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The technique of forward/backward simulations has been applied successfully in many distributed
and concurrent applications. In this paper, however, we claim that the technique can actually have
more genericity and mathematical clarity. We do so by identifying forward/backward simulations as
lax/oplax morphisms of coalgebras. Starting from this observation, we present a systematic study
of this generic notion of simulations. It is meant to be a generic version of the study by Lynch
and Vaandrager, covering both non-deterministic and probabilistic systems. In particular we prove
soundness and completeness results with respect to trace inclusion: the proof is by coinduction
using the generic theory of traces developed by the authors. By suitably instantiating our generic
framework, one obtains the appropriate definition of forward/backward simulations for various kinds
of systems, for which soundness and completeness come for free.

1 Introduction

The theory of forward /backward simulations for non-deterministic automata has been extensively stud-
ied, notably by Lynch and Vaandrager [13]. It has been applied successfully in many distributed and con-
current applications, described as transition systems. For example, in [10] trace-based anonymity proper-
ties for network protocols are proved by building backward simulations. The notions of forward/backward
simulations are also extended to different kinds of state-based systems such as probabilistic ones [19].

In this paper we claim that this theory of forward/backward simulations can actually have more
genericity and mathematical clarity. We do so by revealing a simple mathematical structure hidden
behind various notions of simulations defined for different kinds of systems. The slogan is:

Forward/backward simulations are lax/oplax morphisms

of coalgebras in Kleisli categories.

Based on this observation, we aim at presenting a generic version of the systematic study [13]. The

outcome is satisfactory. We employ the generic theory of traces in [5] and show:
e Soundness. Existence of a forward or backward simulation implies trace inclusion.

e Completeness. Trace inclusion implies existence of a certain kind of hybrid simulation, namely a

backward-forward simulation.

The important point is that all these definitions and proofs are stated in abstract coalgebraic terms,

hence come with ample genericity. In fact they are parametrized by:

*This paper is an extended version of the previous ones [5, 6]. Section 7 contains additional materials that have not
been presented before.
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e The type of branching. It can be either non-determinism (with a set of possible transitions) or
probabilism (with a distribution over possible transitions).

e The type of transitions. For example, a context-free grammar can be considered as a state-based
system—non-terminals as states—with non-deterministic branching. It has a different transition
type from, say, LTS’s: a CFG transits to a word over symbols and states, while an LTS transits to

a pair of a symbol and a (next) state. Our result covers a wide variety of transition types.

Hence for each application from such a wide variety, one can obtain a definition of forward/backward
simulations by instantiating our general framework with suitable parameters. Moreover one is assured
that this definition is the right one: good properties such as soundness and completeness come for free.
Therefore we expect abundant practical implication of this work.

Now let us take a completely different standpoint, namely that of a coalgebra-theorist. This work
cultivates a new field of coalgebraic methods in computer science: coalgebras in a Kleisli category. The
standard theory of coalgebras (e.g. [18]) is based in Sets, establishing the (successful) second row of the

table. This paper, following the previous work [5], extends this table downwards.

base category morphisms of coalgebras coinduction gives
Sets functional bisimulation bisimilarity
. lax .-+ forward simulation . trace semantics
Kleisli ) ] [this paper]
oplax - -+ backward simulation [5]

What is new in the current version of this paper is an account on internal actions, which is left as
future work in the previous version [6]. We describe elimination (or abstraction) of internal actions using
our scheme of generic trace theory [5] suitably adapted. Accompanying is a technical result showing the
equivalence of the following two different kinds of “trace semantics” for systems with internal actions.

elimination of 7

‘ system with internal actions 7 ‘1 “closure” system without 7 ‘

trace semantics[ ]urace semantics (1)

‘trace without 7 ‘

‘ trace containing explicit T ‘1 —
elimination of 7

This result is formulated and proved with the coalgebraic abstraction and genericity.

The paper is organized as follows. In Section 2 our basic (coalgebraic) setting is presented. State-based
systems are formulated as coalgebras with explicit start states in Section 3. The key notion of generic
forward/backward simulations is presented in Section 4. In Section 5 we recall the generic theory of
coalgebraic traces from [5]. The materials of the previous two sections are combined in Section 6 to prove
soundness and completeness. The additional account on internal actions is included in Section 7. We

conclude in Section 8.

Notation and terminology. In diagrams, triangles and squares with no C or 1 inside are designated

to commute. The word coinduction refers to an argument using the finality of a final coalgebra.

2 Preliminaries

This section presents preliminaries from category theory and theory of coalgebras. They are put in an
elementary and descriptive manner. For more details the reader is referred to [5].
In this paper we identify forward/backward simulations as lax/oplax morphisms of coalgebras in a

Kleisli category K¢(T') for a monad T on Sets. This observation is inspired by a series of work [17, 8, 4, 5]
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on trace semantics for/via coalgebras: a Kleisli category is a suitable base category there. Our basic story
is as follows.

We model a state-based system as a coalgebra X — TFX in Sets, with T' a monad, F' a functor and
a distributive law F'T' = TF implicit. The intuition is:

e a monad T describes the type of branching (non-determinism, probabilism, etc.) of the system;

e a functor F' describes the transition type of the system, which determines the type of linear-time

behavior (e.g. words over action symbols);

o a distributive law F'T' = TF describes the way how T’s effect of branching is distributed over the
transition type represented by F'.

It turns out that having X — TFX in Sets is equivalent to having a coalgebra X — FX in the Kleisli
category K{(T), where F : K{(T) — K{(T) is a canonical lifting of F : Sets — Sets with FX = FX.

This lifting F is induced by the distributive law. To summarize:

e In modelling a system as a coalgebra X — TF X, we separate the type of branching 7" from the
transition type F'.

e By moving from Sets to K¢(T), this coalgebra becomes a coalgebra X — FX for a functor F—
instead of a combination T'F. Then we can start the usual coalgebraic business such as morphisms,

final coalgebras and coinduction.

2.1 Monads for types of branching

A monad T on Sets is an endofunctor on Sets equipped with two kinds of functions: for each set X,
the unit X B3 TX and the multiplication TTX 3 TX. These functions must satisfy certain coherence
conditions.

The use of monads in computer science is most notably announced in the seminal paper [15]. There
monads are used for modelling computations with effects. This leads to monadic types in functional
programming languages such as Haskell.

In coalgebraic settings, it is shown in [5] that monads with a certain order structure are suitable for
modelling state-based systems with branching, especially for analyzing their trace semantics. We are

interested in such monads in this paper. We have two examples:
e The powerset monad P, modelling the non-deterministic branching.

e The subdistribution monad D, modelling the probabilistic branching. For a set X, DX is given by:
DX ={&: X = [0,1] | Y ex&(x) <1} . Here ¢ is called a probability subdistribution over X . It

is “sub” because the sum of all probabilities is not necessarily equal to 1.

