
日本ソフトウェア科学会第 23回大会（2006年度）論文集 1

有限資源の論理
A Logic for Finite Resources

上出　哲広 †

Norihiro KAMIDE

†（独）産業技術総合研究所, システム検証研究センター
AIST, Research Center for Verification and Semantics (CVS)

東京工業高等専門学校情報工学科（非常勤講師）

Tokyo National College of Technology (part-time lecturer)
http://www.geocities.jp/logicincomputerscience2006

A finite resource logic (FRL), which has a bounded soft-exponential operator and a temporal next-time

operator, is introduced as a modification of Lafont’s soft linear logic. Decidability, cut-elimination,

Kripke-completeness and Petri net-interpretation are shown for FRL. A specific finitely usable resource

such as a computer virus or vaccine program can appropriately be represented using FRL.

1 Introduction

Soft linear logic (SLL) was introduced by Lafont
[10] to cast light on polynomial time computation.
SLL has a novel soft-exponential operator !s which
is characterized by the multiplexing rule:

n︷ ︸︸ ︷
α, ..., α, Γ ⇒ γ

!sα, Γ ⇒ γ

where n can be any natural number. In the present
paper, a finite resource logic (FRL) is introduced as
a modification of SLL, and it has a bounded soft-
exponential operator !r which is characterized by
the bounded multiplexing rule:

0 ≤ n ≤ r︷ ︸︸ ︷
α, ..., α ,Γ ⇒ γ

!rα, Γ ⇒ γ

where n can be any natural number between 0 and
a finite fixed natural number r. Although the de-
cidability of SLL is unknown whether holds or not,
the decidability of FRL can be shown by the virtue
of the limited multiplicity n.

It is known that the linear-exponential operator
! in Girard’s linear logic [1] can express a specific
infinitely reusable resource, i.e. it is reusable not
only for any number, but also many times. In con-
trast, by reading the multiplexing rule of SLL from
the bottom up, the intuitive meaning of the soft-
exponential formula !sα is “the resource α is usable

in any number, but only once (i.e. it is consumed
after use).” Since there is no infinite resource in
the real world, the number n in the multiplexing
rule for !s is sufficient to be less than a fixed finite
positive integer. Such a realistic modification of !s
is a bounded soft-exponential operator !r. By read-
ing the bounded multiplexing rule of FRL from the
bottom up, the intuitive interpretation of the for-
mula !rα is “the resource α is usable in any finite
number less than r + 1, but only once.”

The next-time operator [N] used in FRL is the
modal logic K-type operator, and the relationship
between [N] and !r is expressed axiomatically by
!rα→[N]α, which intuitively means “if the resource
α is usable in any finite number less than r + 1,
but only once at the nearest time in the future,
then α is usable exactly once at the next moment”.
In this intuition, “time” is regarded as a “re-

source”. This intuitive meaning may be justified
in that the concept of “time” in computer systems,
such as CPU-time in process scheduling, is consid-
ered to be a “resource”. Similarly, in the real world,
“time is money, i.e. resource.”

The following useful interpretations for some for-
mulas in FRL can be provided as a result.

• !rα: “The resource α is usable in any
finite number less than r+1, but only once
at the nearest time in the future (i.e. it is

日本ソフトウェア科学会第 23回大会（2006年度）論文集 2

consumed after use).”

• [N]α: “The resource α is usable once
at the next moment (i.e. it is usable only
once at the nearest time in the future).”

• α: “The resource α is usable once at the
present moment (i.e. it is usable only once,
and must be only at the present time).”

The operator !r can be used to express some spe-
cific programs, such as computer virus and vaccine
programs, and the operator [N] can be used to
represent time-dependent software or time-limitted
software. Such a program like virus is, roughly
speaking, executable or usable simultaneously in
any finite number, but only once (i.e. not reusable
many times, or only one executable). Indeed, any
existing old virus and vaccine programs are re-
garded as unavailable many times. Some time-
dependent software like security-soft and movie-soft
are available only within a time limit. These pro-
grams and software may appropriately be expressed
using !r and [N]. In addition, it is remarked that
!r can be interpreted as the “bounded replication
operator” for programs or processes in concurrency
theory.

