
日本ソフトウェア科学会第 23回大会（2006年度）論文集 1

A Web Service Architecture for Bidirectional Updating

Yasushi Hayashi Dongxi Liu Kento Emoto

Kazutaka Matsuda Zhenjiang Hu Masato Takeichi

Department of Mathematical Informatics, University of Tokyo

{hayashi,liu,hu,takeichi}@mist.i.u-tokyo.ac.jp
{emoto,kztk}@ipl.t.u-tokyo.ac.jp

We propose a Web service architecture for achieving bidirectional updating. This architecture consists

of three tiers: clients, a Bi-X bidirectional transformation engine, and some content servers accessible

through the Internet. The benefit of using this architecture is that users can harness the power of

bidirectional transformations without the burden of installing and maintaining the bidirectional language

package. We give several examples to demonstrate the usefulness of this architecture. Users can use

this architecture to implement their own applications.

1 Introduction

XML is widely used as the de facto standard for-
mat of data exchange or repository. XML docu-
ments often need to be transformed for different
reasons. For example, an XML file is transformed
into HTML format for displaying in Web browser,
or it is transformed into another small XML file, in
which only interesting data for users is contained.
In some cases, the target XML documents are prob-
ably modified, and it is desirable that these modifi-
cations on transformed documents can be reflected
back into source documents.

The current popular XML transformation lan-
guages, such as XSLT [1] and XQuery [2], perform
transformation only in one direction. Transforma-
tions written in these languages cannot help to re-
flect modifications on target documents back into
the source data. In order to maintain data con-
sistency between the source and target data, some
ad-hoc methods have to be taken. For example, one
possible yet boring method is to update the source
data directly by first looking for the values that
are changed in the target data and then making
same modifications on them. However, the situa-
tion changes if bidirecitonal languages, such as Bi-X
[3], are exploited to transform XML documents.

A bidirectional transformation program can be
executed in two directions: forward direction and
backward direction. The forward transformation

transforms a source XML document into a tar-
get document, while the backward transformation
transforms the updated target document together
with the original source document into the updated
source document. After the backward transforma-
tion, the modifications in the target document will
be reflected back to the updated source document.
That is, modifications on the target data can be
propagated to the source data automatically by
backward executions of bidirectional language pro-
grams.

In this paper, we propose a Web service architec-
ture to promote the use of bidirectional transforma-
tion in the network environment. By this architec-
ture, we hope users can harness the power of bidi-
rectional transformation without the burden of in-
stalling and maintaining the bidirectional language
package. For example, users do not need to concern
whether there are new versions or bug patches for
the bidirectional languages.

The architecture proposed in this paper includes
three parts. The first part is data viewer clients,
which present target data to users. The data viewer
clients are chosen by users. For example, they can
be ordinary Web browsers or XML editors. The sec-
ond part is a bidirectional transformation engine,
which provides the bidiretional transformation ser-
vice based on Bi-X language. This part is supposed
to be independent of users’ application. We have

日本ソフトウェア科学会第 23回大会（2006年度）論文集 2

run and maintained this engine on the transforma-
tion server, and are planning to make it accessible
publicly. The third part is content servers, which
provide XML data for transformation. This part
is specified by users when they launch transforma-
tions. The requirement to this part is that it can not
only provide XML files, but also can accept modi-
fied files and then update the data making up these
files.

We will provide several examples to help users
get some intuitiveness of this architecture. The first
example uses the Amazon Web Service (AWS) [4]
as the content server. In this example, users can
get the book information from Amazon and then
transform it into a form they like using the trans-
formation engine. Since Amazon does not allow to
update their data source, the transformation en-
gine reflects the modifications from users back into
a locally cached copy of the data from Amazon for
demonstration purpose. In the second example, we
use the eXist XML DB [5] to provide XML data.
And we give several examples of XQuery (and XUp-
date) that can update the whole DB according to
users’ modifications.

