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We describe Huzita’s origami axioms in logical and algebraic point of view. Observing that Huzita’s axioms are

statements about the existence of certain origami constructions, we can generate basic origami constructions from

those axioms. We give the logical specification of Huzita’s axioms as constraints among geometric objects of origami

in the language of the first-order predicate logic. The logical specification is then translated into logical combinations

of algebraic forms, i.e. polynomial equalities, disequalities and inequalities, and further into polynomial ideals (if

inequalities are not involved). Origami construction is performed by repeated application of Huzita’s axioms. By

constraint solving, we obtain solutions that satisfy the logical specification of the origami construction problem.

The solutions include fold lines along which origami has to be folded. The obtained solutions both in numerical and

symbolic forms make origami computationally tractable for further treatment, such as visualization and automated

theorem proving of the correctness of the origami construction.

1 Introduction

Computational origami is a scientific discipline to

study computational aspects of origami [3, 6]. One of

the foundational studies of the computational origami is

the axiomatic definition of origami foldability inspired

by Huzita’s axioms [2]. Huzita’s axioms state the fold-

ability of origami by asserting the existence of fold lines

along which we can make a fold. Huzita’s axioms are

constructions, as Euclid’s postulates (5 out of 4) are con-

structions [7].

We are interested in the mathematical foundation of

origami construction. We will show in this paper how

Huzita’s axioms are used to computerize origami con-

structions and to automate reasoning about origami.

From the early history of mathematics, the correspon-

dence between geometry and algebra has been noted

and exploited. It is natural to hold algebraic views of

origami and relate them to geometric ones. We observe

that logic is a glue to combine algebra and geometry

views in computational origami. We therefore formulate

origami construction in the first-order predicate logic.

Then we give the origami fold operations in terms of

algebraic equations by transforming the logical repre-

sentation into algebraic one. The numeric solutions of

these equations allow the realization of folds on com-

puter. Moreover, the algebraic representation is given

to an automated theorem prover in order to perform a

proof of the correctness of the origami construction.

As part of our research efforts in computational

origami, we are developing a computational origami

system calledEos (e-origami system) [8]. It has ca-

pabilities of visualizing origami constructions based

on Huzita’s axioms, algebraic analysis of origami

folds, and automated theorem proving of correctness of

origami constructions. We useEosto illustrate the result

of our study in this paper.

The rest of the paper is organized as follows. In sec-

tion 2, we present the six Huzita’s origami axioms. In

section 3, the logical specification of Huzita’s axioms is

detailed. In section 4, we explain the algebraic equa-

tions generated from the logic formulas. In section 5,

the method for implementing Huzita’s axioms byEosis

presented. For this, an example of constraint solving of

the problem of trisecting an angle is given. In section 6,

we illustrate briefly how algebraic forms of axioms are

used to prove geometric properties of origami.

2 Huzita’s Origami Axioms

Huzita’s axioms set is described by the following

statements.

(O1) Given two pointsP and Q, we can make a fold

along the fold line that passes throughP andQ.
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(O2) Given two pointsP andQ, we can make a fold to

bringP ontoQ.

(O3) Given two linesm andn, we can make a fold to

superposem andn.

(O4) Given a pointP and a linem, we can make a fold

along the fold line that is perpendicular tom and

passes throughP.

(O5) Given two pointsP and Q and a linem, we can

make a fold to superposeP andm along the fold

line that passes throughQ.

(O6) Given two pointsP andQ and two linesm andn,

we can make a fold to superposeP andm, andQ

andn, simultaneously.

These axioms are more powerful than the straightedge

and compass method in Euclidean plane geometry [1].

For example, using Huzita’s axiom set, by origami we

can construct a trisector of an angle, whereas by the

straightedge and compass we cannot [4].

3 Modeling Huzita’s Axioms

An origami is modeled as a set of faces. A face is not

completely independent from the other faces since when

we fold one face, others adjacent faces may be moved.

Basic elements such as points (face vertices) and lines

(face edges) compose each face. When we perform an

origami fold operation, new points and lines are created

and others are moved. New lines are fold lines gener-

ated by folding operations. New points are intersection

of faces edges and the fold line. In order to determine

the geometric properties of these associated elements,

we will introduce several predicates which will be de-

scribed in conjunction with the logical formulation of

each axiom.

We will now describe Huzita’s axioms in the first-

order predicate logic. In the following, letPoint and

Line be the set of points and lines respectively.

Axiom (O1)

In the case of (O1), the fold linek is PQ1. Below, the

atomic formulaOnLine [X, l] specifies that pointX is

1XY means the line that passes through pointX and pointY .
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Figure 1: Axiom (O1) byEossystem

on linel.

