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We provide a stack based machine for type-free λµ-calculus. The machine is derived from a sound

and complete CPS-translation for λµ-calculus. The target calculus has let-expressions as a primitive

notion, in order to handle substitution information elegantly and to simplify technical matters on

the completeness. The technical improvement naturally leads to the abstract machine which handles

environments explicitly. We show that the machine transitions are correct with respect to continuation

semantics.

1 Introduction

We first provide a sound and complete CPS-

translation for type-free λµ-calculus. An analysis

on the calculi without type restrictions reveals core

properties of the CPS-translation. Continuations

are handled as a list or a stack of denotations,

and formalized as a pair consisting of a denota-

tion and a continuation in this order. The study

on the type free cases also makes clear the distinc-

tion between λ-abstraction and µ-abstraction, from

the viewpoint of continuations: an λ-abstraction is

viewed as a constructor for a function taking only

the first component of such a pair, and on the other

hands, an µ-abstraction is interpreted as a construc-

tor for a function over continuations. Our target

calculus has let-expressions as a primitive notion, in

order to handle substitution information (environ-

ment) elegantly and to simplify extremely techni-

cal matters on the completeness. The technical im-

provement naturally leads to an abstract machine

for λµ-calculus, which handles explicitly environ-

ments. We show that the machine transitions are

correct with respect to continuation semantics.

2 Type-free λµ-calculus and target

calculus λlet

Definition 1 (λ-calculus with let Λlet)

Λlet ∋ M ::= x | λx.M | MM | 〈M,M〉

| let 〈x, x〉 = M in M

(β) (λx.M1)M2 → M1[x := M2]

(η) λx.Mx → M if x 6∈ FV (M)

(let) let 〈x1, x2〉 = 〈M1,M2〉 in M

→ M [x1 := M1, x2 := M2]

(letη) let 〈x1, x2〉 = M1 in M [x := 〈x1, x2〉]

→ M [x := M1] if x1, x2 6∈ FV (M)

Definition 2 (λµ-calculus Λµ)

Λµ ∋ M ::= x | λx.M | MM | µα.[α]M

(β) (λx.M1)M2 → M1[x := M2]

(η) λx.Mx → M if x 6∈ FV (M)

(µ) (µα.N)M → µα.N [α ⇐ M ]

(µβ) µα.[β](µγ.N) → µα.N [γ := β]

(µη) µα.[α]M → M if α 6∈ FN(M)
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3 Sound and complete CPS-

translation

Definition 3 (CPS-Translation : Λµ → Λlet)

(i) [[x]] = x

(ii) [[λx.M ]] = λk.(let 〈x, k′〉 = k in [[M ]]k′)

(iii) [[M1M2]] = λk.[[M1]]〈[[M2]], k〉

(iv) [[µα.[β]M ]] = λα.[[M ]]β

Remarked that term constructors are related be-

tween source and target calculi, as follows:

Source calculus: λµ Target calculus: λlet

λ-abstraction let-expression

application pair

µ-abstraction λ-abstraction

name continuation variable

Proposition 1 (Soundness) Let M1,M2 ∈ Λµ.

If we have M1 =λµ M2, then [[M2]] =λlet [[M2]].

Proof. By induction on the derivation of M1 =λµ

M2. 2

We introduce a grammar R that served as the do-

main of an inverse translation. Let n,m ≥ 0. Then

we write 〈M0,M1, . . . ,Mn〉 for 〈M0, 〈M1, . . . ,Mn〉〉,

and 〈M〉 ≡ M .

R ::= x

| λa.R〈R1, . . . ,Rn, a〉

| λa.(let 〈x, a〉 = 〈R1, . . . ,Rn, a〉

in R〈R1, . . . ,Rm, a〉)

Lemma 1 (1) The category R is closed under the

reduction rules of λlet.

(2) It is a well-defined equivalence relation that the

binary relation =R generated by →∗
λlet with re-

spect to R.

Proof. Substitutions are closed with respect to R,

and hence R is closed under the reduction rules. 2

Proposition 2 (Soundness w.r.t. R) Let

M1,M2 ∈ Λµ. If we have M1 =λµ M2, then

[[M2]] =R [[M2]].

We introduce an inverse translation ♮ from R

back to Λµ, see also the correspondence table in

the above.