2 Sequent Calculi

Before the detailed discussion, the language used
in this paper is introduced. Formulas are con-
structed from propositional variables, 1 (multiplica-
tive constant), → (implication), ∧ (conjunction), ∗
(fusion), and !r (bounded soft-exponential). Lower-
case letters p, q,... are used to denote proposi-
tional variables, Greek lower-case letters α, β, ... are
used to denote formulas, and Greek capital letters
Γ,∆, ... are used to represent finite (possibly empty)
multisets of formulas. Expressions !rΓ and [N]Γ de-
note the multisets {!rγ | γ ∈ Γ} and {[N]γ | γ ∈ Γ},
respectively. A sequent is an expression of the form
Γ ⇒ γ (the conclusion of the sequent is non-empty).
If a sequent S is provable in a sequent calculus L,
then such a fact is denoted as L ⊢ S or ⊢ S. Since
all logics discussed in this paper are formulated as
sequent calculi, we will occasionally identify a se-
quent calculus with the logic determined by it.

Definition 2.1 (FRL and SLL) The initial se-
quents of FRL are of the form:

α ⇒ α ⇒ 1.

The cut rule of FRL is of the form:

Γ ⇒ α α, Σ ⇒ γ

Γ, Σ ⇒ γ
(cut).

The logical (and structural) inference rules of
FRL are of the form:

Γ ⇒ γ

1, Γ ⇒ γ
(1we)

Γ ⇒ α β, Σ ⇒ γ

α→β, Γ, Σ ⇒ γ
(→left)

α, Γ ⇒ β

Γ ⇒ α→β
(→right)

α, β, Γ ⇒ γ

α ∗ β,Γ ⇒ γ
(∗left)

Γ ⇒ α ∆ ⇒ β

Γ,∆ ⇒ α ∗ β
(∗right)

α, Γ ⇒ γ

α ∧ β,Γ ⇒ γ
(∧left1)

β, Γ ⇒ γ

α ∧ β, Γ ⇒ γ
(∧left2)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
(∧right)

Γ ⇒ γ

!rΓ ⇒!rγ
(!rregu)

0 ≤ n ≤ r︷ ︸︸ ︷
α, ..., α , Γ ⇒ γ

!rα,Γ ⇒ γ
(!rmulti)

Γ, ∆ ⇒ α

!rΓ, [N]∆ ⇒ [N]α
([N]regu)

where n in (!rmulti) can be any natural number be-
tween 0 and an arbitrary finite fixed natural number
r.

The logic FRL − ([N]regu) is called a bounded
soft linear logic, denoted as BSL. The logic ob-
tained from BSL by replacing (!rmulti) by the un-
bounded (i.e. n can be any natural number) version
of (!rmulti) is called a soft linear logic, denoted as
SLL.

It is remarked that the exchange rule is omitted in
FRL, since we adopt the multiset as the antecedent
of the sequent.

Theorem 2.2 (Cut-elimination) (1) The rule
(cut) is admissible in cut-free FRL. (2) The sub-
formula property holds for cut-free FRL.

Using this theorem, the proof of the decidability
of FRL will be sketched in the next section.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 3

Finally in this section, in order to consider the
difference between !r in FRL and that in SLL, we
introduce an alternative cut-free sequent calculus
FRLg for FRL, which has a generalized version of
(!rmulti).

Definition 2.3 (FRLg) FRLg is obtained from
FRL by replacing (!rmulti) by the inference rule of
the form:

0 ≤ n ≤ rl︷ ︸︸ ︷
α, ..., α , Γ ⇒ γ
1 ≤ l︷ ︸︸ ︷

!r · · ·!r α, Γ ⇒ γ

(g-!rmulti)

where r is a finite fixed natural number, n is the
multiplicity of α, and l is the multiplicity of !r.

