
日本ソフトウェア科学会第 23回大会（2006年度）論文集 1

Representing Cyclic Structures as Nested Datatypes ∗

Makoto Hamana Neil Ghani Tarmo Uustalu Varmo Vene

Gunma Univ. Nottingham Univ. Tallinn U. of Technology Univ. of Tartu

hamana@cs.gunma-u.ac.jp nxg@cs.nott.ac.uk tarmo@cs.ioc.ee varmo@cs.ut.ee

We show that cyclic structures, i.e., finite or possibly infinite structures with back-pointers, unwindable

into possibly infinite structures, can be elegantly represented as nested datatypes. This representation is

free of the various deficiencies characterizing the more naive representation as mixed-variant datatypes.

It is inspired by the representation of lambda-terms as a nested datatype via the de Bruijn notation.

1 Introduction

Inductive and coinductive types (or simply
datatypes in languages where they coincide)
and the associated programming constructs, in
particular, structured recursion and corecursion
schemes such as fold, unfold, primitive recursion
etc., are central to functional programming lan-
guages. Luckily, they are also well-understood.
This derives from their elegant semantics as initial
functor-algebras and final functor-coalgebras.

But what about datastructures with cycles or
sharing? Such structures arise naturally, e.g., in
functional language implementations (term-graph
rewriting), but how should we represent and ma-
nipulate them on the level of a programming lan-
guage?

In the present paper, we develop a novel approach
to representing cyclic datastructures. In this ap-
proach, they become nested datatypes (inductive
or coinductive, depending on whether we want to
represent finite cyclic structures or possibly infi-
nite cyclic structures). The idea is to see point-
ers as variables bound at the positions they point
to and to represent the resulting syntax with vari-
able binding in the style of de Bruijn as a nested
datatype (inductive or coinductive). As a conse-
quence of this careful design, the resulting account
is imbued with the same elegance that character-
izes our understanding of inductive and coinduc-
tive types. We demonstrate the fundamental pro-
gramming constructs for cyclic structures that the

∗This paper appeared in Proc. 7th Symposium on Trends
in Functional Programming.

representation delivers and describe how these arise
from the combinators we have available for nested
datatypes.

Related work To our knowledge, there are not
many works in the functional programming liter-
ature that study explicit representation and ma-
nipulation of cyclic datastructures in a systematic
fashion. The central for us idea of pointers as vari-
ables bound at the pointed position was pioneered
by Fegaras and Sheard [8]. But they chose to repre-
sent variable binding via higher-type dataconstruc-
tors as in higher-order abstract syntax, relying on
mixed-variant datatypes. This representation suf-
fers from multiple drawbacks, the most serious be-
ing that almost all useful functions manipulating
cyclic lists must unwind them anyway, despite the
cycles being explicit. Turbak and Wells [14] have
defined a rather low-level representation, where ev-
ery node in a structure gets a unique integer iden-
tifier, and developed some combinators for working
with that representation. That de Bruijn notations
of lambda-terms can be represented as a nested
datatype was observed by Bird and Paterson [7]
and Altenkirch and Reus [3]; the mathematical ac-
count in terms of presheaves is due to Fiore, Plotkin
and Turi [9]. Structured recursion/corecursion for
nested datatypes has been investigated by Bird,
Meertens and Paterson [5, 6], Martin, Gibbons and
Bayley [4], and Abel, Matthes and Uustalu [2].

Organization In Sec. 2, we discuss cyclic lists.
We begin by outlining Fegaras and Sheard’s repre-



日本ソフトウェア科学会第 23回大会（2006年度）論文集 2

sentation and highlighting its shortcomings. Then
we proceed to our own proposal, deriving it by small
modifications from theirs. We describe the list alge-
bra and coalgebra structures on cyclic lists as well
as unfolding of list coalgebras into cyclic lists. In
Sec. 3, we demonstrate that our approach scales to
non-linear datatypes, treating the case of cyclic bi-
nary trees. In Sec. 4, we treat general cyclic struc-
ture datatypes specified by a base functor.