∀ P, Q ∈ Point ∃ k ∈ Line

OnLine [P, k] ∧ OnLine [Q, k]

Axiom (O2)
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Figure 2: Axiom (O2) byEossystem

Given pointsP andQ, we need to find a fold linek

such that the fold along this line bringsP ontoQ. The

line k is simply a symmetric axis. Thus, the image ofP

by the fold alongk is Q.

∀P, Q ∈ Point ∃k ∈ Line

SymmetricPoint [P, k] == Q

The term SymmetricPoint [X, l] denotes the

symmetric point ofX with respect to linel. We define

the equality between points and denote it by ==.

Axiom (O3)

Given two linesm andn, we need to find a fold line

that bringsm onton. In other words, we need to find a

fold line k such that for any pointP on k the distances
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Figure 3: Axiom (O3) byEossystem

from P to m and fromP to n are the same.

∀ m, n ∈ Line ∃ k ∈ Line ∀ P ∈ Point

OnLine [P, k] =⇒

Distance [P, n]==Distance [P, m]

In the above formula,k is the set of pointsP that

are equidistant tom and n. Term Distance [X, l]
computes the distance between pointX and linel.

Axiom (O4)
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Figure 4: Axiom (O4) byEossystem

Given pointP and linem, we need to find a fold line

k passing throughP and the perpendicular tom.

∀ P ∈ Point ∀ m ∈ Line ∃ k ∈ Line

OnLine [P, k] ∧ Perpendicular [k, m]

The predicatePerpendicular [l, t] is true if linel is

perpendicular to linet, otherwise is false.

Axiom (O5)

Given two pointsP andQ and a linem we can find a

fold line k passing throughQ such that the fold alongk

brings pointP onto linem. Thus,Q is on linek and the
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Figure 5: Axiom (O5) byEossystem

symmetric point ofP with respect tok is on linem.

∀ P, Q ∈ Point ∀ m ∈ Line ∃ k ∈ Line

OnLine [Q, k]∧OnLine[SymmetricPoint [P, k], m]

Axiom (O6)
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Figure 6: Axiom (O6) byEossystem

Given two pointsP and Q and two linesm and n

we need to find a fold linek such that the fold alongk

bringsP ontom andQ onton. The symmetric points

of P andQ with respect tok are respectively on linesm

andn.

∀ P, Q ∈ Point ∀ m, n ∈ Line ∃ k ∈ Line

OnLine[SymmetricPoint [P, k], m]∧

OnLine[SymmetricPoint [Q, k], n]

4 Algebraic Interpretation

For origami construction, we have to transform the

logical specifications into algebraic forms. The logical

formulas in section 3 are given straightforward algebraic

interpretation by the following transformation rule

LetA : F →R, whereF be the set of logical formulas

andR be the powerset of polynomials over real, i.e.,

R[x].

We applyA to get the algebraic meaning of formulas
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representing Huzita’s axioms. First, we define a point by

its coordinatesx andy. Line is defined by the following

equationa x+ b y + c = 0, where the coefficientsa and

b should not be equal to 0 simultaneously. To ensure

this, a suitable constraint ona andb have to be added

for each line. Here, without lost of generalization we

seta2+b2=1.

The transformation ofOnLine [P, k] is given by

A[[OnLine [P, k]]]={a x1 +b y1 +c}, whereP is posi-

tioned at(x1, y1) andk is the equationa x+b y+c = 0.

The transformation ofPerpendicular [m, n] is

given by

A[[Perpendicular [m, n]]]={a1 a2 + b1 b2}, where

m is specified bya1, b1 andc1 andn is specified bya2,

b2 andc2.

In the case of axiom (O3), we deal with equality

of distances:Distance [P, m]==Distance [P, n]
which is defined by the equation:

|a1 x1+b1 y1+c1|√
a2
1+b21

= |a2 x1+b2 y1+c2|√
a2
2+b22

Since we seta2
1+b2

1=1 anda2
2+b2

2=1, the equation is

simplified to

(a1 x1 + b1 y1 + c1)2=(a2 x1 + b2 y1 + c2)2

which is equivalent to the formula

((a1 x1 + b1 y1 + c1) + (a2 x1 + b2 y1 + c2))×

((a1 x1 + b1 y1 + c1) − (a2 x1 + b2 y1 + c2)) = 0

Therefore, any point on the linek is given by

a x1 + b y1 + c = 0 is either on the line

(a1 − a2) x + (b1 − b2) y + (c1 − c2) = 0
or on the line

(a1 + a2) x + (b1 + b2) y + (c1 + c2) = 0.

In addition, conjunctions, disjunctions and negations

of atomic formulas are used to express Huzita’s axioms.