The remainder of this paper is organized as fol-
lows. Section 2 gives a detailed explanation of the
architecture. Section 3 explains our implementa-
tion of the architecture. Section 4 presents two use
cases. Section 5 explains our implementation of the
client. Section 6 discusses the related work and Sec-
tion 7 concludes the paper.

2 Architecture

2.1 Three-tier Architectue

Our Web service architecture for bidirectional up-
dating consists of three tiers as shown in Figure 1,
that is, clients, a Bi-X server, and the content server
that provides XML data. The heart of this archi-
tecture is the Bi-X server, which has a bidirectional
transformation engine based on an implementation
of our bidirectional transformation language Bi-X.
It receives a request from clients and applies a for-
ward transformation to the specified source data
originally fetched from content servers, or applies

Figure 1: Three-tier Architecture

a backward transformation to produce the updated
source data. Another role of the Bi-X server is to
communicate with the content servers. It sends a
request message to the content servers to get a Bi-
X code and some XML data, and receives the re-
tuned data, on which transformations are applied.
It also sends update messages to reflect changes of
the source data to content servers.

Clients of Bi-X services can be any XML data
viewer, but typically web applications to display the
target data of a Bi-X transformation in a format-
ted view equipped with some editing environment.
They receive information given by users, such as
parameters to specify a Bi-X code or XML data to
be fetched and editing information such as modified
target data, and then sends some request messages
with the parameters to the Bi-X server.

The content servers provide XML documents for
transformations. This part is specified by users
when they launch transformations. The require-
ment to this part is that it can provide XML files,
and also can accept modified files and then update
the data making up these files. For example, if the
file sent to the engine is just an existing XML file
on a machine on the Internet, then when a modified
file comes back, the existing file is simply replaced
by this modified one; if this file is obtained from a
web service by querying some XML DB, then the
users must guarantee the modifications in this file
can be put back into the XML DB, for instance, by
preparing some special query for updating the DB.

In order to make it clear the roles of the Bi-X ser-

日本ソフトウェア科学会第 23回大会（2006年度）論文集 3

Figure 2: Communication Pattern

vice provider and the Bi-X service user within this
web service architecture, we summarize the respon-
sibility of each role.
Responsibility of user role:

1. Providing the code and the XML data to be
transformed;

2. Determining how to use the updated data ac-
cording to their private business rules.

Responsibility of provider role:

1. Performing a transformation based on the
source data file and code file specified by users;

2. Sending back the updated source data (to the
server from which the original soruce data
comes).

3. Sending the new view to the data viewer client.

2.2 Communication Protocol

The communication protocol among three com-
ponents in the data updating process is illustrated
by a diagram of the communication pattern in Fig-
ure 2. The protocol consists of two phases, that is
Init phase and Updating phase. The steps of each
phase are described as follows.

Init phase

Step (1): Clients send an Init message to the Bi-
X server with two arguments: one is the URI1

for the source data to be transformed, and the
other is the URI2 for the code.

Step (2): Bi-X server requests the files specified
by URI1 and URI2 using HTTP Get method.

Step (3): Machines specidied in URI1 and URI2
process HTTP Get method and return the
specified files. (Note that it is the responsibil-
ity of users to guarantee these machines exist
and can work as expected.)

Step (4): Bi-X server makes a forward transfor-
mation and sends the view to the client.

Step (5): Bi-X server discards the soruce data and
the code after finishing this forward transfor-
mation task.

Updating phase

Step (1): Clients send an Update message to the
Bi-X Server with three arguments: the first is
the URI1 for the source data, the second is the
URI2 for the code, and the thrid is the changed
view.

Step (2): Bi-X server requests the source data to
be updated and code accordind to URI1 and
URI2 using HTTP Get method.

Step (3): Machines specidied in URI1 and URI2
process HTTP Get method and return the
specified files.