2 Cyclic lists

Cyclic structures are a means to make explicit the
cycles that may exist in possibly infinite structures
of a coinductive type. By a cycle, we mean that a
substructure repeats itself on a path down from the
root.

We shall first limit our attention to cyclic lists.
Lists are linear datastructures (only one path down
from the root), thus an infinite list can contain
at most one cycle, in which case it can be com-
pacted into a finite cyclic list. For example, the list
[1,2,3,4,5..] is cycle-free while the lists [1,2,1,2,1,2..]
and [1,2,3,2,3,2,3..] both contain a cycle. They are
described as cyclic lists in Fig. 1. We can see that,
intuitively, a cyclic list is a list that can either fin-
ish normally or with a pointer back to a position
somewhere before the final position.

1 2

1 2 3

図 1: Two cyclic lists

In Haskell, the two cyclic lists are trivially defined
using the fixpoint combinator fix:

clist1 = fix (\ xs -> 1 : 2 : xs)
clist2 = 1 : fix (\ xs -> 2 : 3 : xs)

fix :: (x -> x) -> x
fix f = x where x = f x

But obviously this representation gives no means
for explicit manipulation of the cycles in the two
lists.

2.1 Cyclic lists as a mixed-variant datatype

In [8], Fegaras and Sheard proposed a rep-
resentation of cyclic structures as mixed-variant
datatypes1. The idea is to represent cycles by ex-
plicit fixpoint expressions, i.e. in addition to the
normal constructors, a cyclic datatype C has an ex-
tra constructor Rec : (C → C) → C. For cyclic lists,
this gives the following definition, which ought to
be read inductively or coinductively depending on
whether one wants to represent finite or possibly
infinite cyclic lists (but see the remark on algebraic
compactness below).

data CList = Nil
| Cons Int CList
| Rec (CList -> CList)

For instance, we can represent the cyclic lists from
Fig. 1 as follows:

clist1 = Rec (\ xs -> Cons 1 (Cons 2 xs))
clist2 = Cons 1 (Rec (\ xs -> Cons 2 (Cons 3 xs)))

But, unfortunately, although cycles are explicit in
this representation, almost all functions manipulat-
ing cyclic structures will need to unwind the cycles
(based on the intuition that Rec means fix). The
reason is that, although, we can recognize cycles as
structures of the form Rec f, the argument f is a
function and we cannot analyze functions well.

For instance, the tail function can be defined as

ctail :: CList -> CList
ctail (Cons x xs) = xs
ctail (Rec f) = ctail (f (Rec f))

And similarly, the map function can be defined as

cmap :: (Int -> Int) -> CList -> CList
cmap g Nil = Nil
cmap g (Cons x xs) = Cons (g x) (cmap g xs)
cmap g (Rec f) = cmap g (f (Rec f))

(These function definitions can be justified in terms
of structured recursion for mixed-variant datatypes,
see e.g. [13, 8], but we will not so here.)

In addition to this drawback, the approach has
further shortcomings. First, the use of mixed-
variant datatypes means that the semantic category

1In their terminology, mixed-variant datatypes are
higher-order datatypes, as mixed-variance is achieved
through higher-type dataconstructors. We prefer the term
‘mixed-variant datatypes’ to avoid confusion with nested
datatypes that are fixpoints of higher-kind typeconstructors.



日本ソフトウェア科学会第 23回大会（2006年度）論文集 3

has to be algebraically compact [10], i.e., a cate-
gory where inductive and coinductive types coin-
cide. Categories like Set are ruled out immediately
and one needs something like CPO. This makes
the reasoning more complex. Second, and more im-
portant, the argument type CList → CList of Rec
is far too big: we only want fixpoints of append-
functions, not of just any list-functions. For exam-
ple, the representation

acyclic = Rec (\ xs -> Cons 1 (cmap (+1) xs))

does not correspond to a cyclic list. Third, it is
hard to define cyclic list manipulating functions so
that they do not unroll their input completely. This
illustrated already by the examples of ctail and
cmap above.