A formulation using (g-!rmulti) can not be
adapted for SLL, because in SLL, such a general-
ized rule is meaning-less. This is a clear difference
between SLL and FRL.

Theorem 2.4 (1) For any sequent T , if FRLg ⊢
T , then FRL ⊢ T . (2) For any sequent T , if FRL
− (cut) ⊢ T , then FRLg − (cut) ⊢ T .

Proof The proof of (2) is obvious, because
(!rmulti) is an instance of (g-!rmulti). We show
(1) by induction on a proof P of T in FRLg. We
distinguish the cases according to the last inference
rules in P . We only show the following case.

Case (g-!rmulti): The last inference rule in P is
of the form:

0 ≤ n ≤ rl︷ ︸︸ ︷
α, ..., α , Γ ⇒ γ
1 ≤ l︷ ︸︸ ︷

!r · · ·!r α,Γ ⇒ γ

(g-!rmulti).

We show that this is derivable in FRL, by induction
on the number l in the rule. The base step l = 1 is
obvious, because in this case, (g-!rmulti) is equal to
(!rmulti). We show the induction step below. By
the hypothesis of induction, we have the fact that
the rule

0 ≤ n ≤ r(l−1)︷ ︸︸ ︷
α, ..., α , Γ ⇒ γ

1 ≤ (l−1)︷ ︸︸ ︷
!r · · ·!r α,Γ ⇒ γ

(ind. hyp.).

is derivable in FRL. On the other hand, by the hy-
pothesis (of induction with respect to P), we have

FRL ⊢
0 ≤ n ≤ rl︷ ︸︸ ︷
α, ..., α , Γ ⇒ γ,

and hence

(hyp.) : FRL ⊢
r︷ ︸︸ ︷

0 ≤ n′ ≤ r(l−1)︷ ︸︸ ︷
α, ..., α , ...,

0 ≤ n′ ≤ r(l−1)︷ ︸︸ ︷
α, ..., α , Γ ⇒ γ.

By (hyp.) and (ind. hyp.), we obtain the required
fact

r︷ ︸︸ ︷
0 ≤ n′ ≤ r(l−1)︷ ︸︸ ︷

α, ..., α , ...,

0 ≤ n′ ≤ r(l−1)︷ ︸︸ ︷
α, ..., α , Γ ⇒ γ.... (ind. hyp.) × r

r︷ ︸︸ ︷
l−1︷ ︸︸ ︷

!r · · ·!r α, ...,

l−1︷ ︸︸ ︷
!r · · ·!r α,Γ ⇒ γ

l︷ ︸︸ ︷
!r · · ·!r α, Γ ⇒ γ

(!rmulti).

Corollary 2.5 (Cut-elimination) The rule
(cut) is admissible in cut-free FRLg.

Proof Suppose that T is provable in FRLg. Then,
T is also provable in FRL by Theorem 2.4 (1).
Moreover, by Theorem 2.2 (1), T is provable in cut-
free FRL. Therefore, T is provable in cut-free FRLg

by Theorem 2.4 (2).

3 Decidability

In order to check whether a given sequent S is
provable in cut-free FRL or not, we try to find a
proof of S in the following way. First, we search for
every sequent that can be an upper sequent of some
inference rules of cut-free FRL whose lower sequent
is S. Then, we write each of them just above the
sequent S. We call this process the decomposition
of S. Second, we decompose each sequent which
we have obtained just now, and repeat it again. Of
course, we can not decompose a sequent which can
not be a lower sequent of any rule of inference. By
doing so, we can get a tree such that some sequent

日本ソフトウェア科学会第 23回大会（2006年度）論文集 4

is attached to each of its points. Let us call it the
complete proof search tree of S.

In the following, we show that the complete proof
search tree of each sequent is finite. To show this,
we use the following proposition.