Step (4): Bi-X server performs the backward
transformation to get a updated source data,
and sends the updated source data back
to URI1 using HTTP POST method. The
machine specidied in URI1 can process HTTP
Post method and it should know the data
in this HTTP Post message is the udpated
source data. (Note that it is the responsibility
of users to know the meaning of this HTTP
Post method and determine how to use this
updated source data according to their private
business rules.)

日本ソフトウェア科学会第 23回大会（2006年度）論文集 4

X ::= BX | XC | EM
BX ::= <xid>[] | <xconst>[S] | <xchild>[]
XC ::= <xseq>[X1, ..., Xn] | <xchcont>[X1, ..., Xn]

| <xmap>[X] | <xif>[P , X1, X2]
CM ::= <xstore>[Var] | <xload>[Var]

| <xfree>[Var]
P ::= <xwithtag>[str] | X

Figure 3: Syntax of the Underlying Language

Step (5): Bi-X server performs the forward trans-
formation using the updated source data, and
sends the new view to the client.

Step (6): Bi-X server discard all data.

2.3 Bi-X - A Bidirectional Transformation

Language

Bi-X is a domain-specifc language for bidirec-
tional XML transformation. In this section, we
briefly introduce the Bi-X language. The formal
definition of Bi-X and programming examples can
be found in [6, 3]. The syntax of a fragment of Bi-X
is given in Figure 3.

Basic transformations BX perform some particu-
lar transformations on source data: xid transforms
the source data into the same target data; xconst
transforms any source data into the constant target
data S; xchild accepts an element as source data,
and returns its content.

Transformation combinators XC are used to
build more complex transformations based on other
transformations: xseq applies its argument trans-
formations Xi(1 ≤ i ≤ n) in sequence, and the tar-
get data of the transformation Xi will be used as the
source data of its successive transformation Xi+1;
xchcont accepts an element as source data, and re-
turns this element with its contents replaced by the
result of applying transformations Xi(1 ≤ i ≤ n) to
empty values; xmap transforms the sequence source
data by applying X to each item in the sequence;
xif applies X1 to the source data if the predicate P

holds over this source data, otherwise X2 is applied.
The transformations CM are to manage or use the

transformation context. They provide the variable
binding mechanism for the Bi-X language: xstore

Figure 4: Structure of Bi-X Service Implementation

binds the source data to the variable Var, which is
valid until it is released by xfree; xload accesses
the bound value of a valid variable.

The predicate xwithtag holds of the source data
is an element with tag str, and any transformation
can be used as a predicate for xif.

3 Implementation

Our Bi-X services used for the use cases in Section
4 has been implemented in Java, using the standard
web service technologies such as SOAP, WSDL. The
structure of the implementation of Bi-X server is
shown in Figure 4. They are provided on Tomcat
(a servlet container) with Axis (SOAP implemen-
tation), and Axis2 (SOAP and REST implemen-
tation). They use a Java implementation of bidi-
rectional transformation language Bi-X, which are
wrapped by Bi-X Driver to perform bidirectional
transformations. For data viewer client, we first
tested on a simple tree viewer developed in Java
and next used Justsystem xfy [7] to develop more
sophisticated applications. The client by xfy is ex-
plained in Section 5.

Apart from use cases mentioned in this paper, our
group has been developing an application tool for
Web page updating based on bidirectonal transfor-
mation, in which our implementation of Bi-X server
is used as its transformation engine. This work is
reported in [8].

日本ソフトウェア科学会第 23回大会（2006年度）論文集 5

4 Use Cases

4.1 Amazon Web Service

The first use case makes use of Amazon Web Ser-
vice (AWS) provided by Amazon as the content
server. Users can get the book information from
Amazon and then transform it into a form they like
using the Bi-X transformation engine. Since Ama-
zon does not allow to update their data source, the
Bi-X engine reflects the modifications from users
back into a locally cached copy of the source data
in the Bi-X server for demonstration purpose. Here,
we explain how to use AWS with the Bi-X transfor-
mation service.