Yet another deficiency is that one can easily rep-
resent the empty cycle, which cannot be unrolled,
because it is unproductive:

empty = Rec (\ xs -> xs)

Further, the representation is not unique. For in-
stance, the cyclic list clist1 could be equivalently
represented as

clist1 = Rec (\ xs -> Rec (\ ys ->
Cons 1 (Cons 2 (Rec \ zs -> xs))))

Essentially, the constructor Rec labels a position in
a list with a variable which can be used in the rest
of the list as a back-pointer to form a cycle. A list
can contain at most one cycle, so there can be at
most one position that is pointed to (this is because
lists are linear, in branching structures there can be
more cycles). But nothing prevents more than one
label for this position and labels for other positions.

The problem of the possible empty cycle can be
solved easily. To disable the unproductive empty
cycle, it suffices to require that Rec always comes
in combination with Cons. Hence, we introduce a
new constructor RCons which combines both:

data CList = Nil
| Cons Int CList
| RCons Int (CList -> CList)

Apart from the empty cycle, this modification
disables multiple labels for one position. But we can
still choose for each non-pointed position whether

to label it (to use RCons) or refrain from doing so
(to use Cons instead). The easy way to remove this
source of ambiguity is to require labelling univer-
sally. We arrive at a simpler definition:

data CList = Nil
| RCons Int (CList -> CList)

This representation does indeed forbid the empty
cycle and ensures that all cyclic lists have a unique
representation.

2.2 Cyclic lists as a nested datatype

To derive a representation for cyclic lists that
avoids a mixed-variant datatype and makes cycles
really manipulable, we notice that the RCons con-
structor is intended to take as its second argument
a lambda-expression whose bound variable acts a
name for the position. Instead of using Haskell-
level lambda-expressions, we could make this ex-
plicit by introducing variables and changing the
type of RCons so that, instead of a list function,
it expects a variable and a list possibly containing
that variable, to be understood collectively as a for-
mal lambda-abstraction. To avoid the problems of
name-carrying syntax related to alpha-conversion,
we opt for the de Bruijn notation. As shown
in [7, 3], lambda-terms in de Bruijn notation ad-
mit a precisely typed representation as a nested
datatype. (‘Nested datatypes’ [5] is a functional
programming name for least or greatest fixpoints of
rank-2 typeconstructors). The same technology can
be applied here.

data Void

void :: Void -> a
-- illogically, Haskell rejects the empty case distinction
void _ = error "I will never be here"

data CList a = Var a
| Nil
| RCons Int (CList (Maybe a))

Of the two versions, de Bruijn indices and de
Bruijn levels, we use levels. The constructor Var

signifies a backward pointer to form a cycle. The
pointer to the first element of a cyclic list is repre-
sented by Var Nothing, to the second element by
Var (Just Nothing), etc. The extra parameter of
the type constructor encodes the depth of the posi-
tion. A complete cyclic list is of type CList Void,



日本ソフトウェア科学会第 23回大会（2006年度）論文集 4

where Void is the empty type and void is the empty
function. This guarantees that we cannot have any
“dangling pointers”, i.e., pointers which point out-
side the list.

For instance, we can represent the cyclic lists from
Fig. 1 as follows:

clist1 = RCons 1 (RCons 2 (Var Nothing))
clist2 = RCons 1 (RCons 2 (RCons 3 (Var (Just Nothing))))

An important feature of this solution is that it
only allows fixpoints of append-functions (repre-
sented by a sequence of RConses ended by a variable
pointing to the beginning of the sequence). More-
over, it turns out that one can define many useful
cyclic-list-inspecting functions that do not fully un-
wind cycles.