The reason that we take the subdistribution monad D, instead of the distribution monad D=1 X = {¢ |
Y. &(x) =1}, is that the latter lacks a suitable order structure. This point is elaborated in Section 2.3.

2.2 Kileisli categories for monads

For each monad T on Sets, we construct the Kleisli category for T', denoted by K¢(T'), in the following
way. The crucial part is that an arrow X — Y in K¢(T') is actually a function X — T'Y in Sets.

e Objects in K¢(T') are the same as in Sets: they are just sets.
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e An arrow X — Y in K¢(T) is a function X — TY in Sets.
e Composition of arrows is defined using multiplication px : TTX — T X.
e The identity arrow X 3 X in K¢(T) is the unit X ™3 TX in Sets.

This K(T) will be our base category. Notice that when we write X — Y in Kl(T'), a branching nature
of this arrow is implicit because it is a function X — TY.

For the monads P and D of our interest, we shall describe more details of their Kleisli categories.

The category Kl(P) is in fact isomorphic to the category Rel of sets and relations. That is, an arrow
X — Y in K4(P) is a relation between X and Y via the standard “relation-into-fuction” trick: given a
function f : X — PY in Sets we obtain a relation Ry = {(z,y) | y € f(z)}. In particular, composition
of arrows in K/(P) is given by the relational composition S o R = {(z,2z) | Jy.zRy A ySz} of the
corresponding relations. The identity arrow idy is the diagonal relation {(z,z) | z € X}.

In K4(D) an arrow X — Y assigns to each z € X a probability subdistribution over Y. The identity
arrow X 4 X maps ¢ € X to the so-called Dirac distribution for x. The composition of arrows
xLvy%zm K(D) is such that: for z € X and z € Z, (g9 o f)(2)(2) = X cy f(@)(y) - 9(y)(2) -

2.3 Order-enriched structure of Kleisli categories

The notion of branching—such as non-determinism and probabilism—come with natural notions of
order. For non-determinism we have the inclusion order between sets of possible transitions. For prob-
abilism a subdistribution & is bigger than v if, to each possible transition, £ assigns bigger probability
than 9 does.

These natural orders accompanying the notion of branching appear in our setting as a DCpo | -enriched
structure of Kleisli categories. This order structure is fully exploited in the definition of forward/backward
simulations: a system simulates another one if it has more behavior.

For T =P or D, the Kleisli category K/(T) is DCpo | -enriched. This means:

e For any pair of sets X and Y, the set Homyyr)(X,Y) of the arrows from X to Y has a dcpo
structure C with bottom. In particular we can take the supremum | |, f, of an increasing chain
fo € fi € --- of arrows, and there is the minimum arrow Lxy : X =Y.

e Composition of arrows is continuous: g o (||, fn) =, (g © fn) and (L, fn) o h =L],,(fn 0 h). In

particular composition is monotone.

Indeed, for T'="P or D, a set TY has a DCpo, structure Cry. This extends to the order between
arrows in ¢(T') in a pointwise manner: for f,g: X =Y, f C g if for each z € X, f(z) Cry g(z).
We need the minimum arrow Lxy : X — Y in K¢(T) for the trace semantics results in Section 5. It is

not available for the distribution monad D—;: that is why we use the subdistribution monad D instead.

2.4 Shapely functors for transition types

We restrict a functor F—which models the transition type of a system—to be shapely. The reason
to do so is: we know the results on coalgebraic trace semantics in Section 5 hold for shapely functors,!
and also in most of the interesting examples we can take as F' a shapely functor. The family of shapely
functors is almost as broad as that of polynomial functors: it is defined inductively by the following BNF
notation.

F,G,F; :=id | |FxG|]]

IThis does not say that those results hold exclusively for shapely functors.

ieIFi )
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where ¥ denotes the constant functor into an arbitrary set ¥, and [ is an arbitrary index set. Here are

some virtue of shapely functors which we will exploit.
e An initial F-algebra exists, obtained via the initial sequence of length w.

e For T'= P or D, there is a canonical distributive law F'T" = TF. Equivalently, F' has a canonical
lifting F on K4(T). On objects FX = FX, and on arrows F’s action is what one might think of at
first sight.

3 Coalgebraic modelling of systems

In this section we model a wide variety of branching state-based systems as what we call (T, F')-systems.
A (T, F)-system is a F-coalgebra in the Kleisli category Kf(T) plus explicit start states. This definition
of (T, F)-systems will be motivated by several illustrating examples.

Two parameters in the notion of (7', F)-systems are: T is a monad, being either P or D, representing
the branching type; F' is a shapely functor describing the transition type. In the sequel we assume that
T and F' are such.

Definition 3.1 ((T, F)-systems) A (T, F)-system is a pair of arrows
12 x S Fx in the Kleisli category KC¢(T).

That is, a pair of functions (s: 1 = TX, ¢: X — TFX) in Sets, recalling that FX = FX. The arrow s
is called the start states map, and the F-coalgebra c is called the dynamics. The set X is called the state

space. The only element of the singleton 1 appearing here? is denoted by *.

In most literature on coalgebras the start state (or the set of start states) is usually left implicit. However
in this paper start states are explicit as one ingredient of the notion of systems. The reason is explained

in Appendix A.2.

Example 3.2 (Non-deterministic automata) Let us take the powerset monad P for T, hence non-
deterministic branching. For an endofunctor F' we take 1 + X x _, where 1 = {v'} is a singleton and X

is a non-empty set of symbols. A (T, F)-system then is a pair of functions in Sets,
(1—=25PX, X—S5P1+TxX)),

which should be interpreted as follows. The subset s(x) of X is the set of possible start states. For a state
x € X, the set ¢(x) contains v if z is an accepting state; it contains a tuple (a,z') if there is a (possible)
transition z = z'. In this way a (7, F)-system for these 7' and F is thought of as a non-deterministic

automaton.

Example 3.3 (Probabilistic automata) Let us take T' = D instead of P in the previous example. A

(T, F)-system is a pair of functions in Sets:
(1—2-px, X-DA+ExX)) .

This is understood as follows. The subdistribution s(*) over X represents the probability with which each

state € X is chosen as a starting state. An execution successfully terminates at « with the probability

2In this paper we will have singletons with different computational meanings. Accordingly, their only elements will be
denoted by different symbols.
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c(z)(v'); a transition z % ' is made with the probability c(z)(a, z'). Such a system is called a generative
probabilistic transition system [22, 21]: in this paper we shall call it simply a probabilistic automaton.

Here is an example of a probabilistic automaton.

—~ 1/3

ith start states: v
with start states: y = 2/3

This is modelled as the following (D,1 4+ X x _ )-system.

s = 1/3
e The start state map 1 — DX is such that s(x) = . / , and
y — 2/3

e the dynamics coalgebra X -5 D(1 + £ x X) is such that
c(z) =[(a,y) — 1/3, (a,z) = 1/3, v = 1/3], etc.

