMS 2005), 2005.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 6

A . Appendix of Construction Code

Description

This note book shows a stepwise usage of Eos system to construct a regular heptagon using Huzita’s
folding axioms. And it demonstrates how to use the system for correctness proof of the construction.
To construct Origami shapes, we use some notational convention in this paper. We denote points by a
simple capital letter A, B, C,..., possibly subscripted, a line passing through points X and Y by XY, and
segments between points X and Y by XY.

Eos Initialization

<< OrigamiBasics̀;
SetOptions[ShowOrigami, ShowFrame → True];
SetOptions[Fold, MarkPointOn → False];
$imageSize = 200;

Regular Heptagon Construction

Construction steps

In order to obtain a regular heptagon, we base on Huzita’s method that defines a set of axioms for
origami construction. First, we need to obtain two important points; the center of heptagon and the
first vertex. Then, we construct the second vertex. Finally, we can obtain the other vertices by line
symmetries.

Construction of heptagon’s center G and first vertex H

First, we define an origami object ABCD. Then, a crease that brings A onto D is computed. We name
this crease EF. Now, we bring A onto B. G, the center of heptagon, is the intersection between the crease
and segment EF. H, first vertex of heptagon, is generated as the intersection between the crease and
segment DC.

BeginOrigami[{10, MarkPoints → {"A", "B", "C", "D"}}, FaceColor → {Hue[.5], Hue[.17]}];
Fold[A,D, MarkPointOn → True];
Unfold[];
Fold[A,B, MarkPointOn → {CD, FE}];
Unfold[];

D C

BA

F E

BA

F E

D C

BA

日本ソフトウェア科学会第 23回大会（2006年度）論文集 7

H

G F

D

A

H

GF E

D C

BA

Construction of second vertex U

The point H is first vertex of regular heptagon. To prepare the construction of second vertex, we need
to construct two important points J and N. J is the intersection between FE and the crease that brings
F onto G. We name ML the crease that superpose E and J. Thus, N is the intersection between ML and
the crease that brings A onto F.

Fold[F,G, MarkPointOn → {FE}];
Unfold[];
Fold[E,J, MarkPointOn → {AB, CD}];
Unfold[];
Fold[A,F, MarkPointOn → {ML}];
Unfold[];

E

C

B

J F

D

A

J

H

GF E

D C

BA

H

GF

D

A M

L

E

C

B

M

L

J

H

GF E

D C

BA

L

J

H

G

D C

N

M BA

N

M

L

J

H

GF E

D C

BA

We make a fold to superpose point J to line GH and point N to line GE respectively. To find such fold
is equivalent to solve a cubic equation (Huzita’s 6th axiom) which can not be done by ruler-and-compass
method [1, 2].
Since three fold lines are possible, we choose the third one. Then, we duplicate point J onto the line GH
and we obtain the point P.

Fold[J, GH, N, GE];
Fold[J, HG, N, EG, Case → 3];
DupPoint["J"];
Unfold[];

日本ソフトウェア科学会第 23回大会（2006年度）論文集 8

Case 1

N

M

L

J

H

GF E

D C

BA

Case 2

N

M

L

J

H

GF E

D C

BA

Case 3

N

M

L

J

H

GF E

D C

BA

LH

E

D C

N M

J

G

F

B

A

P

N

M

L

J

H

GF E

D C

BA

The second vertex of regular heptagon is on the perpendicular of GH passing through P.

Fold[H, GH, Through → P, MarkPointOn → {BC}];
Unfold[];

N

M

J GF E

BA

TP

LHD C

TP

N

M

L

J

H

GF E

D C

BA

To obtain the second vertex, we make a fold along a line passing through G such that H is superposed
on the line PT.
Since two folds are possible, we choose the first one. Then, we duplicate the point H onto the line PT
and we obtain the second vertex U.

Fold[H, PT, Through → G];
Fold[H, PT, Through → G, Case → 1];
DupPoint["H"];
Unfold[];

Case 1

TP

N

M

L

J

H

GF E

D C

BA

Case 2

TP

N

M

L

J

H

GF E

D C

BA

T

N

M

E

C

B

P

L

J

H

G

F

D

A

U TP

N

M

L

J

H

GF E

D C

BA

Construction of other vertices W, X, F1, E1 and A1

We obtain the other vertices of the heptagon by line symmetries. The third vertex W is obtained as a
symmetric point of H along the line UG. The fourth vertex X is also obtained as a symmetric point of
U along the line WG.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 9

Fold[H, Along → UG];
DupPoint["H"];
Unfold[];
Fold[U, Along → WG];
DupPoint["U"];
Unfold[];

T

N

M

E

BA

U

P
L

J
H

G

F
D

C

W

U TP

N

M

L

J

H

GF E

D C

BA

N

M

JF

BA

W

UT

P

LH

G

ED

C X

W

U TP

N

M

L

J

H

GF E

D C

BA

The three remaining vertices F1, E1 and A1 are images of U, W and X respectively, by line symmetry
with respect to HG. And finally we can obtain the regular heptagon as shown in the last step.

Fold[B, Along → HG];
DupPoint[{"U", "W", "X"}];
Unfold[];

ShowFolded[
Show → {ShowMarkPoints → {"A", "B", "C", "D", "G", "H", "A1", "E1", "F1", "X", "W", "U"},
More → Graphics3D[{Thickness[0.02], Hue[0], GraphicsLine[{H,A1,E1,F1,X,W,U}]}]}];

J

X

W

UT P

N

M

L H

GE

C

B F1

E1

A1

X

W

U TP

N

M

L

J

H

GF E

D C

BA F1

E1

A1

X

W

U

H

G

D C

BA