Proposition 3.1 (König’s Lemma) A tree is fi-
nite if and only if both (1) there are only finitely
many points connected directly by lines to a given
point (finite fork property) and (2) each path is fi-
nite (finite path property).

(Finite fork property): First, we show that the
finite fork property for the complete proof search
tree of each sequent in cut-free FRL holds. The
subformula property holds for cut-free FRL by The-
orem 2.2 (2). Thus, for each sequent S in a com-
plete proof search tree, we have a finite number of
the upper sequents which can be an upper sequent
of some inference rules in cut-free FRL whose lower
sequent is S. This is because of the following rea-
sons: (a) S is constructed from a finite multiset of
formulas, (b) the number of the sorts of subformu-
las of some formulas occurring in S is finite, (c) the
number of the inference rules in FRL is finite, (d)
for each inference rule in cut-free FRL, the number
of the application forms are determined by less than
a finite number, because, in particular, the multi-
plicity n in the rule (!rmulti) in FRL is bounded
by a fixed finite number r, and (e) the number of
(sub)formulas occurring in the upper sequent(s) in
the inference rules of cut-free FRL is finite. We re-
mark that (d) and (e) do not hold for cut-free SLL:
the number of the sequents which can be an upper
sequent of the multiplexing rule

n︷ ︸︸ ︷
α, ..., α, Γ ⇒ γ

!sα, Γ ⇒ γ
(!smulti)

can be infinite, and the number of subformula α of
!sα in the upper sequent in this rule can also be
infinite, because the multiplicity n in this rule can
be infinite. For example, a bottom-up proof search
with respect to (!smulti) derives an infinite branch
(in a proof search tree) such as

..

..
Γ ⇒ γ

..

..
α, Γ ⇒ γ · · ·

..

..
α, ..., α, Γ ⇒ γ · · ·

.

..

.∞
..
..

!sα, Γ ⇒ γ.

(Finite path property): Second, we show that
the finite path property for the complete proof
search tree of each sequent in cut-free FRL holds.
Obviously, we have the finite path property for the
complete proof search tree of each sequent in the
{(cut), (!rmulti), (!rregu), ([N]regu) }-free FRL.
Moreover, the rule (!rregu) or ([N]regu) is not a
cause that produces an infinite path in a complete
proof search tree. The possible cause is only from
the rule:

0 ≤ n ≤ r︷ ︸︸ ︷
α, ..., α , Γ ⇒ γ

!rα, Γ ⇒ γ
(!rmulti)

where !rα is called the principal formula in
(!rmulti), and α in the upper sequent is called
the side formula of !rα in (!rmulti). However,
all the side formulas α, ..., α of !rα in (!rmulti)
are proper subformulas, and hence the number of
the connective !r in each α is less than that in
!rα. Moreover, we have the properties (a), (b)
and (e) discussed in the case for the “finite fork
property”. Thus, the number of the repeated
applications of (!rmulti) to the (side) subformulas
of the principal formulas of the form !rα is finite,
because !r occurring in !rα is considered to be
finite. Therefore, the number of the applications of
(!rmulti) in any path in the complete proof search
tree of each sequent in cut-free FRL is finite.

Theorem 3.2 (Decidability) FRL is decidable.

Proof Suppose that an arbitrary sequent S is
given. We construct the complete proof search tree
of S. The complete proof search tree becomes fi-
nite, by using Proposition 3.1 with (1) finite fork
property and (2) finite path property. Then, we
check whether the complete proof search tree con-
tains a subtree which forms a proof of S or not. If
it does, then clearly S is provable, and otherwise, it
is unprovable.

4 Kripke Semantics

The semantics presented here is regarded as an
extended version of a Kripke semantics presented

日本ソフトウェア科学会第 23回大会（2006年度）論文集 5

by Ono and Komori [11].

