
日本ソフトウェア科学会第 23回大会（2006年度）論文集 1

Toward a Domain Description with CafeOBJ

Yasuhito Arimoto†, Masaki Nakamura†, Kokichi Futatsugi†

†Graduate School of Information Science,

Japan Advanced Institute of Science & Technology

arimotoy, masaki-n, kokichi@jaist.ac.jp

In our work, we try to describe a domain description with CafeOBJ. A domain description means a

document which describes observable phenomena of the domain. It also means the process of of domain

capture, analysis and synhesis, and the document which result from that process[3]. We formalise the

domain description in [2] in CafeOBJ. CafeOBJ is a formal specification language. By formalisation of

domain description, we can avoid the ambiguities and inconsistency of the description, and can prove

propertiess in a domain precisely.

1 Introduction

In [3], the triptych dogma is introduced as follows.

• Before software can be designed, programmed,

coded, its requirements must first be reason-

ably well understood.

• Before requirements can be expressed properly,

the domain of the application must first be rea-

sonably well understood.

From a description of the application domain, we

can construct the prescription of the requirements,

and from the prescription of the requirements, we

can construct the specifications of software.

In our work, we focus on the understanding the

domain of the application, which is the first thing to

do for the software development, according to the

trptych dogma.

CafeOBJ[1, 4, 5] is a formal specification lan-

guage. It is a direct successor of OBJ and it inherits

all its features. We try to describe domain descrip-

tions with CafeOBJ. By formalise the domain de-

scriptions in CafeOBJ, we believe we can describe

the domain descriptions more precisely, and we can

get more understanding of the domain from the pro-

cess of descriptions. The specifications written in

CafeOBJ is executable, and it helps us to prove the

theories hold in the domain. This executability of

CafeOBJ also help us to understand the domain.

In section 2, we introduce domain descriptions

defined in [3] and the formal specification CafeOBJ.

And in section 3, we introduce a domain description

of hospitals in CafeOBJ. section 4 is the conclusion

of this work as far as we have done. In section 6,

we consider about another way of describing the

domain descriptions in CafeOBJ.

2 Preliminary

2.1 Domain Descriptions

According to [3], domain descriptions and terms

related to them can be characterised as follows.

Characterisation of Application Domain

By an applycation domain we shall understand

anything to which computing may be applied.

Characterisation of Domain

By a domain, we mean an application domain.

Characterisation of Domain Descriptions

1. A domain description is a something which de-

scribes observable phenomena of the domain:

entities, functions over these, events, and be-

haviours.

2. A domain description is also the process of do-

main capture, analysis and synthesis, and the

document which results from that process.

Entities, functions, events, behaviours, and terms

related to them are also characterised in [3] as fol-

lows.

Characterisation of Entities

By an entity we shall loosely understand some-

日本ソフトウェア科学会第 23回大会（2006年度）論文集 2

thing fixed, immobileor static. Although that thing

may muve, after it has moved it is essentially the

same thing, an entity.

Characterisation of Atomic Entities

By an atomic entity we shall understand an en-

tity which cannot be understood as composed from

other entities.

Characterisation of Composite Entities

By a composite entity e we shall understand

an entity which can best be understood as com-

posed from other entities, called the subentities,

e1, e2, ..., en, of eneity e.

Characterisation of Subentities

By a subentity, we shall understand an entity

which is a component of another entity.

Characterisation of Values

By a value ve of an entity we shall loosely

understand the following: If the entity is an

atomic entity, then the entire set of identified at-

tributes, a1e
, a2e

, ..., ane
, of the entity. If the en-

tity is a composite entity, suppose subentities are

e1, e2, ..., em, then there are three parts to the

entity value: how it is composed — its mere-

ology m, the entire set of identified attributese,

a1e
, a2e

, ..., ane
, of the entity, and (inductively)

the identified values, ve1
, ve2

, .., vem
, of respective

subentities (e1, e2, ..., em).

Characterisation of Attributes

By an attribute of an entity we shall loosely un-

derstand a quality which cannot separated from the

entity.

Characterisation of Entity Mereology

By mereology we understand a theory of part-

hood relations. That is, of the relations of part to

whole and the relations of part to whithin whole.

Characterisation of Functions

By a function we shall loosely understand some-

thing, a mathematical quantity, which when app-

plied to something, called argument of the function,

yields something, called result of the function for

that argument. If the function is applied to some-

thing which is not a proper argument of the func-

tion, then the totally undefined result, called chaos,

is yielded.

