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Characterizing modal logic in first-order predicate logic has been aglsearch topic in mathematical logic. Van
Benthem gave an elegant characterization such that the standardtivansfanodal formulas coincides with the
class of first-order predicate formulas invariant for bisimulations. Widleharacterized modal formulas in first-
order predicate logic, we characterize modal proofs in first-ordedipate logic in this paper. To be concrete, we
give a complete translation from a term calculus based on intuitionistic mogial ilito Barendregt'stP. This
characterization, identifying equality of proofs, is recently considerdsktsignificant since a term calculus based
on intuitionistic modal logic is expected to realize staged computation.

1 Introduction in an appropriate functional language in the sense of
Curry-Howard isomorphism [13]. Now we claim that it

Modal logic is derived from ordinary propositional logigs significant to clarify equality between modal proofs.
to gain expressibility with modal operators. In Kripkerhis is because some theoretical computer scientists ex-
semantics, while propositional |OgiC is defined only Witbect a program based on modal |Ogic to realize staged
one world, the minimal modal logic K yields the clasgomputation by regarding its modality as a kind of rela-
of frames, i.e., K has the notion of one-step reachabilifipn between stages [7].
between any two worlds. Furthermore, we can define
other formal systems e.g., T, K4, S4, and S5 by addi
some axioms. The axioms give the notions of reflexivi
positive finite step reachability, finite step reachabhilit
and connected components, respectively.

On the other hand, first-order predicate logic is e
riched by quantifiers. A formula in first-order predicat:
logic is of the form of¥x. 7. Roughly speaking, a first-

Davies and Pfenning’s work has inspired some com-
Bter scientists to construct term calculi equipped with
arious tastes. For example, Miyamoto and Igarashi

6ave a typed calculus for secure information flow [21].

However, any of such calculi was constructed syntac-

ﬂéally and its semantics was given implicitly or oper-

Stionally. It may be inevitable since Davies and Pfen-

q dicate f lix. - is satisfied if th ist ning’s calculus, the calculus adopted as a basis, was not
order precicate formuldXx. = 1S Salistied It Nere exISts agy .y 16 have an explicit semantics in their original pa-

structure satisfying for any element of the structure per. On the other hand, we give a term calculus based

substituted fosc on modal logic with denotational semantics. Adopting

Many logicians have been interested in relations CO8ir calculus as a basis for constructing a new calculus,

necting the two enriching notions. In fact, it is We"bne can formalize a term calculus on his semantics more

known that modal logic is realized in first-order predldenotationally. Our calculus is expected to be a new ba-

gate logic. To _be precise, van Be_:nthem s_h_owed fthagig for constructing term calculi equipped with several
first-order predicate formula invariant for b|S|muIat|0n§ stes

was the result of the following translation of a moda ) )
Furthermore, we characterize equality of modal

formula and vice versa [26]:
proofs from another perspective. We embed our term
P,(P) = Pa calculus based on modal logic into Barendreg a
@a(0 D 0') = Da(0) D Pa(0”) term calculus based on first-order predicate logic, and
investigate the behaviors of modal proofs in it. The em-
a(00) = Vb. Rab> @n(c) beddin% is defined as an extension %f the standard trans-
whereP is a propositional variable in modal logic andiation @,. The AP-calculus has been studied for more
a unary predicate symbol in first-order predicate logithan fifteen years. The equality #P-terms is the same
Also, Ris a binary predicate symbol. That is, we assunas that of proofs in a traditional natural deduction sys-
that the signature of first-order predicate logic is tem of first-order predicate logic via Curry-Howard iso-
. . . . ) morphism. A formal goal of this paper is to show sound-
{P | Pis a propositional variable in modal logio{R} . ass and completeness of the embedding.

While van Benthem clarified a relation between This paper deals with intuitionistic logic in contrast to
modal formulas and first-order predicate formulas visan Benthem’s characterization for classical logic. Clas-
the standard translatio,, we focusproofsin this pa- sical logic is more dticult than intuitionistic logic in the
per. In general, proofs in logic correspond to progranreatment of proofs, while classical logic is easier than
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(unit) M =« ifrFM: T
(left) m1{M1, Mp) = My
(right) (M1, M2) = M2
(product) (mM, 1oM) = M
(7)) (AXM)N = [N/X]M
(=) AXMx=M if xgfvM
X1 M1 X1 M,
Xi—1 Mi-1 Xi—1 Mi_1
(@) box| % |be boxz beNinM; [inL =box| 7 |bel N [in[Mi/x]L
Xi+1 Mii1 Xi+1 Mi;1
Xn My Xn M,
(om) boxxbeMinx =M