Definition 4.1 Let r be a fixed finite natural num-
ber. A Kripke frame is a structure ⟨M, ·, †, N, ε,≥⟩
satisfying the following conditions:

1. ⟨M, ·, ε⟩ is a commutative monoid with
the identity ε,

2. ⟨M,≥⟩ is a pre-ordered set,

3. † and N are unary operations on M

such that

C0: ε ≥ †ε,
C1: †x · †y ≥ †(x · y) for all
x, y ∈ M ,

C2: †y ·x ≥ x for all x, y ∈ M ,

C3: †x ≥
n︷ ︸︸ ︷

x · · ·x for all 1 ≤
n ≤ r and all x ∈ M if 1 ≤ r,

C4: †x ≥ Nx for all x ∈ M ,

C5: ε ≥ Nε,

C6: Nx ·Ny ≥ N(x · y) for all
x, y ∈ M ,

4. · is monotonic with respect to ≥, that
is,

C7: y ≥ z implies x · y ≥ x · z
for all x, y, z ∈ M .

Definition 4.2 A valuation |= on a Kripke frame
⟨M, ·, †, N, ε,≥⟩ is a mapping from the set of all
propositional variables to the power set of M and
satisfyning the following hereditary condition: x ∈
|= (p) and y ≥ x imply y ∈ |= (p) for any proposi-
tional variable p and any x, y ∈ M . We will write
x |= p for x ∈ |= (p). Each valuation |= can be
extended to a mapping from the set of all formulas
to the power set of M by

1. x |= 1 iff x ≥ ε,

2. x |= α→β iff y |= α implies x · y |= β

for all y ∈ M ,

3. x |= α ∧ β iff x |= α and x |= β,

4. x |= α∗β iff y |= α and z |= β for some
y, z ∈ M with x ≥ y · z,

5. x |= !rα iff y |= α for some y ∈ M with
x ≥ †y,

6. x |= [N]α iff y |= α for some y ∈ M

with x ≥ Ny.

Definition 4.3 A Kripke model is a structure
⟨M, ·, †, N, ε,≥, |=⟩ such that (1) ⟨M, ·, †, N, ε,≥⟩
is a Kripke frame, and (2) |= is a valuation on
⟨M, ·, †, N, ε,≥⟩. A formula α is true in a Kripke
model ⟨M, ·, †, N, ε,≥, |=⟩ if ε |= α, and valid in
a Kripke frame ⟨M, ·, †, N, ε,≥⟩ if it is true for
any valuation |= on the Kripke frame. A sequent
α1, · · · , αn ⇒ β (or ⇒ β) is true in a Kripke model
⟨M, ·, †, ε,≥, |=⟩ if the formula α1 ∗ · · · ∗ αn→β (or
β respectively) is true in it, and valid in a Kripke
frame if so is α1 ∗ · · · ∗ αn→β (or β respectively).

The following theorem can be proved in the same
way as that for a soft linear logic discussed in [4].

Theorem 4.4 (Completeness) Let C be the
class of all Kripke frames, L := {S | FRL ⊢ S }
and L(C) := {S | S is valid in all frames of C}.
Then, L = L(C).

5 Petri Net Interpretation

Definition 5.1 A Petri net is a structure
⟨P, T, (·)•, (·)•⟩ such that

1. P is a set of places,

2. T is a set of transitions,

3. (·)• and (·)• are mappings from T to
the set M of all multisets over P .

Each element of M is called a marking.

Definition 5.2 A firing relation [t⟩ for t ∈ T on
M is defined as follows: for any m1, m2 ∈ M ,

m1 [t⟩ m2 iff m1 = m3+t• and t•+m3 =
m2 for some m3 ∈ M .

A reachability relation ≫ on M is defined as fol-
lows: for any m,m′ ∈ M ,

m ≫ m′ iff m [t1⟩ m1 [t2⟩ · · · [tn⟩ mn =
m′ for some t1, ..., tn ∈ T , m1, ...,mn ∈ M

and n ≥ 0.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 6

Definition 5.3 A Petri net structure is a structure
⟨M, +, ∅,≫⟩ such that

1. M is the set of all markings,

2. + is a multiset union operation on N ,

3. ∅ is an empty multiset,

4. ≫ is a reachability relation on N .