Example 3.4 (Systems with distinct input/output actions) In some cases we would like to dis-
tinguish two different kinds of transitions: those with an input action and with an output action. This
is the case for (non-deterministic) I/O automata [14] and probabilistic I/O automata [24]. This is done
by replacing the functor F' in the previous examples: we take F' =141 x _ + O x _ instead, where [

and O are disjoint sets of input and output actions.

Remark 3.5 (Example 3.4 vs. probabilistic I/O automata [24]) (D, F)-systems in the previous
example have two significant differences from the well-studied notion of probabilistic I/O automata. One
is that successful termination is explicit by the presence of 1 = {v'} in F. This is due to our choice
of finite traces—which have good characterization via coinduction—as the semantics: without explicit
termination the set of finite traces is always empty.

The other is that probabilistic I/O automata have both non-deterministic and probabilistic branching at
the same time, while (D, F)-systems in the previous example lack non-deterministic branching. Modelling

the combination of non-determinism and probabilism using a suitable monad is left as future work.?

Example 3.6 (Context-free grammar, [4]) When 7' = P and F = (£ + _)*, a (T, F)-system is
thought of as a context-free grammar (without finiteness assumptions), together with a set of possible

starting non-terminals.

The notion of morphisms of coalgebras extends to (7', F)-systems.

Definition 3.7 (Morphisms of systems) Let 1 > X 5 FX and 1 Ly L FY be (T, F)-systems,
presented in KU(T). A morphism of (T, F)-systems from (s,¢) to (¢,d) is an arrow f: X — Y in K¢(T)

that makes the following diagram commute.

Ff
FX ———— FY

ot K

X —f——=Y

5 ¢
1

3In [23] a monad for the combination of non-determinism and probabilism is proposed. However we have not yet found
a suitable dcpo structure for this monad.
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4 Forward/backward simulations, coalgebraically

This section presents the key notions of this paper: generic forward, backward and backward-forward
simulations. The intuition about order accompanying the notion of “branching”—now substantiated as
the DCpo | -enriched structure of a Kleisli category—is fully exploited here.

In this section again T'= P or D, and F is a shapely functor.

Definition 4.1 (Forward simulation) Let 1 3 X 5 FX and 1 LY 4 FY be (T, F)-systems,
presented in KU(T'). A forward simulation from (¢,d) to (s,c) is an arrow f : X — Y in K¢(T') such that:

tCfos and dofLC Ffoc,

where C refers to the order available due to the DCpo | -enriched structure of the Kleisli category.

Diagramatically presented,

FXF—f>FY
12 @)
X f——Y

/.
.

In other words, a forward simulation is a lax morphism from (s,c) to (¢,d).

We write (t,d) Cr (s, ¢) if there is a forward simulation from (¢,d) to (s, c).

The use of lax morphisms in categorical accounts of simulation/refinement is found in [11]. In a coalge-
braic setting, [2] uses lax morphisms of coalgebras to investigate order-enriched version of bisimulation.
However, to the best of our knowledge, we are the first to notice the significance of lax morphisms in
Kleisli categories.

The dual notion, with the order of arrows opposed, has also a significant computational meaning.

Definition 4.2 (Backward simulation) Let 1 % X % FX and 1 5 Y 4 FY be (T, F)-systems,
presented in KU(T'). A backward simulation from (s,c) to (¢,d) is an arrow f : X — Y in K¢(T') such
that: fosCtand Ff ocC do f. Diagramatically presented,
F
FX ——FY
4 c Ta
X f——=Y
s T t
Hence a backward simulation is an oplaxz morphism of systems.
We write (s,c) Cg (t,d) if there is a backward simulation from (s, ¢) to (¢,d).

—

Remark 4.3 Note the direction of forward/backward simulations and lax/oplax morphisms. In general,
the system which appears on the smaller sides of inequalities is simulated by the other one. For example,
a lax morphism from (s, c) to (¢,d) in Diagram (2) is a forward simulation from (¢,d) to (s,c), through
which (s, ¢) forward-simulates (t,d); hence (t,d) Cr (s, ¢).

Let us be convinced of these abstract definitions by looking at examples.

Example 4.4 (Non-deterministic automata) In the setting of Example 3.2, an arrow X — Y in
KE(T) is a relation R from X to Y since K{(P) = Rel. The previous definitions boil down as follows: R
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is a forward simulation from (¢,d) to (s, c) if and only if it satisfies the following conditions.

Yy € start q) = Jz € start(, ). zRy ,
TRy Ny —gq v = T =V,
TRy Ay Sqy = ' e X. (5.2 Ao'Ry')

where start(, ;) denotes the set s(x). These conditions are much like those in the standard literature [13].
Notice in particular that the third condition is of the following familiar form, working “forwards”.

Q,
T T — 3z’
I I
a a
y—y y—y

R

Similarly, a relation R from X to Y is a backward simulation from (s, ¢) to (¢,d) if and only if:

T € start(;.) A TRy - y € start q) ,
T eV = JyeY. (zRy ANy—av ),
5.2 A 2'Ry = JyeY. (zRy Ay=>qy') .

The third condition here works “backwards” in the following way.

a a
r — g/ T — g/
|
R — R‘ :

| R
! a !
y Jy —y

Example 4.5 (Probabilistic automata) In the setting of Example 3.3, the abstract Definition 4.1 is
instantiated as follows: a function f : X — DY in Sets is a forward simulation from (¢, d) to (s, c) if and
only if:
t(+) () Yeex 5S(4)(@) - f(@)(y)
Ypey f@W) -dy)(v) < c@)(v), (4)
ey f@W) -dy)(ay) < Yoexc@)(a)- f@)y) .

It is also straightforward to instantiate Definition 4.2 of backward simulations.

IN

One may wonder why we can call such f a forward simulation, although one can notice that a “forward”
argument similar to the previous example is going on. The point is that, however, by the abstract
theorems in the following sections we know that this definition (4) of forward simulations—derived from
the coalgebraic definition—satisfies desirable properties such as soundness/completeness with respect to
trace inclusion.

We define a simulation from one probabilistic system to another to be a function X — DY. This is
different from the approach in [7]: there a simulation is always a relation between state spaces X and Y.

It is also straightforward to instantiate notions of generic forward/backward simulations with 7" and F'
in Example 3.6. Then we get appropriate notions of simulations for context-free grammars.

Forward and backward simulations will be shown to be sound with respect to trace inclusion. But
they in general fail to be complete. Instead, a completeness result is proved for a certain combination of

forward and backward simulations (hybrid simulations), as is done in [13].