Characterisation of States

By a state we shall loosely understand a collection

of one or more entities whose value may change.

Characterisation of Actions

By an action we shall loosely understand some-

thig which changes a state.

Characterisation of Events

By an event we shall loosely understand the oc-

curence of something that may either trigger an ac-

tion, or is triggered by an action, or alter the course

of a behaviour, or a combination of these.

Characterisation of Behaviours

By a behaviour we shall loosely understand a se-

quence of actions and events.

2.2 CafeOBJ

The basic building blocks of CafeOBJ[1, 4, 5]

are modules and the module mainly consists of two

parts. One is the signatures, and the another is the

axioms. Signatures are formed by a set of sorts and

operations on the set of sorts. Axioms shows how

the operators function by using equations. Here

is an example of the CafeOBJ specification of the

strings of natural numbers.� �
mod! STRG-NAT {

pr (NAT)

[Nat < Strg]

op nil : -> Strg
op (_._) : Strg Strg -> Strg { assoc }

var S : Strg

eq (nil . S) = S .
eq (S . nil) = S .

� �
mod! is the tight semantic notation. For loose se-

mantic, mod* is used. NAT is the name of the mod-

ule. Signatures consists of importing modules, sort

declaration, and operator declaration. pr (module-

name) is for importing module module-name. In

this specification, the module which specifies the

data type natural numbers is imported. Sorts are

declared by the notation []. [Nat < Strg]

shows the sorts Nat and Strg are declared, and Nat

is the sub sorts of Strg. Operations declarations

begins with op. Operations declarations consist of

the name of the operation, which can be mix-fix

syntax with showing the position of the arguments

by “ ”, the arity of the operation, and the sort of

日本ソフトウェア科学会第 23回大会（2006年度）論文集 3

the operation. An arity of the operation may con-

sists of an empty string (like in the case of nil), only

one sort, and several sorts (like “Strg Strg” in the

case of (_._). Note that these sorts of the arity

may be different). { assoc } shows the operation

satisfies associativety. Variables declarations begins

with var or vars. vars are for declaring more than

one variable for a sort. Axioms are declared by us-

ing equations, and it begins with eq.

3 Example of a Domain Description

in CafeOBJ

In this section, we introduce a CafeOBJ specifi-

cation of a domain of hospitals which is the descrip-

tion of the entities and the functions on the domain

of the hospitals. Events can be written as comments

in the specification, because they are just what hap-

pen after or before the actions. Events themselves

do not change any states of entities. Behaviours are

sequences of actions and events. We think that we

do not have to formalise these.

Figure 1 shows how hospitals are constructed.

We postulate entities of the domain of the hospi-

tal are the hospital, the ward, the operating room,

the pharmacy, the administrational staff, the pa-

tients, the medical staff, the medical staff station,

the patients medical records, the medicine box, the

medicine, the medical machine, the medical tool,

the bedroom, the bed, and the consultation room.

The hospital consists of the wards, the operating

rooms, the pharmacy, the administrational staff,

the patients, and the medical staff. The wards con-

sists of the medical staff stations, the bedrooms,

and the consultation rooms, and the other entities

are constructed as figure 1.

Functions are admit, interview, plan analysis,

analyse, diagnose, plan teatments, treat, transfer,

and release. When citizenss come to a hospital,

they are admitted and become patients and the pa-

tients medical records for them are created. After

the admitted, patients get interview. Based on the

result the interview, the medical staff make an anal-

ysis plan. After the analysis, medical staff diagnose

the patients, and make a treatment plan for the pa-

tients based on the result of the diagnosis and treat

them. If the patients get another symptom, then

the patients are transferred to another ward. If the

patients get curred, then the medical staff release

the patients. The the procedure of the treatment

for a patient obeys the patients medical record for

him or her.

3.1 Entities of the Domain of Hospitals

Before showing how to describe the domain of

hospital, we define the datatype of sets. This mod-

ule SET is a parameterized module, and it is useful

to describe the set of something, by giving an argu-

ment.

� �
mod* SET (X :: TRIV) {

pr (EQL)

pr (NAT)
[Elt Empty NeSet < Set]

op none : -> Empty
op _ _ : Set Set -> NeSet

{ assoc comm idem idr: none}
op _ in _ : Elt Set -> Bool

op card : Set -> Nat
op del : Elt Set -> Set

vars E E’ : Elt
vars S S’ : Set

eq E in none = false .

eq E in (E’ S) = if (E = E’) then true
else (E in S) fi .

eq del (E, none) = none .

eq del (E, E’) = if (E = E’) then none
else E’ fi .

eq del (E, (E’ S)) = if (E = E’) then del (E, S)
else (E’ del(E, S)) fi .

eq card (none) = 0 .

eq card (E) = 1 .
eq card (E S) = 1 + card (del (E, S)) .