Proposition 5.4 A Petri net structure
⟨M, +, ∅,≫⟩ is just a {†, N}-free reduct of a
Kripke frame.

Definition 5.5 A syntactical Kripke model
⟨M, ·, †, N, ε,≥, |=⟩ is defined by:

1. M := {Γ | Γ is a finite multiset of
formulas},

2. for any Γ, ∆ ∈ M , Γ · ∆ := Γ∪∆ (the
multiset union of Γ and ∆),

3. for any Γ ∈ M , †Γ := !rΓ and NΓ :=
[N]Γ,

4. ε is an empty multiset,

5. for any Γ, ∆ ∈ M , Γ ≥ ∆ is defined
by ⊢ Γ ⇒ ∆⋆ where ∆⋆ ≡ γ1 ∗ · · · ∗ γn if
∆ ≡ {γ1, · · · , γn} (0 < n), and ∆⋆ ≡ 1 if
∆ is empty,

6. a valuation |= on ⟨M, ·, †, N, ε,≥⟩ is a
mapping from the set PROP of all propo-
sitional variables to the power set of M

defined by

Γ ∈ |= (p) iff ⊢ Γ ⇒ p for any
p ∈ PROP and any Γ ∈ M .

This valuation |= can be extended to a
mapping from the set FORM of all for-
mulas to the power set of M in a natural
way.

By Prposition 5.4 and the syntactical Kripke
model defined in Definition 5.5, we can obtain a
Petri net interpretation for FRL: a place name (or
token) in a Petri net corresponds to formula in FRL,
the reachability relation in a Petri net corresponds
to an antecedent (or consequenct) of a sequent in
FRL, i.e. Γ ≫ ∆ corresponds to FRL ⊢ Γ ⇒ ∆⋆

for any multisets Γ and ∆.

On the other hand, we have a question: “What
is the Petri net interpretation of the modal oper-
ators?” We answer this question in the following.
A marking (or token) with [N] can be interpreted
as a timed marking (or token). The bounded soft-
exponential !r can represent the (variable) weight
of arcs (i.e. the (variable) number of arcs).

Example 5.6 (Bounded soft-exponential) Let
n be less than r + 1 with a finite fixed natural num-
ber r. We give a Petri net N := ⟨P, T, (·)•, (·)•⟩
with P := {!rα, α}, T := {t}, t• := {!rα} and
t• := {α}. Graphically this becomes the following:

½¼
¾»

½¼
¾»

-
-

-

t

!rα α··
·

n-times

This net corresponds to the fact ⊢

!rα ⇒
0 ≤ n ≤ r︷ ︸︸ ︷
α ∗ · · · ∗ α. If the place !rα has a to-

ken, then the transition t is enabled. Moreover,
if t fires then the place α get a number of tokens,
but t can only one fiable with respect to one
token. This interpretation expresses the essence
of the computational meaning of the bounded
soft-exponential.

6 Illustrative Examples

The notion of “resource”, encompassing concepts
such as processor time, memory, cost of compo-
nents and energy requirements, is fundamental to
computational systems [12]. In the area of AI,
this notion is also very important in handling real
scheduling problems to construct complex plans of
actions, since many actions consume resources, such
as money, gas and raw materials [13]. 1 It is known
that linear logics can elegantly represent the con-
cept of “resource consumption” [1]. The central
motivation of this section is to express a more fine-
grained form of resource-sensitive reasoning based
on FRL.

In the following, for a formula α and a positive

1See Section 12 in [13].

日本ソフトウェア科学会第 23回大会（2006年度）論文集 7

integer n, an expression αn means
n︷ ︸︸ ︷

α ∗ · · · ∗ α, and

an expression [N]n means

n︷ ︸︸ ︷
[N] · · · [N].