In the Init phase, the URI1 parameter of Init mes-
sage sent by the client specifies URI for requesting a
REST service provided by AWS. For example, this
could be AWS search with a given category and
keywords like

http://webservices.amazon.com/onca/xml?Service=

AWSECommerceService&Version=2005-07-26&Response

Group=Medium&Operation=ItemSearch&SubscriptionI

d=************&SearchIndex=Books&Keywords=ajax

with ‘Books’ as the category and ‘ajax’ as the key-
word. When the Bi-X server receives an Init mes-
sage, it accesses AWS by REST using the URI1.
AWS performs the search and sends the resulting
XML data that includes the book information to
the Bi-X server. The Bi-X engine transforms it into
a form according to the Bi-X code specified as the
URI2 parameter in Int message, and then send the
result to client to display. Since AWS does not
allow to update their data source, even if the Bi-
X server sends the updated source obtained by an
update transformation, AWS will discard it. As a
temporally solution for demonstration purpose, Bi-
X server can provide a local cache for keeping up-
dated data source that reflects user’s modifications.
Instead, we can use an XML database in place of
AWS as a content server that already stored the
data from AWS to demonstrate our system can up-
date the date in the database of the content server
using the technique explained in the next subsec-
tion.

4.2 Using XML DB as Content Server

In this section, we give another use case, where
the content server uses the eXist XML DB [5] to
provide source data. In this case, when receiving a
request for source data, the content server extracts
the source data from the DB with XQuery, and
sends them to the transformation engine, and after-
ward, when getting the updated source data, this
server updates the DB according to the updated
source data by executing some updating queries
prepared by users. The XQuery in eXist extends
the standard XQuery with some update statements
that can be used to make updating queries. Users
must prepare an updating query for each XQuery
expression that can be used to serve source data.

We will illustrate updating queries by an example.
Suppose the content server provides source data us-
ing the following XQuery expression:

<bib>

{

for $b at $i in doc("/db/bib.xml")/bib/book

where ($b/publisher = "Addison-Wesley"

and $b/@year > 1991) return

<book newyear="{ $b/@year }" index="{$i}">

{ $b/title }

</book>

}

</bib>

Then, an updating query for the above expression
is defined as follows.

let $a1 := doc("query-result.xml")/bib return

<bib>{

for $b at $i in doc("/db/bib.xml")/bib/book

where($b/publisher = "Addison-Wesley"

and $b/@year > 1991)

return

let $a2 := $a1/book return

for $ub in $a2[@index = $i] return

<book newyear="{ $b/@year }"

index="{$i}">

{update value $b/@year

with $ub/@newyear,

update replace $b/title

with $ub/title,

$b/title}

</book>}

</bib>

In this updating query, the file “query-result.xml”
contains the updated source data from the transfor-
mation engine.

日本ソフトウェア科学会第 23回大会（2006年度）論文集 6

Figure 5: A Snapshot of an xfy Browser

5 Client by xfy

In our Bi-X service architecture, the client of Bi-X
services can be any XML viewer/editor. However,
it would be a typically web application, which has
a capability of displaying the target document as
a formated view, and provides an editing environ-
ment to edit the target document through the view.
For our implementation, we use Justsystem xfy [7],
which is an “Integrated XML Application Develop-
ment Environment” developed by Justsystem Cor-
poration. An advantage of using xfy is its capability
to handle various kinds of XML vocabularies, in-
cluding user-defined one in optimized and sophisti-
cated way. This enhances the usability of the client
applications that use our bidirectional transforma-
tion service, because it can display various kinds
of target XML documents in the way that users
can easily understand the meaning of data, and also
provides the editing environment for changing data
optimized for the characteristics of each vocabu-
lary. For example, the texts in XHTML vocabulary
can be directly editable on the xfy browser, hence
achieving WYSWYG style of editing.

xfy can also customize its user interface such as
menu and buttons to invoke some operations for us-
ing bidirectional transformation services by defining
it in the script language called XVCD. Our client
program using Axis is incorporated to work as a
part of an xfy plugin, so that request messages to
the Bi-X server are built and sent through user’s
action on the xfy’s interface, and the result from

the Bi-XJ server is displayed on the xfy’s browser.
A snapshot of an xfy application used for the AWS
use case in 4.1 is shown in Figure 5. Currently,
the update operation is invoked when the user se-
lects the update command from the menu on the
xfy window.