2.3 Cyclic lists as a list algebra

Obviously, cyclic lists should carry a list algebra
structure, and they do, but this is not entirely triv-
ial, as consing an element with a cyclic list involves
relabeling the positions.

ccons :: Int -> CList Void -> CList Void
ccons x xs = RCons x (shift xs)

shift :: CList a -> CList (Maybe a)
shift (Var z) = Var (Just z)
shift Nil = Nil
shift (RCons x xs) = RCons x (shift xs)

2.4 Cyclic lists as a list coalgebra

In order to interpret cyclic lists as infinite lists
(i.e., to unwind them), we have to define a list
coalgebra structure on it, i.e. functions chead and
ctail, which compute the head and the tail of a
non-empty cyclic list. The first is easy:

chead :: CList Void -> Int
chead (Var z) = void z
chead (RCons x _) = x

Note that the missing equation for the Nil construc-
tor says that the chead function is partial. The only
possible definition for Var is the empty function, as
one cannot point back from the first position.

The ctail function is a little more complicated.
As chead, it is undefined on Nil and, on the top
level, it can only receive a RCons-list. However, it
is not enough to return just the second argument of
RCons. In the case of a full cycle, its tail is itself ro-
tated to the left by one. This is illustrated in Fig. 2.

1 2 3

2 3 1

図 2: Tail of a cycle

If the list has a smaller cycle, then we can return
the second argument, but we need to decrement the
pointer, as the position it is pointing to now is one
position to the left.

ctail :: CList Void -> CList Void
ctail (Var z) = void z
ctail (RCons x xs) = csnoc x xs

csnoc :: Int -> CList (Maybe a) -> CList a
csnoc y (Var Nothing) = RCons y (Var Nothing)
csnoc y (Var (Just z)) = Var z
csnoc y Nil = Nil
csnoc y (RCons x xs) = RCons x (csnoc y xs)

Now we can transform cyclic lists to possibly in-
finite lists by

unwind :: CList Void -> [Int]
unwind Nil = []
unwind xs = chead xs : unwind (ctail xs)

This definition is legitimate, if the output type of
lists is understood coinductively. (The input type
of cyclic lists may be inductive or coinductive.) In-
deed, unwind is really an unfold into the coinductive
list type:

unwind = unfoldr cheadtail

cheadtail :: CList Void -> Maybe (Int, CList Void)
cheadtail Nil = Nothing
cheadtail xs = Just (chead xs, ctail xs)

2.5 Unfolding list coalgebras into cyclic

lists

A salient feature of cyclic lists is that one can de-
fine unfolding of a list coalgebra into a cyclic list.
Remember that a list coalgebra is essentially a state
machine and the unfold of the list coalgebra com-
putes the possibly infinite output trace of the state
machine.

The idea with unfolding into a cyclic list is to
keep a list of visited states and detect, if some state



日本ソフトウェア科学会第 23回大会（2006年度）論文集 5

is revisited. This is possible, if the state space has a
decidable (i.e., terminating) equality relation. The
definition is the following:

cunfoldL :: Eq c => (c -> Maybe (Int, c)) -> c -> CList Void
cunfoldL = cunfoldL’ [] []

cunfoldL’ :: Eq c => [c] -> [a]
-> (c -> Maybe (Int, c)) -> c -> CList a

cunfoldL’ cs as ht c = case lookup c (zip cs as) of
Nothing -> case ht c of

Nothing -> Nil
Just (x, c’) -> let cs’ = cs ++ [c]

as’ = Nothing : map Just as
in RCons x (cunfoldL’ cs’ as’ ht c’)

Just a -> Var a

In this definition, the output type of cyclic lists
must be read as coinductive (possibly infinite cyclic
lists).

A nice application is zipWith for finite (inductive)
cyclic input lists. We use pairs of finite cyclic lists
as the state space. This is fine, since equality of
finite cyclic lists is decidable.

czipWith :: (Int -> Int -> Int)
-> CList Void -> CList Void -> CList Void

czipWith f xs ys = cunfoldL ht (xs, ys) where
ht (xs, ys) = case cheadtail xs of

Nothing -> Nothing
Just (x, xs’) -> case cheadtail ys of

Nothing -> Nothing
Just (y, ys’) -> Just (f x y, (xs’, ys’))

The same definition loses its sense, if we want un-
derstand the input types as coinductive instead, be-
cause the equality relation of possibly infinite cyclic
lists is undecidable.

For the same reason, we cannot use cunfoldr

for cyclification of possibly infinite lists. We would
have to use possibly infinite lists as states, but can-
not decide their equality.