Definition 4.6 (Backward-forward simulations) Let (s,c¢) and (t,d) be (T,F)-systems. A

backward-forward simulation from (s,c) to (t,d) is a pair of
e a backward simulation f from (s, c) to some intermediate (7', F')-system (7, b), and

e a forward simulation g from the intermediate system (r,b) to (¢, d).
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Diagramatically presented in ¢(T) (note the direction of arrows),

Ff Fyg
FX FU FY

o o . Td 5)

X—f—U+—9——Y
'\ETT%
s 1 t .

We write (s,c) Cgr (t,d) if there is a backward-forward simulation from (s, ¢) to (¢,d). Obviously,

(s,¢) Cgr (t,d) — A(r, b). ( (s,¢) Cg (r,b) A (r,b) Cr (t,d) ) )

Remark 4.7 (Forward-backward simulations) It is straightforward to define the notion of forward-
backward simulations and the relation Cpp, as a suitable dual of Definition 4.6. This is done in [13] for
a restricted class of non-deterministic systems. In the same paper Cgg and Cgg are shown to coincide.

However we have not yet found the coincidence of Cgr and Cgg in general: in the light of Theorem
6.2, it seems that Cgg is the more fundamental notion. The coincidence for non-deterministic systems
in [13] may be because KC¢(P) is self-dual, i.e. KE(P) =2 KL(P)°P. Details are yet to be elaborated.

5 Finite trace semantics via coinduction

In this paper we take (finite) traces as our semantics for systems. It is with respect to trace semantics
that soundness and completeness of forward/backward simulations are shown. This section establishes

the basics of trace semantics for systems by revisiting our previous work [5]. The main points are:

e a final coalgebra in the Kleisli category K/(T) is (interestingly) induced by an initial algebra in
Sets;

e the principle of coinduction, when employed in K¢(T), yields finite trace semantics for branching

systems.

We also cite a fact from [2] about an order-theoretic property of a final coalgebra. Again in this section
amonad 7 is P or D and F is a shapely functor.

The following result identifies a final coalgebra in the Kleisli category.

Theorem 5.1 (Main theorem of [5]) Let a: FA > A be an initial F-algebra in Sets.
1. An initial F-algebra in K{(T) is induced by o as gy o a: FA S A in KU(T).

2. In K{(T), an initial F-algebra and a final F-coalgebra coincide. The latter is given as follows. We

shall denote this coalgebraic structure map by (.
(=Maoca) '=npaoat: A——5FA in KT .

Proof. The first point is standard [16]. Due to the distributive law the Kleisli adjunction on the bottom
is lifted to the top one, which preserves initial objects.

Alg(F)_ L Alg(F)

l 1
F CSets — L u(ﬂ? 7
The second point of initial algebra/final coalgebra coincidence essentially follows from the classic work
[20] of limit-colimit coincidence. O
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As a corollary we obtain the final coalgebra semantics for an F-coalgebra. Recall that such a coalgebra

is a dynamics of a (T, F)-system.

Corollary 5.2 (Finite trace semantics for coalgebras, [5]) Given an F-coalgebra X > FX in
KU(T), there exists a unique morphism tr. which makes the following diagram commute. Here v : FA 5 A

is an initial F-algebra in Sets.

F(tr.)
FX----=FA
cl =T¢ (final) (6)
X-- . + A O

The induced map
tre: X = A in KUT), that is, tr. : X - TA in Sets,

in fact becomes what is usually called the finite trace map: it assigns to each state its “trace” in a suitable
sense. The following examples show that the commutation of Diagram (6) actually amounts to standard

and natural recursive definition of finite trace maps.

Example 5.3 (Non-deterministic automata) In the setting of Example 3.2, an initial F-algebra in
Sets is carried by finite lists, or words, over X.
[nil, cons]
1+ xy
Now Diagram (6) commutes if and only if the function tr. : X — P(X*) satisfies the following conditions.
For each a € ¥ and 0 € ¥*.

() € tre(z) = z—=V
a-o € tr.(z) = ' e X. (253" Aoetr(a)) .

This is the standard recursive (or corecursive, if you like) definition of the accepted languages of non-
deterministic automata. The language tr.(z) C X* is the set of all the linear-time behavior of z which

eventually terminates within a finite number of steps (hence the name finite trace).

Example 5.4 (Probabilistic automata) Let us look at the example of a probabilistic automaton in
Example 3.3. What is the “trace” of the state x of this system? A natural answer, as suggested in [9], is

the probability subdistribution over lists on X:
1 111 1 /1\""' 1

R 7 T T . n B .z ce 7
50 @A giso , a ( ) (7)

This is explained as follows. For the state x to output the list aa, it has to take the path of transitions:

r %y 5y — . This path occurs with the probability % - % - %
This notion of “probabilistic trace” is again obtained via coinduction in the Kleisli category. Let us
instantiate Diagram (6) with 7' and F in Example 3.3. The commutativity of the diagram amounts to

the following (co)recursive definition of a function tr. : X — D(X*):

(0 = do)v)

tre(z) =
a-o = Y exc(@)(ay) - te(y)(o)
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Here the probability c¢(z)(a,y) - tr.(y)(o) is for the event that x makes an a-move to y and then y yields
the list o as its trace. Taking the sum over all the possible successors y of x, we get a natural recursive
definition of the probability with which z yields a - o as its trace.

As an additional remark we point out that the subdistribution (7) sums up only to 2/3. The remaining
1/3 is for the path # % 2 % 2 % ... . the probability for a*, or livelock. This entry a* ~ 1/3 is
absent in tr.(z) because tr. : X — D(X*) is the finite trace. This also demonstrates why we use the
subdistribution monad D instead of the distribution monad D—;: although the system can be described

using D—_;, we do not get tr. of the type X — D_;(X*).

Example 5.5 (Context-free grammar, [4]) Let us take T' and F as in Example 3.6. Via coinduction
in K¢(T) we get a trace map tr.: this assigns to each non-terminal z the set of finite-depth parse trees

generated by the context-free grammar ¢ starting from x.

From a different point of view, the previous examples are seen as proofs that standard recursive
definitions uniquely determine trace maps, due to the finality result in Corollary 5.2.
The trace map tr., being a morphism of coalgebras, automatically becomes a lax morphism of coalge-

bras. It is in fact characterized as the biggest lax morphism.

Proposition 5.6 (Trace map as the biggest lax morphism) In the situation of Diagram (6), the
trace map tr. is the biggest one among the lax coalgebra morphisms from c to the final (. That is, in
Ke(T):

F
FX—f>FA !
2 =l = xT_n 4
Xfm tre

Dually, the trace map tr. is the smallest one among the oplaz coalgebra morphisms from c to the final .

Proof. Although the proposition follows from a general result [2, Proposition 6.7], in this specific setting
of the Kleisli category we can give another proof. It does not depend on the local continuity of F but

only on the local monotonicity. This alternative proof is in Appendix A.1. O

So far the trace map induced by coinduction gives the semantics for a single state of a coalgebra. This
is extended to the semantics of a (T, F')-system—a coalgebra with explicit start states—in the obvious

way.