6 Related Work

The Bi-X language used in this work takes simi-
lar bidirectional transformation style as those work
[9, 10]. These languages are designed for their par-
ticular purposes. As discussed in work [3], they have
several limitations to be used as the general XML
processing languages. Bi-X has addressed their lim-
itations and thus can be used in this architecture for
general-purpose XML processing.

This architecture is similar to the traditional
three-tier client-server architecture, where the user
interface, the server for business logic and the data
storage are developed and maintained as three inde-
pendent components. The difference is that in our
architecture the data storage is not a private back
end of the transformation engine, and instead it is
open and can be specified by users.

From the perspective of software maintenance,
the architecture in this paper belongs to the group
Software Service Providers (SSP) [11], that is, to
provide the operational software component. We
believe this is a trend for providing application soft-
ware to users. Similar to our purpose, Google now
provides spreadsheet software [12] as an application
based on Web, and thus users do not need to install
and maintain a local copy of such application.

7 Conclusion

In this paper, we propose a Web service archi-
tecture for bidirectional updating. Our purpose is
to promote the use of bidirectional transformation.
In this architecture, users can exploit bidirectional
transformation by telling the transformation engine
their transformation code, source data and updated
target data, and transformation engine then pro-
duces the target data or the updated source data
for them. The benefit is that users need not to in-

日本ソフトウェア科学会第 23回大会（2006年度）論文集 7

stall and maintain bidirectional language package.

Acknoledgement

We would like to thank Justsystem Corporation
for providing us with some helpful technical infor-
mation about xfy. This research is supported by the
Comprehensive Development of e-Society Founda-
tion Software of the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

References
[1] W3C Draft. XSL Transformations (XSLT) Version

2.0 . http://www.w3.org/TR/xslt20/, 2005.

[2] W3C Draft. XML Query (XQuery) .
http://www.w3.org/XML/Query, 2005.

[3] Dongxi Liu, Zhenjiang Hu, Masato Takeichi,
Kazuhiko Kakehi, and Hao Wang. A Java library
for bidirectional XML transformation. In The 22nd
Conference of Japan Society for Software Science
and Technology, 2005.

[4] Amazon. Amazon E-Commerce Service.
http://aws.amazon.com.

[5] Wolfgang Meier. eXist: Open Source Native XML
Database. http://www.exist-db.org/.

[6] Dongxi Liu, Zhenjiang Hu, and Masato Take-
ichi. Bidirectionalizing XQuery – Updating XML
through Materialized XQuery View . Technique
Report METR 2006-25, Department of Mathemat-
ical Informatics, University of Tokyo, 2006.

[7] Justsystem Corporation. xfy technology.
http://www.xfytec.com.

[8] Keisuke Nakano, Akimasa Morihata, Zhenjiang
Hu, and Masato Takeichi. Web page updating
based on bidirectional transformation. In The 23rd
Conference of Japan Society for Software Science
and Technology, 2006.

[9] J. Nathan Foster, Michael B. Greenwald,
Jonathan T. Moore, Benjamin C. Pierce, and
Alan Schmitt. Combinators for bi-directional tree
transformations: a linguistic approach to the view
update problem. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, 2005.

[10] Zhenjiang Hu, Shin-Cheng Mu, and Masato Take-
ichi. A programmable editor for developing struc-
tured documents based on bidirectional trans-
formations. In Proceedings of the 2004 ACM
SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, 2004.

[11] Keith H. Bennett and Jie Xu. Software services
and software maintenance. In 7th European Con-
ference on Software Maintenance and Reengineer-
ing, pages 3–12, 2003.

[12] Google. Google Spreadsheet.
http://spreadsheets.google.com.