Note that, in algebraically compact settings,
where the distinction between inductive and coin-
ductive types vanishes, we have just one datatype
of (lazy) lists and one datatype of (lazy) cyclic
lists, but cyclification is still impossible, since the
datatype of lazy lists does not have a terminating
equality.

2.6 Structured recursion/corecursion for

cyclic lists

In the previous section, we did not explain why
the definitions of shift, csnoc and cunfoldL′ are
legitimate—our definitions relied on general recur-
sion, which is not an acceptable principle in total

settings. This is best done resorting to structured
recursion for finite cyclic lists resp. structured core-
cursion for possibly infinite cyclic lists.

The simplest structured recursion scheme, fold or
iteration, is defined in Haskell as follows:

cfold :: (forall a . a -> g a)
-> (forall a . g a)
-> (forall a . Int -> g (Maybe a) -> g a)
-> CList a -> g a

cfold v n r (Var z) = v z
cfold v n r Nil = n
cfold v n r (RCons x xs) = r x (cfold v n r xs)

The function shift is an exemplary example of a
fold:

newtype CListMaybe a = CLM {unCLM :: CList (Maybe a) }

shift :: CList a -> CList (Maybe a)
shift = unCLM . cfold v n r where

v z = CLM (Var (Just z))
n = CLM Nil
r x ys = CLM (RCons x (unCLM ys))

To justify csnoc, it is convenient to rely on a
generalized fold combinator à la [6, 4, 2] (which is
itself expressible via the fold combinator and right
Kan extensions). This recursor takes a distributive
law as one argument.

cefold :: (forall a. Maybe (h a) -> h (Maybe a))
-> (forall a . h a -> g a)
-> (forall a . g a)
-> (forall a . Int -> g (Maybe a) -> g a)
-> CList (h a) -> g a

cefold d v n r (Var z) = v z
cefold d v n r Nil = n
cefold d v n r (RCons x xs) = r x (cefold d v n r (fmap d xs))

csnoc :: Int -> CList (Maybe a) -> CList a
csnoc y = cefold id v n r where

v Nothing = RCons y (Var Nothing)
v (Just z) = Var z
n = Nil
r x ys = RCons x ys

Notice that folds on cyclic lists do not always
make sense as functions on possibly infinite lists.
For instance, we can define a function which sums
all elements in a cyclic list by

newtype K a = K Int

csum = cfold (\ x -> K 0) (K 0) (\ i (K j) -> K (i+j))

Obviously, it returns different results on
the cyclic lists RCons 1 (Var Nothing) and
RCons 1 (RCons 1 (Var Nothing)), but both cor-
respond to the same infinite list [1, 1, 1..].

The function cunfoldL′ is an example of an un-
fold for cyclic lists.

cunfold ::
(forall a. g a -> Either a (Maybe (Int, g (Maybe a))))

-> g a -> CList a
cunfold lht c = case lht c of

Left z -> Var z



日本ソフトウェア科学会第 23回大会（2006年度）論文集 6

Right Nothing -> Nil
Right (Just (x, c’)) -> RCons x (cunfold lht c’)

data St c a = St [c] [a] c

cunfoldL’ :: Eq c => [c] -> [a] -> (c -> Maybe (Int, c))
-> c -> CList a

cunfoldL’ cs as ht c = cunfold lht (St cs as c) where
lht (St cs as c) = case lookup c (zip cs as) of

Nothing -> case ht c of
Nothing -> Right Nothing
Just (x, c’) -> let cs’ = cs ++ [c]

as’ = Nothing : map Just as
in Right (Just (x, St cs’ as’ c’))

Just a -> Left a

3 Cyclic binary trees

The approach of the previous section scales up
from lists to other datatypes, in particular to all
polynomial datatypes.