Definition 4 (Inverse Translation ♮ : R → Λµ)

(i) x♮ = x

(ii) (λa.R〈R1, . . . , Rn, b〉)♮ = µa.[b](R♮R
♮
1 . . . R♮

n)

(iii) (λa.(let 〈x, b〉 = 〈R1, . . . , Rm, c〉

in S〈S1, . . . , Sn, d〉))♮

= µa.[c]((λx.(λb.S〈S1, . . . , Sn, d〉)♮)R♮
1 . . . R♮

m)

Lemma 2 (1) Let M ∈ Λµ. Then we have that

[[M ]]♮ →∗
µη

M .

(2) Let R ∈ R. Then we have [[R♮]] →∗
β R.

Proof. By induction on the structures of M ∈ Λµ

and R ∈ R. 2

Lemma 3 Let R,R1, . . . , Rn ∈ R. Then we have

(R[a := 〈R1, . . . , Rn, a〉])♮ = R♮[a ⇐ R
♮
1, . . . , R

♮
n].

Proof. By induction on the structure of R ∈ R. 2

Lemma 4 Let P,Q ∈ R.

(1) If P →β Q then P ♮ →+
µµβ

Q♮.

(2) If P →η Q then P ♮ →µη
Q♮.

(3) If P →let Q then P ♮ →+
βµµβ

Q♮.

(4) If P →letη
Q then P ♮ =βηµµη

Q♮.

Proof. By induction on the derivation of P → Q.

2

Proposition 3 (Completeness) Let P1, P2 ∈ R.

If we have P1 =R P2, then P
♮
1 =λµ P

♮
2 .

Theorem 1 (i) Let M1,M2 ∈ Λµ. M1 =λµ M2

if and only if [[M1]] =R [[M2]].

(ii) Let P1, P2 ∈ R. P1 =R P2 if and only if

P
♮
1 =λµ P

♮
2 .
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4 Abstract machine with explicit en-

vironment

Finally we introduce a stack based machine for

λµ-calculus, which handles environments explicitly

and is motivated by our target calculus with let-

expressions that encapsulate environments consist-

ing of denotations or continuations.

There exists a well-known connection between

continuation passing style [Seli98, SR98, Fuji03a]

and abstract machines [Plot75, Bier98, deGr98].

For instance, according to [SR98], we have relations

between 〈denotation, continuation, environment〉

and 〈closure, stack, environment〉, as follows:

Continuation denotation D continuation K

Denotational [[ ]] : Λ × E → D D × K

Semantics D = [K → R]

Abstract closure Clos stack S

Machine Λ × E Clos × S

Continuation environment E

Denotational V ar → D

Semantics Cvar → K

Abstract environment E

Machine V ar → Clos

where Λ is a set of terms, and R is a domain of

responses.

The connection makes it possible to relate an ab-

stract machine to its continuation denotational se-

mantics as done in [SR98, Seli98]. Here, we are

interested in compiler correctness, based on which

λµ-terms are compiled into codes of an abstract ma-

chine. Such a machine is the so-called Krivine’s

abstract machine, compared with Landin’s SECD

machine [Lan64] for call-by-value.

We introduce here an abstract machine with a

modification, such that the environment explicitly

handles substitution information. The machine

has configurations of the form 〈|[M,E],K|〉, where

[M,E] is the closure consisting of a term M (in-

struction) and the environment E, and K is the

continuation consisting of a closure and a continu-

ation. Environments are defined by a list of substi-

tution information together with two kinds of dis-

tinguished indices denoted by x and α. We employ

nil and :: for the empty list and cons, respectively.

Environment (list of continuations or closures)

E ::= nil | (x = cl) :: E | (α = K) :: E

Continuation (stack of closures)

K ::= k | 〈cl,K〉 | E(α) | snd(K)

Closure

cl ::= [M,E] | E(x) | fst(K)

The transition function ⇒i specifies how to execute

the machine following terms (instructions code), in

the sense that one step execution transforms the

configuration 〈|[M,E],K|〉.

1. 〈|[x,E],K|〉 ⇒i 〈|E(x),K|〉

2. 〈|[λx.M,E], 〈cl,K ′〉|〉

⇒i 〈|[M, (x = cl) :: E],K ′|〉

3. 〈|[λx.M,E],K|〉 ⇒i

〈|[M, (x = fst(K)) :: E], snd(K)|〉 otherwise

4. 〈|[M1M2, E],K|〉 ⇒i 〈|[M1, E], 〈[M2, E],K〉|〉

5. 〈|[µα.[β]M,E],K|〉

⇒i 〈|[M, (α = K) :: E], ((α = K) :: E)(β)|〉

Moreover, environments are also handled by the

transition function ⇒e.