Definition 5.7 (Finite trace semantics of (T, F)-systems) Given a (T, F)-system 1-5X -SFX
in KU(T), its finite trace (or just trace) tr(, . is the following composite in K/(T).

F(tre)
FX—-——-——-——-=2FA
T =I¢
X—————=2A
1

1 tr(s,c)

Notice that Diagram (6) of coinduction is appearing in this diagram.

Proposition 5.8 (Morphisms of systems yield trace equivalence) Assume we have a morphism
f of (T, F)-systems from 1 3> X 5 FX to 1 LY 4 FY. Then tris,c) = tri,a)-

Proof. By Definition 3.7 of morphism of systems, f is in particular a morphism of coalgebras. By finality
we have tr, = trg o f. Hence

trse) =treos=trgo fos=trgot=tryq . O
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6 Soundness and completeness theorems

In the last two sections we have built up the notions of (and some results on) forward/backward
simulations and trace semantics, with a high level of genericity and abstraction. In this section we relate
those materials—with the same genericity and abstraction—by proving soundness of Cg,Cg, Cgr and
completeness of Cgg with respect to trace inclusion. This is the main technical result of this paper.

In the rest of this section we assume 1 % X 5 FX and 1 5V % FY to be (T, F)-systems, where
T =P or D and F is shapely.

Theorem 6.1 (Soundness of Cg,Cg,Cpr)

1. (S,C) Cr (tad) == tr(s,c) c tr(t,d) )
2. (S,C) Cs (tad) == tr(s,c) c tr(t,d) )
3. (s,c) Cwr (t,d) = tris,e) Etri,ay -

Proof. 1. By definition of Cg we have a forward simulation f : Y — X. In particular we have in K¢(T),

Ff F(tr.)
FY ———FX-—--->FA
dl | cl = =]( (final)

where the coinduction diagram appears on the right. This shows that the arrow tr. o f is a lax coalgebra

morphism from d to the final coalgebra. Indeed,

(otr.of=F(tr.))oco f (tre is a morphism of coalgebras)
CE(tr.)oFfod (Composition is continuous)
F(tr.o f)od .

Since the trace map is the biggest lax coalgebra morphism (Proposition 5.6), we have tr. o f C try. This

inequality is combined with f’s condition on start states.

trq A tr. A
=N tra / N\ tre

Y —f—— X, hence truq y 1 X tr(s,c)
25 A/

This proves 1. Similar arguments prove 2.
3. The relation Cgyg is a relational composition CgroCg. We use 1. and 2. of the theorem and

transitivity of the order C between arrows 1 = A. O

Completeness—the converse of the soundness result above—does not hold for Cg, Cg but does hold
for the weaker notion of Cgg. For a restricted class of non-deterministic systems the completeness result
is shown in [12, 13].

Theorem 6.2 (Completeness of Cgp)

trs,e) Etrgy = (s,c) CgrF (t,d) .
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»”

Proof. From a (T, F)-system (s, c¢), we construct its “canonical system” as

tr(s’c)

1 A FA  in KUT) .

R ]

That is, the dynamics is the final F-coalgebra and the start states map is the trace of the system. It is
obvious by definition that the map tr. is a morphism of systems from (s, ¢) to this canonical system (the
left side of Diagram (8) below). We apply the same construction to (¢,d) yielding the right side of the
diagram. Then the assumption tr(, . E tr(; ) fits in the lower middle of the diagram.

Fltr.) Fltry)
FX----"- SFA+ - == - FY
~T¢ d
o e ) ®

From this we have two diagrams of backward-forward simulations—like Diagram (5) in Definition 4.6—

depending on our choice of the intermediate system.

FX— — >FA« — —FY FX— — >FA« — —FY
S A
X———23A¢——-Y o X——-3A¢——-Y
1 1
Either diagram shows (s,¢) Cgr (¢,d). O

Next we shall prove that three kinds of simulation relations Cg,Cg and Cgg are indeed preorders.
The proof has been postponed until now because: for transitivity of Cgr we need the soundness and
completeness results for Cgp.

For Cg and Cg the proof is straightforward.

Proposition 6.3 (Cr,Cp are preorders) The forward/backward simulation relations Cp and Cp are

preorders. That is, they are reflexive and transitive.

Proof. Reflexitivity is obvious: take the identity arrow in the Kleisli category as a forward (or backward)
simulation. Assume (s,c¢) Cr (¢,d) Cg (r,b). There exist forward simulations f and g such that

Ff Fg F(gof)
FU FY FX FU————7> FX
bT J dT 3 e bT 3 Te
7 g X hence gof ¥ -
2 T 2 ’\ /
This shows (s, ¢) Cg (r,b). Transitivity of Cg is proved in a similar way. O

Proposition 6.4 (Cpr is a preorder) The backward-forward simulation relation Cgp is a preorder.

Proof. Reflexitivity is trivial by taking the system itself as an intermediate one. Assume (s,¢) Cgr
(t,d) Cgr (r,b). By soundness of Cgr in Theorem 6.1 and transitivity of T, we have tr(, ) T tri.p.
This in turn yields (s,c) Cgr (r,b) by completeness of Cgg in Theorem 6.2. O
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7 Eliminating internal actions

In this section we give a coalgebraic account on internal actions. We first motivate our investigation
by illustrating how internal actions arise in exercise of formal verification. Then we introduce a generic
scheme of eliminating internal actions via coalgebraic trace semantics. Equivalence of two different “trace

semantics” for systems with internal actions are proved as the main technical result.

7.1 Internal actions in formal verification

A typical scenario of verification via simulations is as follows. We have two systems at hand: one is
a simpler specification system S which is already known to satisfy the desirable properties; the other is
a more complex implementation system 7 to be verified. Existence of a simulation from Z to § implies
trace inclusion by soundness Theorem 6.1. From this we conclude that: (linear-time) safety property
which holds in S also holds 7.

In this course of verification it often happens that Z can make a bigger variety of actions than S can.
An example: Sisa (P,1+ X x _)-system and Z is a (P,1+ X' x _)-system, with ¥ C ¥’ say

¥ = {getCoin, brewCoffee} ,
¥’ = {getCoin, brewCoffee, boilWater, grindBeans} .