Example 6.1 (Vending machine) A vending
machine example is known as a good example of the
resource-sensitive reasoning based on linear logics.
For example, the following expression is considered
to be appropriate:

⊢ coin2 ⇒ juice2.

This expression means “if we put two coins in
a vending machine, then we can get exactly two
cans of juice from the machine”. This expression
also means that “⇒” represents “resource consump-
tion”. We now consider more fine-grained examples
based on FRL.

We assume that the vending machine discussed
can deal with less than 101 cans of juice. Using
the restricted soft exponential operator !r, such a
situation is briefly expressed:

⊢ coinn ⇒ !100 juice (0 ≤ n ≤ 100)

where “coin0” means 1. This expression means “we
can get 100 cans of juice (i.e. less than 101)”. Us-
ing the temporal next time operator [N], we can ex-
press a time-dependent situation as follows:

⊢ coin ⇒ [N]2 juice.

This means that the juice can be obtained with a lag
of two time units.

Example 6.2 (Digestion) Digestion is regarded
as a model of resource consumption, i.e. any per-
son consume any food by the bowels as energy. Such
a situation for digestion can be viewed as time-
dependent, i.e. there are many sorts of foods that
digest slowly or fastly. The following expressions
are thus useful:

⊢ !3 hamburger ⇒ [N]4 digest,

⊢ !3 hamburger ∗ digestive ⇒ [N]3 digest.

The second expression means “we can digest three
hamburgers with a digestive within 3-time units”.

Example 6.3 (Medicine consumption) The
model of digestion discussed is applicable to a sim-
ilar situation for medical treatment by medicines.
Suppose that a patient has diabetes, and in order
to recover this disease, the patient must take the
medicines of insulin before the meal. Then, such a
situation is expressed:

⊢ !3 insulin ∗ [N]30 food ⇒ [N]60 recover.

If we consider a situation “if the patient takes over-
administration of insulin, then the patient is in the
insulin-shock”, then, generally speaking, we can ex-
press such a medically worse fact as follows:

⊢ medicine ⇒ 0

where 0 means the multiplicative falsum constant,
which is not disccussed in the setting of FRL. This
expression means “if a patient uses a medicine to
recover from a disease, the patient makes no recov-
ery from the disease with the medicine”. In other
words, to use the medicine does not derive a med-
ically beneficial effect. In this expression, 0 repre-
sents a broad range of facts that the patient takes a
turn for worse, such as death, the onset of a crit-
ical condition or side-effects of less consciousness,
i.e. 0 represents a width of contradiction. This
feature of 0 corresponds to the fact that the alge-
braic counter-part of 0 in some algebraic semantics
such as phase semantics has a width. This fact is
followed from the fact that FRL has no usual con-
traction and weakening rules.

Example 6.4 (Resource recycling system)

We consider some resource recycling systems below.
Suppose that garbage is divided into two sorts, i.e.
reusable (recyclable) and non-reusable. In the case
of recyclable garbage, the following expressions may
be useful:

⊢ plastic−vessel100 ⇒ !50 recycle−plastic,

⊢ newspaper10 ⇒ recycle−paper5 ∗ toilet−tissue5

where “⇒” means a recycling relation, i.e. the an-
tecedent represents garbage and the consequent rep-
resents recycle goods. In the case of non-reusable
garbage, the following expressions may be usuful:

日本ソフトウェア科学会第 23回大会（2006年度）論文集 8

⊢ flammable−garbage100

⇒ [N]3 !80 thermal−energy ∗ !20 [N]5 cinder,

⊢ nonflammable−garbage ⇒ 0

where the second expression represents a limitation
of such a thermal powerplant. This case also means
that energy is ragarded as resource.