To see this, we look at cyclic binary trees. Binary
trees are non-linear (multiple paths down from the
root) and this makes them more general than lists.
By a cyclic tree we mean a tree where a path down
from the root may end with a pointer back to some
position in that path. (Pointers elsewhere are for-
bidden, we are interested in cycles in this paper,
not in sharing.) An infinite tree can contain mul-
tiple cycles and the existence in an infinite tree of
cycles does not mean it can be represented as a fi-
nite cyclic tree. For this, it is necessary that there
is a cycle on every path of the tree.

The representation of the type of cyclic binary
trees as a nested datatype is a direct generalization
of the cyclic list type from the previous section.

data CTree a = VarT a
| Leaf
| RBin Int (CTree (Maybe a)) (CTree (Maybe a))

Again, we can read this definition as inductive or
coinductive depending on what we want. As an
example, the cyclic tree from Fig. 3 is represented
as follows:

ctree = RBin 1 (RBin 2 (RBin 3 (VarT Nothing) Leaf)
Leaf)

(RBin 4 (RBin 5 Leaf Leaf)
(RBin 6 Leaf Leaf))

Cyclic trees are a tree algebra. One of the two
operations is Leaf, the other is cbin defined as

cbin :: Int -> CTree Void -> CTree Void -> CTree Void
cbin x xsL xsR = RBin x (shiftT xsL) (shiftT xsR)

shiftT :: CTree a -> CTree (Maybe a)
shiftT (VarT z) = VarT (Just z)
shiftT Leaf = Leaf
shiftT (RBin x xsL xsR) = RBin x (shiftT xsL) (shiftT xsR)

1

2 4

3 65

図 3: A cyclic tree

Cyclic trees are also a tree coalgebra. Here, how-
ever, the situation is more complicated than in the
case of lists because of the non-linearity of trees: the
left subtree of a cyclic tree with back-pointed root
node contains not only a relocated copy of this root
node but also the right subtree. The left subtree of
the cyclic tree from Fig. 3 is depicted on Fig. 4.

2

3

1

4

65

図 4: Left subtree of the cyclic tree from Fig. 3

The central ingredients of the tree coalgebra
structure of cyclic trees are defined as follows:

csubL :: CTree Void -> CTree Void
csubL (VarT z) = void z
csubL (RBin x xsL xsR) = csnocL x xsR xsL

csubR :: CTree Void -> CTree Void
csubR (VarT z) = void z
csubR (RBin x xsL xsR) = csnocR x xsL xsR

csnocL :: Int -> CTree (Maybe a) -> CTree (Maybe a) -> CTree a
csnocL y ys (VarT Nothing) = RBin y (VarT Nothing) ys
csnocL y ys (VarT (Just z)) = VarT z
csnocL y ys Leaf = Leaf
csnocL y ys (RBin x xsL xsR) = RBin y (csnocL y ys’ xsL)

(csnocL y ys’ xsR)
where ys’ = shiftT ys

csnocR :: Int -> CTree (Maybe a) -> CTree (Maybe a) -> CTree a
csnocR y ys (VarT Nothing) = RBin y ys (VarT Nothing)



日本ソフトウェア科学会第 23回大会（2006年度）論文集 7

csnocR y ys (VarT (Just z)) = VarT z
csnocR y ys Leaf = Leaf
csnocR y ys (RBin x xsL xsR) = RBin x (csnocR y ys’ xsL)

(csnocR y ys’ xsR)
where ys’ = shiftT ys

4 General cyclic structures

To finish, we sketch an implementation of gen-
eral cyclic structures that is parametric in the base
functor defining the depth-one structures.

In Haskell, the general definition of an inductive
or coinductive type in terms of its base functor is
the following.

data Mu f = In (f (Mu f))

For instance, the base functors for lists and binary
trees can be defined as follows:

data L x = Nil | Cons Int x

instance Functor L where
fmap f Nil = Nil
fmap f (Cons i x) = Cons i (f x)

data T x = Leaf | Bin Int x x

instance Functor T where
fmap f Leaf = Leaf
fmap f (Bin i xL xR) = Bin i (f xL) (f xR)