One can imagine a coffee machine here.
In such cases we employ internal actions to apply the verification method via simulations. We first
replace the actions which are allowed only in Z (boilWater and grindBeans in the above example) by the

symbol 7 denoting internal actions. This transforms

!
I=(1-2X 149 %xX) ink(P) into Z'=(1-"X - S1+SxX+{r}xX),

where (r,2") € ¢ (x) if and only if (boilWater, ') € c(x), ~ or
(grindBeans, z') € ¢(x)

The resulting 7' is a (P,14+ ¥ x _ + _ )-system: such a system shall be called a (P,1+ X x _)-system
with internal actions. Now we would like to compare a system 7' with internal actions 7 to another
system S. One way to do so is to eliminate 7’s of 7' and obtain a system Z’ (called the closure) without
7’s. The closure 7’ shall be such that: the closure can make a certain transition if and only if the original

system 7' can make it after finite number of 7’s. Formally,

T=(1—5X-“51+9xX) inK(P)

a /e _/ T T T a /e 12

r—2'ind <= drg,r1,...,T, € X. (x:x0—>x1—>---—>xn—>xlnc)

Where . — T T T . /
r—=>Vvind <= dxg,x1,...,7, € X. (w:wo—mvl—)---—)wn—)\/lnc)

Now let us consider the “trace semantics” of the system Z' with internal actions. There are two natural

ways to do so, as illustrated in (1).

e We first eliminate 7’s from Z', obtaining its closure Z’ as a (P, 1+ X x _ )-system. Then we apply the
trace semantics (Corollary 5.2) and obtain the trace map trz : X — P(X*) in Sets. For example,
tr(z) = {(getCoin, brewCoffee)}.

e We first apply the trace semantics to Z' itself. The trace map is now of the type trr : X —
(P(Z+{7})*) in Sets: the codomain is an initial (1+ X x _ + _)-algebra. For example, trz (z) =
{(getCoin, , T, brewCoffee) }.
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There is an inductively defined map (¥ + {7})* Jy $* in Sets removing 7’s: for example

(getCoin, 7, T, brewCoffee) — (getCoin, brewCoffee). The trace semantics is given as a composite

' J17 .
x Y n 4y —Lwe I KUP)

where J : Sets — K¢(P) is the canonical left-adjoint.

7.2 Internal actions, coalgebraically

Definition 7.1 (Systems with internal actions) A (T, F)-system with internal actions is a pair of
arrows
12X “SFx+Xx in the Kleisli category K¢(T).

That is, a pair (1 53TX, X —C>T(FX+X)) in Sets.

The additional summand “+X” in the codomain FX + X of the dynamics models internal actions: this
“+X” is understood as “+{7} x X”.

Elimination of internal actions is done via trace semantics. Given a (T, F')-system with internal actions
13 X 5 FX + X, its dynamics can be thought of as a coalgebra for a (shapely) functor FX + _.* This

functor has the following initial algebra in Sets, much like N is an initial (1 + _ )-algebra.

FX+NxFX ki(t)  ka(n,t)

[@M%sxmm I I

NXFX (Oat) (n+1)t)

By Corollary 5.2, we obtain a map ¢: X — N x FX in K/(T) via coinduction.

FX+X-———- +FX + (N x FX)
CT = (9)
X-—--2-- - 9NxFX

We define the closure ~
X—C5 SFx  in KUT)

of the dynamics ¢ : X — FX + X as the following composite.

X<~ -oNxFX
X)_‘LJWZ
FX

Here J is the standard left-adjoint Sets — K¢(T"). To summarize:

Definition 7.2 (Closure, with internal actions eliminated) Given a (T, F)-system with internal

actions 1 > X 5 FX + X, its closure is the (T, F)-system (without internal actions)
S C =
1—X —FX

with ¢ obtained via coalgebraic trace semantics (i.e. coinduction in K¢(T")).

4Note the difference between two functors FX + and F_ 4+ .
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Example 7.3 (LTS’s with explicit termination) For T =P and F = 1+ ¥ x _, let us illustrate
the intermediate map ¢: X — P(N x (1+ X x X)) in Sets in the above construction. Its diagramatic
definition (9) of ¢ is equivalent to the following equations. For ¢t € F X,

(0,t) ec(z) <= ki(t) € c(x) ,
(n+1,t) eclz) <= T’ €X. (Ka(a)) €clz) A (n,t)ec(a)) .

This implies:

n times

——~
(n,v)edlz) <= z5--Sr,—>v,

n times

(n,(a,2')) €c(z) <= 25Dz, S .

Hence ¢ carries information about after how many internal actions the non-internal action is made. By

removing this additional information we obtain the closure €.

In the rest of this section we shall prove coincidence of two “trace semantics” for systems with internal
actions.

To get the first “trace semantics” for a given system 1 > X 5 FX + X with internal actions, we
first take its closure 1 5 X < FX as defined in Definition 7.2. The resulting (T, F)-system (without
internal actions) yields the trace map tr(,z : 1 = A in K¢(T) via coinduction, as in Corollary 5.2. Here
a:FAS Ais an initial F-algebra in Sets.

For the other “trace semantics” we first take the trace map in which internal actions (denoted by 7)
appear explicit. Specifically, a (T, F)-system 1 > X 5 FX 4 X with internal actions is thought of as
a (T,F_ + _)-system without internal actions. Hence it yields the trace map tr(, . : 1 — B in K/(T),

with the codomain B carrying an initial (F_ + _ )-algebra in Sets:

FB+ B
gw
B

We shall remove internal actions from this trace tr(, ). It is done categorically, via induction. Recalling
a:FA > Ais an initial F-algebra, there are canonical maps i : A — B and j : B — A in Sets defined

via initiality.

FA--—--—- -+ FB FB+B-—-—-—— - FA+ A
Lr1
pl=
A-—-———-——— +B B-———=-—--24
3 J

The map j is what we want: it removes 7’s from elements of B. Finally, the second “trace semantics” is

now defined as the composition

tr(s,c) Tj

tr s,c J ]
1—>%p TA inSets ie. 11— J

B A in KUT).

Example 7.4 Let us take T =P and F =1+ X x _ for illustration. Then A = ¥* and B = (¥ + {7})*.
The map i is an embedding, while j : B — A removes appearances of 7 from words over ¥ + {r}. In fact,



oboooooobobobo230b0002006000000 17

the diagramatic definition of j is equivalent to the following equational definition, where o € (X + {7})*.

i) =10
jla-o)=a-j(o) forae X
i(r-0) =j(o)

For example j carries the list a;7as7 to ajas.
Lemma 7.5 The map i : A — B is a split epi with j a left inverse.

A—"+B

a\

A

Proof. First we observe that the following diagram in Sets commutes.

Fy
FB—————FA

Iﬂ)lJ/ IilJ/
Fj+j

+
FB+B-—"—-"=>FA+A |«
\
=] [a,1d]
J j 1

Hence j is a morphism of F-coalgebras as well. The claim follows from the initiality of a : FA S A. O

Now we can formally state the main technical result of this section.

Theorem 7.6 The following diagrams commute, where tr(, o), tr(sz) and j are defined as above.

tr(s,c) tr(s7c)
1—TB 1— B
T; in Sets, i.e. Jj in KUT).
trisz trisz
(s,2) (s,2)
TA A

The trace tr(,z) is what we call the first “trace semantics”, while the composite Jj o tr(, ) is the second
kind.