We define the translation rules of those logical opera-

tors.

The conjunctions of formulas is interpreted as the

union of sets of polynomials translated from each for-

mula.

A[[
∧

i∈{1,...,n}

ϕi]] =
∪

i∈{1,...,n}

A[[ϕi]]

The disjunction of formulas is interpreted as the prod-

uct of the polynomials that are the elements of the cross

product of the set of the polynomials, translated from

each formula. Namely,

A[[
∨

i∈{1,...,n}

ϕi]] = {p1 · · · pn |

⟨p1, . . . , pn⟩ ∈
∏

i∈{1,...,n}

A[[ϕi]]}

To deal with negations, we introduce slack variable to

turn disequality into equality.

A[[¬ϕ]] = {
∏

p∈A[[ϕ]]

p ξp − 1}

Here,ξp is the slack variable introduced for each poly-

nomialp.

5 Origami Constraint Solving

We discuss trisecting an angle as an example of

origami constraint solving. Origami construction byEos

proceed stepwise, where each step indicates a fold oper-

ation that satisfies one of the axioms defined as geomet-

ric constraints.

In the following, we will trisect the angle∠FEG.

D C

BA

G

FE

For display purposes, first we construct the edges of

∠FEG by applying axiom (O1).

Eos provides the functionConstraint to record

the geometric constraints that characterize the fold step.

Here,k is the fold line.ThruQ [E, G, k] is the logical

constraint that the creasek passes throughE andG.

c = Constraint [k ∈ Line , ThruQ [E, G, k]]
The functionConstraint gives the following for-

mula :

∃ k∈ Line ThruQ [E, G, k]
By calling SolveConstraint , we solve nu-

merically the constraint generated by function

Constraint and therefore we compute the fold

line.

s = SolveConstraint [c]

{{k → Line [−1., 1., −1.]}}
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Then, the fold step is visualized byBFold . The fol-

lowing call ofBFold performs axiom (O1)

BFold [k/. s, {D}];

C

BA

FD

G

E

Mathematicanotation k /. s denotes the result of the

application of substitutions to k.

We proceed in the same way to construct the second

edgeEF.

Now, to trisect∠FEG, we perform simultaneously

two (O3) folds.

flines = {x, y}/.SolveConstraint [

Constraint [{x ∈ Line , y ∈ Line },

y==BringLineQ [EF, x]∧x==BringLineQ [EG, y]]]

We note that there are three numeric solutions of

constraints.

{{Line [−3.73205, 1., −1.],Line [0.57735, 1., −1.]},

{Line [−0.267949, 1., −1.],Line [−0.57735, 1., −1.]},

{Line [1., 1., −1.],Line [1., 0., 0.]}}
Only the second case gives a trisection of the internal

angle∠FEG.

Case 1

D C

BA

G

FE

x

y

Case 2

D C
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G
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x

y

Case 3

D C

BA

G

FE
xy

After performing the fold operations that make the

second case, we obtain the following trisection of

∠FEG.

J

H

D C

BA

G

FE

Eosprovides alsoFold function that implements the

six Huzita’s axioms.

6 Theorem Proving

Eosnot only simulates origami folds, but also proves

geometric properties of the construction.Eos keeps

track of the geometrical properties of all the points

and fold lines during the construction as symbolic con-

straints. From such constraints, polynomials are gener-

ated. They will become premises of the theorem to be

proved. The first step of the proof is to collect the neces-

sary geometrical properties in symbolic form. Then, by

choosing the coordinate system, we translate the sym-

bolic representation of the geometrical properties into

polynomials. The next step is to transform the conclu-

sion that we want to prove into algebraic form.Eos

has an interface withTheoremawhich provides Gr̈obner

bases method for theorem proving [5]. Premises are

saved inTheoremaformat and then are sent to the prover

Theorema. Thus, we will obtain the proof as a proof ob-

ject that can be displayed in aMathematicanotebook.

7 Conclusion

In this paper, we formalized the computational

origami construction. First, we described a formulation

of Huzita’s axioms into the first-order predicate logic

formulas. The advantage of this formulation is abstrac-

tion by the first-order logic. Then, we explained the al-

gebraic interpretation of this logic formulation. Based

on the algebraic formulation,Eos, on one hand provides

methods of constraint solving to achieve origami con-

structions, and on another hand, supports proof of a ge-

ometric properties of the constructed shapes. As future

work, we would like to generalize this model to cope

with the full syntax of the first-order predicate logic.
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In addition, since reasoning with a huge size of con-

straints is a challenging task for the geometric provers,

we would like to investigate optimization and simpli-

fication of polynomials and variables generated while

transforming formulas into algebraic equations.
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