1. 〈|((x = cl) :: E)(x),K|〉 ⇒e 〈|cl,K|〉

2. 〈|((x′ = cl) :: E)(x),K|〉 ⇒e 〈|E(x),K|〉

if x 6≡ x′

3. 〈|((k = K ′) :: E)(x),K|〉 ⇒e 〈|E(x),K|〉

4. 〈|cl, ((α = K) :: E)(α)|〉 ⇒e 〈|cl,K|〉

5. 〈|cl, ((α′ = K) :: E)(α)|〉 ⇒e 〈|cl, E(α)|〉

if α 6≡ α′

6. 〈|cl, ((x = cl′) :: E)(α)|〉 ⇒e 〈|cl, E(α)|〉

For each M ∈ Λµ, the abstract machine is exe-

cuted from Comp(M)
def
= 〈|[M, nil], k|〉, denoted by

Comp(M) ⇒ 〈cl1,K1〉 ⇒ 〈cl2,K2〉 ⇒ . . ., as follows:
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1. Following the instruction M , we apply ⇒i.

Then apply ⇒e in the case of ⇒i (1) or (4)

as follows:

(a) Case of 〈|E(x),K|〉

Apply repeatedly ⇒e (1,2,3) until either

〈|nil(x),K|〉 or 〈|cl,K|〉 where cl 6≡ E(x)

is obtained.

(b) Case of

〈|[M, (α = K) :: E], ((α = K) :: E)(β)|〉

Apply repeatedly ⇒e (4,5,6) until either

〈|cl, nil(α)|〉 or 〈|cl,K|〉 where K 6≡ E(β)

is obtained.

2. Repeat the process above.

That is, a sequence of the machine transitions ⇒∗

consists of (⇒i · ⇒∗
e)

∗, where ⇒∗ is the reflexive

and transitive closure of ⇒.

At the application of ⇒i, the machine always has

the following configuration 〈|[M,E],Knf |〉:

Knf ::= sndn(k) | sndn(nil(α)) | 〈[M ′, E′],Knf 〉

If the machine halts, then the state has the config-

uration 〈|clnf ,Knf |〉, as follows:

clnf ::= fst(sndn(k)) | fst(sndn(nil(α))) | nil(x)

Now configurations can be assumed to be in the

following form 〈|clnf ,Knf |〉:

clnf ::= nil(x) | fst(sndnk)

| fst(sndn(nil(α))) | [M,Enf ]

Enf ::= nil | (x = clnf ) :: Enf

| (α = Knf ) :: Enf

Knf ::= sndm(k) | sndm(nil(α))

| 〈[M,Enf ],Knf 〉

Let Knf be 〈clnf1
, . . . , clnfp

, sndm(nilδ(k))〉 where

m,n ≥ 0 and δ is either 0 or 1. Then we have

n < m, since we have the second clause of ⇒i. Now,

for 〈|〈clnf ,Knf 〉|〉, its CPS-code in terms of λlet is

defined as follows:

[[〈|clnf ,Knf |〉]] =

λk.let 〈x1, . . . , xm, k〉 = k in [[clnf ]][[Knf ]]

if 0 ≤ n < m

[[〈|clnf ,Knf |〉]] = λk.[[clnf ]][[Knf ]] if m = 0

1. [[[M,Enf ]]] = [[M ]]Enf

(a) [[x]]Enf
= x if Enf (x) = nil(x)

[[x]]Enf
= [[M ′]]E′

nf
if Enf (x) = [M ′, E′

nf ]

[[x]]Enf
= xn+1

if Enf (x) = fst(sndn(nilδ(k)))

(b) [[λx.M ]]Enf
=

λk′.(let 〈x, k〉 = k′ in [[M ]]Enf
k)

(c) [[M1M2]]Enf
= λk.[[M1]]Enf

〈[[M2]]Enf
, k〉

(d) [[µα.[β]M ]]Enf
= λα.[[M ]]Enf

[[K ′
nf ]]

where K ′
nf = Enf (β)

2. [[fst(sndn(nilδ(k)))]] = xn+1

3. [[nil(x)]] = x

1. [[〈[M ′, E′
nf ],K ′

nf 〉]] = 〈[[M ′]]E′

nf
, [[K ′

nf ]]〉

2. [[sndm(nilδ(k))]] = k

Lemma 5 1. We have [[M ]](x=clnf )::Enf
=

[[M ]]Enf
[x := [[clnf ]]], provided that

x 6∈ Dom(Enf ).