Proof. The proof involves non-trivial, lengthy diagram chasing. It is presented in Appendix A.3. O

8 Conclusions and future work

We have developed a generic theory of branching state-based systems in terms of coalgebras in Kleisli
categories. Notions such as forward/backward simulations and traces are defined and related via sound-
ness and completeness results. Several illustrating examples suggest practical implications of this theory.

There are a number of issues on branching systems that remain to be elaborated in our generic frame-
work. To name a few: composition of systems, compositionality of semantics, modal logic, preservation
of logical formulas and infinite traces.

As mentioned in Remark 3.4, systems with both non-deterministic and probabilistic branching do not
fit in our general framework. There are many semantical questions (see e.g. [1]) around this combination

of different branching: hopefully categorical approaches will contribute to clarify the picture.
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More examples of types of systems to which our framework applies are to be found. For example, the
author is interested in a probabilistic version of anonymous simulations [10] .

IOA Toolset [3] is a formal verification tool in which systems are described as I/O automata and
analyzed using simulations. Now that its base theory is made generic, one might as well work on a

generic version of the toolset itself.
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A  Appendix
A.1 Proof of Proposition 5.6

Our proof here heavily relies on the constructions in our previous paper [5], to which the reader is
referred for details. B
Let us consider the final sequence 1 £F1E . for Fin KC6(T). The following facts are standard.

e A final F-coalgebra (which coincides with an F-initial algebra in Sets, Theorem 5.1) is an w-limit
of this final sequence. We denote this limit by (¢, : A = F™1)pcw.

e An F-coalgebra ¢ : X — FX yields a cone (v, : X — F"1),«, over the final sequence, in an

inductive manner.

e The unique coalgebra morphism tr. from ¢ to the final coalgebra is the unique mediating arrow
X — A from the cone (7y,) to the limit ({,).

Hence we have the following situation in K¢(T).

In the proof of the initial algebra/final coalgebra coincidence (Theorem 5.1.2), it is crucial that the
limit (¢,,) is also characterized by the order-theoretical notion of O-limit. In particular we can take the
corresponding embedding (¥ : F"1 — A of each ¢, : A — F"1, and moreover, we have idy = Llcw Eo

Cn-

Now we can prove the first statement of the proposition.

= Gu oCn o tre (ida =] ¢ oCn)
( nw ) n<w

= (Upcw CF 0 Cn o tre) (Composition is continuous)
= (Unew & © 7n) (tr. is a mediating arrow)
= ( n<w (W olno ) (Cn o f E vy for each n, 1)
= (UpecuCFota)of =1, (Composition is continuous)

where the inequality (}) is proved by induction, using that f is a lax morphism. In this proof the local
monotonicity of F has been used in showing that the limit ({,) is also an O-limit.

The dual statement is proved in a similar way.
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A.2 Why explicit start states?

We shall explain the reason why we have explicit start states incorporated in the notion of (T, F)-

systems. First let us look at the following diagram in Sets.

_ _ —F(behc)— _ _
FX—————FY————-3FZ
Ff F(behy)
CT dT %T( (final) (11)
behd
XY - ——=-372
— — —beh.— — —

The maps beh. and beh;—since they are induced by coinduction in Sets—give the semantics respecting

bisimilarity. In particular, by finality we have for each x € X,

behy(f(z)) = beh.(z) .

Hence a coalgebra morphism (the map f here) in Sets is a behavior-preserving map, respecting bisimi-
larity.

Now let us try the same trick in the Kleisli category K¢(P) of the powerset monad. In Diagram (11),
the maps beh. and beh, give trace semantics, and the map f is now a relation. By finality we have again
behy o f = beh.. However in K¢(P) the computational meaning of this equality is unclear. It means: for
each z € X,

Uyes() beha(y) = beh.(z) .

That is,  has more behavior than any y € f(z), but at the same time any behavior of x is simulated by
some y € f(z). We do not immediately see the significance of this notion.

147

This clumsiness in comparing “one z vs. many y’s” is immediately mended by considering explicit
start states. In Proposition 5.8 the comparison is made between “many x’s vs. many y’s” instead. The

conclusion tr(, ) = tr ) of the proposition is interpreted as

UwEs(*) behc(a:) = Uyet(*) behd(y)

in the context of this remark.

A.3 Proof of Theorem 7.6
By Definition 5.7, it suffices to show the commutativity of the following diagram in K¢(T').

tre
—— B
w& l‘”
A

This follows from the following two commuting diagrams in K¢(T) and the finality of A = FA.

X

o ftrg o o Ftrc o FJj o
FX—-————-— - FA FX FB FA
T
e] z]]al a] @ T e]]al
X--op -4 X B—7 A

The diagram on the left is the definition of trs. The commutativity of the one on the right is non-trivial
and hence shown in later lemmas: (%) in Lemma A.4 and (}) in Lemma A.5.

In the sequel we proceed step-by-step to finally prove the two lemmas.
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Lemma A.1 For a monad T = P or D, the Kleisli category K¢(T') is monoidal.

Proof. Such a monad T on Sets is commutative: see [5] for details. A commutative monad is equipped

with an additional operation called double strength

dSty7W
TY x TW ——— T (Y x W)

for each Y, W € Sets. This is exploited to give a monoidal structure of K¢(T').
Specifically, a tensor product ® is defined as follows. On objects, X ® Y = X x Y. Given f: X - Y
and g: Z — W in KU(T'), we obtain f®g: X ® Z - Y @ W as follows.

Xxoz-1% yeow nKur)

XXZ— 3TY xTW —— T(Y x W) in Sets
X g dSty’W

The unit object I is given by the terminal object 1. It is straightforward to check that the appropriate
coherence conditions are satisfied. O

Lemma A.2 For each set S, the following two functors K€(T) = KU(T) are identical.

o The functor S x _. This is the shapely functor S x _ on Sets lifted to K¢(T), as described in
Section 2.4.

o The functor S® _. This is the bifunctor @ : KU(T) x KU(T) — K€(T') with the first argument fized.

Proof. Obviously the two functors coincide in their action on objects. For an arrow f : X — Y in K¢(T),
we have the following equalities in Sets.
Sx_(f)=Ay o (Sxf) A (S x _)T = T(S x _), distributive law
=dstsy o (ng xTY) o (S x f) By inductive construction of A, see [5]
=dstgy o (ns X f)
= (5@ )() . O

Lemma A.3 For any arrow f : S — S’ in KU(T), the following diagram commutes.