}

� �
In this case, the sort Elt is a parameter, that is,

Elt can be replaced by another sort.

3.1.1 Atomic Entities and Composite Enti-

ties

Atomic entities have attributes and composite en-

tities have attributes and subentities. To describe

entities in CafeOBJ, we define entities as a pair of

a set of attributes and a set of sets of subentities.

Therefore, entities have the form as following.

Entity = (Attribute set) × ((Entity set)set)

where (Attribute set) is a set of attributes, and

((Entity set) set) is a set of sets of entities. For

日本ソフトウェア科学会第 23回大会（2006年度）論文集 4

図 1: “The Hospital”

atomic entities, ((Entity set) set) is the empty set.

Figure 2, 3 shows the tree structure of the entities.

図 2: “Atomic entity”

We define each entity in a module respectively,

except sort declarations of attributes. The sorts for

attributes are declared in a module, because some

entities have the same attributes as others. If these

are declared in defferent modules, they are regarded

as different sort although they should be the same

sorts. Assume that the module in which sorts of

attributes are declared is named ALLATT, and the

module for the atomic entity patient can be de-

scribed in CafeOBJ as follows.

図 3: “Composite entity”

� �
-- Patient

mod! PATIENT principal-sort Pa{
pr (ALLATT)

[PAttri PSub Pa]

-- Attributes set.

op pAtt : Name WID Rnm BID PMRID Loc NmSet
-> PAttri

-- A patient is an atomic entity.
op pSub : -> PSub

-- Constructor of the patient.

op pa : PAttri PSub -> Pa

}

mod! PASET {

pr (SET (PATIENT)
* { sort Empty -> PaEmpty,

sort NeSet -> NePaSet,
sort Set -> PaSet,

op none -> nonePa })
}

� �

The entity patient is represented as the sort Pa.

Name, WID, Rnm, BID, PMRID, Loc, and NmSet are the

日本ソフトウェア科学会第 23回大会（2006年度）論文集 5

attributes of Pa and they are declared in the module

ALLENT. Name is the name of the patient, WID : the

ID of the ward where the patient is taken care of,

Rnm : the room number of the bedroom where the

patient is staying, BID : the ID of the bed which

the patient is using, PMRID : the ID of the patients

medical record for the patient, Loc : the location

where the patients is in the hospital, and NmSet :

the set of names of medical staff who take care of

the patient.

PAttri is the set of attributes of Pa, and pAtt

is the constructor of PAttri. PSub is the set of

sets of subentities of Pa and pSub is the constructor

of PSub. Since Pa is an atomic entity, it has no

subentity. pa is the constructor of Pa.

To specify the set of patients, we reuse the mod-

ule SET. By substitute the sort Pa in the module

PATIENT, we can spesify the set of Pa. Since Pa is

declared as a principal sort of the module PATIENT,

CafeOBJ system can get to know Elt should be

replaced by pa by the notation SET (PATIENT).

The composite entity hospital is described in

CafeOBJ as follows.

� �
-- Hospital

mod! HOSPITAL {
pr (WSET)

pr (ORSET)
pr (PHSET)

pr (PASET)
pr (MSSET)
pr (ASSET)

pr (ALLATT)
[HAttri HSub Hos]

-- Attributes are the name of the hospital
-- and the location.
op hAtt : Name Loc -> HAttri

-- Subentitis of a hospital are the ward,

-- the oparating room, the pharmacy,
-- the hospital central staff, and the patient.

op hSub : WSet ORSet PhSet ASSet PaSet MSSet
-> HSub

-- Constructor of the hospital.
op hos : HAttri HSub -> Hos

-- Check mereology

op mere : Hos -> Bool

var HA : HAttri

var WS : WSet
var ORS : ORSet

var PhS : PhSet
var ASS : ASSet
var PaS : PaSet

var MESS : MSSet

� �

� �
-- Mereology— eq mere(hos(HA,

hSub (WS, ORS, PhS, ASS, PaS, MESS)))

= if ((card(WS) > 0) and
(card(ORS) > 0) and

(card(PhS) = 1) and
(card(ASS) > 0) and
(card(PaS) >= 0) and

(card(MESS) > 0)) then true
else false fi .