2. [[M ]](α=Knf )::E = [[M ]]Enf
[α := [[Knf ]]], pro-

vided that α 6∈ Dom(Enf ).

Proof. By induction on the structure of M ∈ Λµ.

2

Proposition 4 If we have 〈|cl1,K1|〉 ⇒ 〈|cl2,K2|〉,

then [[〈|cl1,K1|〉]] →
∗
βlet [[〈|cl2,K2|〉]].

Proof. By induction on the structure of clnf =

[M,Enf ]. 2

Theorem 2 (Adequacy of the Machine)

1. [[Comp(M)]] =λlet [[M ]]

2. If we have 〈|cl1,K1|〉 ⇒∗ 〈|cl2,K2|〉, then

[[〈|cl1,K1|〉]] =λlet [[〈|cl2,K2|〉]].

Proof. We have [[Comp(M)]] →+
β [[M ]]. From Propo-

sition 4, we have the second clause. 2

Corollary 1 For each machine transition

〈|cl1,K1|〉 ⇒ 〈|cl2,K2|〉, there exist the corre-

sponding λµ-reductions M1 →∗
λµ M2 for some

M1,M2.
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Proof. If we have 〈|cl1,K1|〉 ⇒ 〈|cl2,K2|〉, then

[[〈|cl1,K1|〉]] →∗
βlet [[〈|cl2,K2|〉]] from Proposition 4.

Hence, we have λµ-reductions [[〈|cl1,K1|〉]]
♮ →∗

βµµβ

[[〈|cl2,K2|〉]]
♮ from Lemma 4. 2

Lemma 6 We have [[M [x := M ′]]]Enf
=

[[M ]]Enf
[x := [[M ′]]Enf

], provided that x can

appear only in M .

Proof. By induction on M ∈ Λµ. 2

Lemma 7 We have [[M [α ⇐ M ′]]]Enf
→∗

β

[[M ]](α=〈[M ′,Enf ],K′〉)::Enf
where K ′ = Enf (α),

provied that α 6∈ FN(M ′).

Proof. By induction on M ∈ Λµ. 2

Lemma 8 If we have M →λµ M ′, then

[[M ]]Enf
=λlet [[M ′]]Enf

.

Proof. By induction on the derivation of M →λµ

M ′. 2

We show that λµ-reductions are executed by the

abstract machine whose configurations are equal

each other in the sense of the continuation seman-

tics.

Proposition 5 If we have M1 →λµ M2, then

[[〈|[M1, E],K|〉]] =λlet [[〈|[M2, E
′],K ′|〉]] for some E′

and K ′.

Proof. It is enough to show that we have

[[M1]]Enf
[[Knf ]] =λlet [[M2]]E′

nf
[[K ′

nf ]] for some E′
nf

and K ′
nf . 2

Theorem 3 (Correctness for λµ-reductions)

If we have M1 →λµ M2 →λµ M3 →λµ · · ·,

then [[Comp(M1)]] =λlet [[〈|[M2, E2],K2|〉]] =λlet

[[〈|[M3, E3],K3|〉]] =λlet · · · for some Ei and Ki.

5 Concluding remarks

The CPS-translation into the target calculus with

let-expressions as a primitive notion can be natu-

rally carried over, for instance, to polymorphic λ-

calculus, system F and 2nd order typed λµ-calculus,

as done in [Fuji05, Hasse05].

We have shown the adequacy and correctness of

the abstract machine with respect to continuation

semantics only in terms of λlet. This result can

also be enlarged with respect to continuation de-

notation semantics [SR98]. Our abstract machine

on this version is deterministic and works not only

for weak head reductions but also for head reduc-

tions. Moreover, for full λµ-reductions, the machine

is still correct with respect to continuation seman-

tics, as shown in Theorem 3 for →λµ, although

it cannot handle directly components in the envi-

ronment. but can do only after ⇒i (1) or (4),

i.e., the machine has neither a value closure nor

a value environment because of call-by-name. The

machine can also be modified as a lower level ma-

chine with nameless terms by the use of de Bruijn

indices [deGr98].
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