7 Remarks and Related Works

It is remarked that the cut-elimination and decid-
ability results for FRL can be extended to the ex-
tended language with ∨ (disjunction), ⊤ (additive
truth constant), ⊥ (additive falsum constant) and
∼ (strong negation connective), and the Kripke-
completeness and Petri net-interpretation results
for FRL can also be extended to this language using
the method introduced in [3, 7]. It is also remarked
that the Kripke-completeness result for FRL can
be extended to the extended language with ∀ (first-
order universal quantifier) using the method pre-
sented in [4].

Finally, recent developments of various linear log-
ics are reviewed briefly below. Temporal linear log-
ics were introduced by Tanabe [14] and by Kanovich
and Ito [8], an intuitionistic temporal linear logic
(ITLL) was introduced by Hirai [2, 15], a heigher-
order multi-modal linear logic (MLL) was studied
by Kobayashi, Shimizu and Yonezawa [9], a spatio-
temporal soft linear logic (SSLL) [4] was introduced
as a modified extension of both ITLL and proposi-
tional MLL, a temporal spatial epistemic intuition-
istic linear logic (TSEILL) [5] was presented, and
a classical temporal soft linear logic (TSLL) [6] was
introduced as an extension of both Girard’s classical
linear logic and Lafont’s classical soft linear logic.
It is remarked that FRL is regarded as a decidable
subsystem of ITLL, SSLL, TSEILL and TSLL. It
is also remarked that FRL is an intuitionistic re-
finement of a subsystem of TSLL in [6], and the
decidability method for FRL is also an intuitionis-
tic refinement of that for a (classical) bounded soft
linear logic (BSLL) introduced in [6].

参考文献
[1] Girard, J-Y., Linear logic, Theoretical Computer

Science 50, 1-102, 1987.

[2] Hirai, T., Propositional temporal linear logic and
its application to concurrent systems, IEICE Trans-
actions. Fundamentals E83-A 11, 2219–2227, 2000.

[3] Kamide, N., Normal modal substructural logics with
strong negation, Journal of Philosophical Logic 32,
589–612, 2003.

[4] Kamide, N., Combining soft linear logic and spatio-
temporal operators, Jornal of Logic and Computation
14 (5), 625–650, 2004.

[5] Kamide, N., Linear and affine logics with temporal,
spatial and epistemic operators, Theoretical Com-
puter Science 353 (1–3), 165–207, 2006.

[6] Kamide, N., Towards a theory of resource: An ap-
proach based on soft exponentials, Journal of Applied
Non-Classical Logics (to appear).

[7] Kamide, N., Phase semantics and Petri net interpre-
tations for resource-sensitive strong negation, Jour-
nal of Logic, Language and Information (to appear).

[8] Kanovich, M. I. and Ito, T., Temporal linear logic
specifications for concurrent procesess (extended ab-
stract). Proceedings of 12th Annual IEEE Symposium
on Logic in Computer Science, 48–57, 1998.

[9] Kobayashi, N. Shimizu, T. and Yonezawa, A., Dis-
tributed concurrent linear logic programming, Theo-
retical Computer Science 227, 185–220, 1999.

[10] Lafont, Y., Soft linear logic and polynomial time,
Theoretical Computer Science 318, 163–180, 2004.

[11] Ono, H. and Komori, Y., Logics without the con-
traction rule, Journal of Symbolic Logic 50, 169-201,
1985.

[12] Pym, D. J., O’Hearn, P. W. and Yang, H., Possible
worlds and resources: The semantics of BI, Theoret-
ical Computer Science 315 (1), 257–305, 2004.

[13] Russell, S. and Norvig, P., Artificial intelligence: A
modern approach (Second edition), Pearson Educa-
tion, Inc., 2003.

[14] Tanabe, M., Timed Petri nets and temporal linear
logic, Lecture Notes in Computer Science 1248, 156–
174, 1997.

[15] Tamura, N., Hirai, T., Yoshikawa, H., Kang,
Kyoung-San. and Banbara, M., Logic program-
ming in an intuitionistic temporal linear logic (in
japanease), Information Processing Society of Japan,
Transactions on Programming 41, SIG4 (PRO 7), 11-
23, 2000.