+ N x
S+N><SQ>S’+N><S'

J'y]% %TJW'

(st (1+N) xS W (1+N) x5 Csrg_
J[0,s]71 x ST% %IJ[O,S]_l x S’
Nx S Nxf Nx S’

Here the maps v,v' in Sets are canonical isomorphisms distributing x over +. Note that KU(T') has

small coproducts: Sets has small coproducts and the left adjoint J : Sets — KL(T') preserves them.
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Proof. For the commutativity of the upper square, we have

JY o (f+NX f) ok

= J7'71 oJkiof J preserves coproducts
=J(S 5 s M(l +N) xS )of Here o is the canonical isomorphism
=(_x8)JkyoJogi o f JF = FJ for shapely F, see [5]

Jk1 ®S') o Jogr o f Lemma A.2

Jrk1 ®8") o (1® f)o Jog Jog: S —1® S is natural in S
=((1+N)®f)o(Jrk1 ®S)oJog ® is a bifunctor

1+N)x f
1+N)® f
1+N)® f

o J(k1 x S)o Jog

o ( _1014,1)

Cx8)
= (
= (
((
((
((
((

~— ~— ~— e

o J(y ) or .

The equality
I e (f4Nx flor = ((1+N) @ f) o J(y ) ok

is shown in the same manner. These prove the commutativity of the upper square.
The commutativity of the lower square follows from the fact that we can substitute all the appearance
of x there with ® (Lemma A.2), and bifunctoriality of ®. O

Lemma A.4 The diagram on the right commutes. That is, the trace map tr. (as defined in the diagram

on the left), is also a morphism of F-coalgebras (as on the right).

_ _ Ftrc _
FX+X—-———->FB+B FX—FB
X-—-——-—--- +B X——B
tr.

Both diagrams are in KU(T). The coalgebras ¢ and JB~' are obtained by taking the closures of the

coalgebras ¢ and JB~1 with internal actions.

Proof. 1t suffices to show that the following diagram commute, where the operation G is by coinduction
as in (9).

N x Ftr.
NxFX ——>Nx FB

a] 75T
X

_
n B

This follows from the fact that both maps JB~! o tr. and (N x F'tr.) o ¢ are morphisms of coalgebras
as in the following diagram. Note the finality of the coalgebra on the right: N x FB carries an initial
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(FB + _)-algebra in Sets.

FB+X ———FB+ (NxFB)

Ftr, + XW
FX+X = | (Fpy_
|
X ¢Nx FB

It is easily checked that JB~! o tr. is a morphism of coalgebras: in K¢(T),

Crpy, 0 JB Lotr,=(FB+JB 1) oJf ' otr,

— (FB+JA V) o (Ftro+1tr.) o ¢
—(FB+JB1) o (FB+tr.)o (Ftr. + X) o c
(FB-{—?B\_/lotrC) o(Ftre+X)oc

It is trickier for (N x F'tr.) o ¢

CFB_i__O(NXftrC)oc

:(Ftrc+Nthrc)0§fx+_OE Lemma A.3
=(Ftr.+Nx Ftr,) o (FX +¢)oc Definition of ¢
=(FB+Nx Ftr.)o (Ftr. + Nx FX)o (FX +¢)oc
=(FB+Nx Ftr.)o (FB+¢)o (Ftr.+X)oc
= (FB+ ((Nx Ftr,) 0¢)) o (Ftr. + X) oc .

This concludes the proof. |

Lemma A.5 The following diagram in K(T) commutes. That is, the map Jj with j defined in (10) is

a morphism of F-coalgebra.
_ FJj _
FB—FA

WT %W}al
B A

Proof. Let k be the following composite in Sets. Here o4 is the canonical isomorphism.

F
F(NxA) 2 FA-254-"251x4
x} JOXA
Nx A

Let [ be the following map in Sets induced by initiality.

FB+B———— - S F(Nx A)+Nx A (12)

BJ% J[k,s x A]
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Sublemma A.6 For the map j as defined in (10), the following diagram commutes.

B*Z>N><A

X llm

Proof of Sublemma A.6. 1t suffices to show that the following diagram in Sets commutes: then the

statement follows from the initiality of 5.

F
F(Nx A)+Nx A5 pyyg

[k,s x A]l J[a,A]

Nx A . A

This is easy. O
By this sublemma, the commutativity of the following diagram in K¢(T') proves Lemma A.5.

_ NxFJj _
NxFB— NxFA
J/gﬁ TNX (Ja™t)

_
B 7 Nx A

We shall show that both maps (N x Ja~!) o JI and (N x F.Jj) o j,—B\:/l are morphisms of (FA + _)-
coalgebras as in the following diagram in K¢(T). Then finality of the codomain coalgebra yields the
identity of the two maps.

FA+B———— =< FA+NxFA (13)
FJj+B]|
FB+B CFay_
Jpt =
B ¢Nx FA

In the following apa; : FA+Nx FA S N x FA denotes an initial algebra in Sets. Hence Far =

J(CMFA+7)_1.
(Fay o(Nx Ja~ ) o Jlo JB o Ky

=J(aphy o(Nxa)olofBork)

:J(a;ﬂipri o(mol,atomol)oBork)
= J(a;“,lzu-_ o(moloBor,a 'ojofo Ii1>) my o [ = j by Sublemma A.6
' !
:J(a;ﬂipri O(FB%IgN,a_l OjOBom>) molofoky = FB%ILN by the definition of [
!
:J(m oa ! ojoﬁom) For any g, (OCFA+_)71 0(FB%1£>N,g):m og
= J(k1oa tofa, Ao (Fj+j) o k1) Definition of j
= J (k1 o Fj)
=J(FA+Nxa ') o (Fj+1)or)

FA+Nx J(a™") o (FA+Jl)o (FJj+B) ok
FA+ (Nx J(a ") oJl)o(FJj+B)ok; .

—_
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CFA+_ o (NX JOé_l) oJlo JB 0 Ko
=J((arar )" "o (Nxa ) o(sx A)ol)

=J((apar_ ) to(sxat)ol)

J(ky o (Nxa™t)ol) For any h, (apay ) "o (sx( XLFA )) = k2 o (N x h) in Sets

(FA+(Nx J(a™") o Jl) o (FJj+B)oks .

This proves that the map (N x Ja™!) o JI is a morphism of coalgebras as in (13).
For the other map (N x F.Jj) o J3~!, we prove the commutativity of (13) as follows.

Gas ©(NxFJj)o 5o JB

= Gray o (NxFJj)o J(apps_)o (FB+JB~1)  Definition of J3~"

= J((apas_ )" o (Nx FJ) o apps ) o (FB+ J6-1)

= J([(aras )" o (Nx FJ) o apps_ ok, (apas_ )" o (Nx FJ)oapps_ oka]) o (FB+J5-1)

F] K1 NXF] K9 _ —_~—
=J([FB—5FA—SFA+NxFA, Nx FB——Nx FA—3FA+NxFA])o (FB+J3™1)

— J(Fj+Nx Fj)o (FB+J31)
—FJj+(NxFJj)o g1
= (FA+ (NxFJj)o J=1) o (FJj + B) .

This concludes the proof. |