Hence, lists and binary trees are represented as Mu L

and Mu T respectively.
General cyclic structures can be modelled in a

similar way, but with an extra type variable argu-
ment for encoding the depth of a local structure in
the global substructure (its distance from the root)
and an extra constructor for backward pointers:

data Cyc f a = Var a
| RIn (f (Cyc f (Maybe a)))

For instance, cyclic lists and binary trees can be
represented as follows:

type CList = Cyc L
type CTree = Cyc T

Obviously, cyclic structures are an algebra of the
base functor:

shift :: Functor f => Cyc f a -> Cyc f (Maybe a)
shift (Var z) = Var (Just z)
shift (RIn x) = RIn (fmap shift x)

cin :: Functor f => f (Cyc f Void) -> Cyc f Void
cin = RIn . fmap shift

They also have a coalgebra structure, but to de-
scribe this, we need to be able to work with con-
texts of positions in a depth-one structure in a gen-
eral manner. This is achieved by using derivatives

[12, 1]. In Generic Haskell, it would be possible to
define the derivative of a regular functor by struc-
tural recursion over the expression for that functor.
Here we take a simpler and more manual approach.
We make a class definition which states the require-
ments on the derivative of a functor.

class (Functor f, Functor g) => Ctx f g | f -> g where
distCtx :: f x -> f (g x, x)
combCtx :: g x -> x -> f x

The member function distCtx pairs the value at
every position in a depth-one structure with its sur-
rounding one-hole context and the combCtx is the
’plug-in’ operation which fills a one-hole context
with a given value.

For instance, the derivatives of the base functors
of list and binary tree types can be defined as fol-
lows:

data LCtx x = ConsCtx Int

instance Functor LCtx where
fmap f (ConsCtx i) = ConsCtx i

instance Ctx L LCtx where
distCtx Nil = Nil
distCtx (Cons i x) = Cons i (ConsCtx i, x)

combCtx (ConsCtx i) x = Cons i x

data TCtx x = BinCtxL Int x | BinCtxR Int x

instance Functor TCtx where
fmap f (BinCtxL i x) = BinCtxL i (f x)
fmap f (BinCtxR i x) = BinCtxR i (f x)

instance Ctx T TCtx where
distCtx Leaf = Leaf
distCtx (Bin i xL xR) = Bin i (BinCtxL i xR, xL)

(BinCtxR i xL, xR)

combCtx (BinCtxL i xR) xL = Bin i xL xR
combCtx (BinCtxR i xL) xR = Bin i xL xR

Now, the coalgebra structure on cyclic structures
is defined as follows:

cout :: Ctx f g => Cyc f Void -> f (Cyc f Void)
cout (Var z) = void z
cout (RIn x) = fmap (uncurry csnoc) (distCtx x)

csnoc :: Ctx f g => g (Cyc f (Maybe a)) -> Cyc f (Maybe a)
-> Cyc f a

csnoc ctx (Var Nothing) = RIn (combCtx ctx (Var Nothing))
csnoc ctx (Var (Just z)) = Var z
csnoc ctx (RIn x) = RIn (fmap (csnoc (fmap shift ctx)) x)

5 Conclusion

In this paper, we have demonstrated that cyclic
lists and cyclic trees can be represented as nested
datatypes. Our approach is rooted in the idea of Fe-
garas and Sheard to view cycles as explicit fixpoints,
but corrects it, switching from their higher-order



日本ソフトウェア科学会第 23回大会（2006年度）論文集 8

abstract syntax style presentation of the variable
binding involved to a de Bruijn inspired version.
Pleasingly, this simple modification yields represen-
tations that are free of the multiple shortcomings
of the original proposal of Fegaras and Sheard and
easy to manipulate and reason about. In the general
case, one is forced to think in terms of of one-hole
contexts of positions in depth-one structures. Here,
the toolkit of derivatives of functors applies.

As future work, we want to extend our method
to sharing. While cycles mean pointers to positions
on the path from the root, sharing means point-
ers to position to the left from the path from the
root. And we also want to develop a categorical ac-
count of the cyclic representations of rational and
coinductive types, building on the groundwork by
Ghani, Lüth and de Marchi [11].

Acknowledgements

We are grateful to Zhenjiang Hu for motivating
this work.