}

� �

The entity hospital is represented by the sort Hos.

HAttri is the set of attributes of Hos and hAtt is the

constructor of it. HSub is the set of sets of suben-

tities of Hos and hSub is the constructor of it. hos

is the constructor of Hos. mereis the predicate to

check whether Hos satisfies the mereology of hospi-

tals. The mereology of the hospitals is that it con-

sists of one or more wards, one or more operating

rooms, one pharmacy, one or more administrational

staff, zero or more patients, and one or more medi-

cal staff.

3.2 Functions of the Domain of Hospitals

In this section, we show how functions are speci-

fied in CafeOBJ. To define actions, we firstly define

the observers for the attrubutes of entities in the

module ATTOBS. By using these observers, we spec-

ify functions over the domain of hospitals.

We specify functions in the module FUNCTION and

following shows the definition of the function admit

which is a part of the module FUNCTION.

� �
pr (CITIZEN)

pr (HOSPITAL)
pr (ATTOBS)

op admit : Cit WID Hos -> Hos
op addP2H : Pa Hos -> Hos

op creatPMR : Name PMRID WID Hos -> Hos
op pmrid : Cit Hos -> PMRID

var C : Cit
var Wid : WID

var H : Hos

� �

日本ソフトウェア科学会第 23回大会（2006年度）論文集 6

� �
-- admit
eq admit(C, Wid, H) =

creatPMR (cname (C),
pmrid (C, H),

Wid,
addP2H (pa (pAtt (cname(C),

Wid,
undefR,
undefB,

undefP,
L,

noneNm),
pSub),

H)) .

� �
Arities of admit is Cit (the citizen), WID (the ID

of the ward), and Hos (the hospital), and the sort

of admit is Hos. admit is the function for admit-

ting citizens to the hospital as patients. What this

function actually do is add a new patient to the set

of the patients which is in the hospital and creat a

new patients medical record for the patient in the

medical staff station of the ward whose ID is the

same as the one given as an arity of admit. Op-

eration addP2H is for former and creatPMR is for

latter. pmrid is the constructor of PMRID. We do

not care how hospitals the ID for the patients med-

ical records are created, but we only cares it should

be distinct. cname is the obsever for the name of

citizens which is defined in the module ATTOBS.

4 Conclusion

For a domain description of hospitals in CafeOBJ,

we regard entities as a pair of a set of attributes and

a set of sets of subentities. In the example of a do-

main description of hospitals we showed, this mod-

elisation worked. And based on the specification of

entities, we are also be able to define functions for

the domain.

5 Future Works

In this work, we do not reach to the step for the

proving properties of domains. One instance of the

propertes is the mereology between entities. Since

we defined the predicate for each entities which

checks whether the entity satisfy the mereology,

we can define the predicate which checks not only

mereology for the entities but also the mereology

of subentities. In the future, we try to prove if

the mereology of entities and subentities is satis-

fied after any functions on the domain is applied.

We think that is one property of the domain which

should be hold.

For the description in CafeOBJ introduced in this

document, we specified the entities as data types

which is denoted by visible sorts. As a result,

the definition of functions get complicated and not

easy to read. Another way of describing domain in

CafeOBJ, we regard entities as state spaces which

is denoted by hidden sorts. It may makes the spec-

ification of the domains easier to see.

6 Acknowledgement

The authors are grateful to all people who con-

tributed to the discussion of domain descriptions

and development of the CafeOBJ specification for

domains, especially Prof. Dines Bjorner, Dr. Jian-

wen Xiang, and Miss Xiaoyi Chen.

参考文献

[1] CafeOBJ: CafeOBJ web page.
http://www.ldl.jaist.ac.jp/cafeobj/

[2] Yasuhito Arimoto. A domain Description of “THE
HOSPITAL”. Course report, JAIST, School of In-
formation Science, 1-1, Asahidai, Nomi, Ishikawa,
Japan 923-1292, Spring 2006.

[3] Dines Bjorner. Software Engineering, Vol 3: Do-

mains, Requirements and Software Design. Texts in
Theoretical Computer Science, the EATCS Series.
Springer, 2006.

[4] Rǎzvan Diaconescu, Kokichi Futatsugi. CafeOBJ

Report. AMAST Series in Computing, 6. World Sci-
entific, Singapore.

[5] Ataru Nakagawa, Toshimi Sawada, Kokichi
Futatsugi. CafeOBJ User’s Manual Ver.1.4.
http://www.ldl.jaist.ac.jp/cafeobj/documents.hrml