Makoto Hamana was partially supported by
the JSPS Grant-in-Aid for Scientific Research
No. 16700005. Tarmo Uustalu and Varmo Vene
were partially supported by the Estonian Science
Foundation under grant No. 5567.

参考文献
[1] Abbott, M., Altenkirch, T., McBride, C., Ghani,

N.: δ for data: differentiating data structures.
Fund. Inform. 65(1–2) (2005) 1–28

[2] Abel, A., Matthes, R., Uustalu, T.: Iteration and
coiteration schemes for higher-order and nested
datatypes. Theor. Comput. Sci. 333(1–2) (2005)
3–66

[3] Altenkirch, T., Reus, B.: Monadic presenta-
tions of lambda terms using generalized induc-
tive types. CSL 1999: In: Flum, J., Rodŕıgues-
Artalejo, M., Eds., Proc. of 13th Int. Wksh. on
Computer Science Logic, CSL ’99 (Madrid, Sept.
1999). Vol. 1683 of Lect. Notes in Comput. Sci.
Springer-Verlag, Berlin (1999) 453–468

[4] Martin, C. E., Gibbons, J., Bayley, I.: Disciplined,
efficient, generalised folds for nested datatypes.
Formal Asp. of Comput. 16(1) (2004) 19–35

[5] Bird, R., Meertens, L.: Nested datatypes. In Jeur-
ing, J., ed.: Proc. of 4th Int. Conf. on Mathematics
of Program Construction, MPC ’98 (Marstrand,

June 1998). Vol. 1422 of Lect. Notes in Comput.
Sci. Springer-Verlag, Berlin (1998) 52–67

[6] Bird, R., Paterson, R.: Generalised folds for nested
datatypes. Form. Asp. of Comput. 11(2) (1999)
200–222

[7] Bird, R.S., Paterson, R.: De Bruijn notation as a
nested datatype. J. of Funct. Program. 9(1) (1999)
77–91

[8] Fegaras, L., Sheard, T.: Revisiting catamorphisms
over datatypes with embedded functions (or, pro-
grams from outer space). In: Conf. Record of 23rd
ACM SIGPLAN/SIGACT Symp. on Principles of
Programming Languages, POPL ’96 (St. Peters-
burg Beach, FL, Jan. 1996). ACM Press, New
York (1996) 284–294

[9] Fiore, M., Plotkin, G.D., Turi, D.: Abstract syn-
tax and variable binding. In: Proc. of 14th Ann.
IEEE Symp. on Logic in Comp. Sci., LICS ’99
(Trento, July 1999), IEEE Comput. Soc. Press,
Los Alamitos, CA (1999) 193–202

[10] Freyd, P.J.: Recursive types reduced to inductive
types. In: Proc. of 5th IEEE Ann. Symp. on Logic
in Computer Science, LICS ’90 (Philadelphia, PA,
June 1990). IEEE Comput. Soc. Press, Los Alami-
tos, CA (1990) 498–507

[11] Ghani, N., Lüth, C., de Marchi, F.: Monads of
coalgebras: rational terms and term graphs. Math.
Struct. in Comput. Sci. 15(3) (2005) 433–451

[12] McBride, C.: The derivative of a regular type is the
type of its one-hole contexts. Manuscript (2000)

[13] Meijer, E., Hutton, G.: Bananas in space: Ex-
tending fold and unfold to exponential types. In:
Conf. Record of 7th ACM SIGPLAN/SIGARCH
and IFIP WG 2.8 Int. Conf. on Functional Pro-
gramming Languages and Computer Architecture,
FPCA ’95 (La Jolla, San Diego, CA, June 1995).
ACM Press, New York (1995) 324–333

[14] Turbak, F. A., Wells, J. B.: Cycletherapy: A pre-
scription of fold and unfold on regular trees. In:
Proc. of 3rd Int. ACM SIGPLAN Conf. on Prin-
ciples and Practice of Declarative Programming,
PPDP 2001 (Florence, Sept. 2001). ACM Press,
New York (2001) 137–149