Table 1: Axioms forio

intuitionistic logic with respect to provability. Equal-Outline. In Section 2 we give some formal notions,
ity of proofs in intuitionistic logic has been characterand formally establish the goal of this paper, based on
ized in various fields, e.g4-calculi, categorical seman-motivation in Section 1. In Section 3 we explain a pro-
tics, game semantics, etc. On the other hand, studiescedure for reaching the goal, and prove two important
proofs in classical logic is now being developed [11, 22)roperties, strong normalization and confluence, on the
Since the studies are energetically being done, some @lay of the procedure. In Section 4 we give a proof of
gant characterizations of classical proofs must be foutid goal. In Section 5 we refer to other modalities. In
in future. We believe that this work will give some conSection 6 we describe what have been accomplished and
tributions to various studies on classical modal proofghat have not been accomplished in this paper, and ex-
then. In fact, we envision that the calculus given in thigain problems and solution candidates for the the prob-
paper can be extended to a calculus based on clasdiais.

modal calculus according to personal communication

with Kakutani [16]. 2 Prelimi nary

Related Work. No work has dealt with classicalgyqt \e consider the following natural deduction sys-
modal proofs. An early work on intuitionistic modalg -

proofs is found in Martini and Masini's paper [19].

Martini and Masini studied which natural deduction of ti=P[TlrAT|rD7|0O7
modal logic is suitable for the construction of term cal-
culi, and gave a term calculus based on intuitionistic S4. Lret
Pfenning and Wong defined a term calculus by giving
some equations in consideration of Curry-Howard iso- 's>T reoy I'e oy
morphism [23]. Furthermore, they obtained some syn- reoyho
tactical results such asibject reduction >0 Ao >0 Ao
Bierman and de Paiva, Bellin et al., and Alechina ool oo,
et al. gave definitions of intuitionistic S4, intuitionis-
tic K, and constructive S4 in category theory, respec- Ioso' I'soot I'>o
tively [6, 5, 2]. In particular, Bierman and de Paiva gave I'>o>do’ I'>t
a term calculus based on the class of cartesian closed )
categories with coproducts, monoidal comonads,@nd r>opi(0<i<n) pi....;n>0
strong monads as seen later in this paper. I'> oo

A term calculus based on classical modal proofs whereP is a propositional variable and denotes a set
being developed by Kakutani [16]. of formulas. We assume that the strength order of con-
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nectives isa, A, and>o. In the following,I” + T means many programming languages, i.?,binds freex’s in
thatI" > 7 is derivable. As well we adopt this notatiorM in “box x° beNin M”.

in other natural deduction systems. How should we define equality between proofs? It is
Remark thai = 0 in the last rule is allowed. In thesurely a method giving some equations to identify two
case of = 0, the last rule is as follows, proofs which we want to identify. However, we commit
> o equality of proofs to category theory, just as intuitionis-

>0 tic propositional logic is sound and complete to the class

This is required by the fact that we can give a Hilber v di d lculi based dal
style formal system with the same provability as that Ve consta_mty Iscussed term calculi base ' Oh moda
ogic committed to category theory. In the discussion

E_fécartesian closed categories. Kakutani and the author
the natural deduction system. It is as follows, . .
Kakutani extracted axioms sound and complete to the

axioms: T class of cartesian closed categories with monoidal end-
(poo>1)d(e>0o)d>po>t  ofunctors. The axioms are as in Table 1 where we use
oCcOTDOO0 embracing squares at some places in this paper, not as a
OCATDO syntax but for readability.
OCATDT Furthermore, we consider the equations in Table 2.
COTDOAT Intuitively, the former equation denoteentractionand
O(c>1)>00 D01 the latter denotegreakeninglt is said to bethe strong-

inference rules: o > rando imply 7 ness conditionvhen these equations hold. The origin of

o impliesoo . the word depends on the fact thiat with the strongness

condition is sound and complete to the class of carte-

The formal system is thus an intuitionistic fragmentizn closed categories wititrongmonoidal endofunc-
of the minimal logic K. tors [18, 16].

~ We define a term calculua based on modallogic by  Neyt Jet us recall Barendregt® [4] into which our
introducing proof terms to the natural deduction systemyyqal calculus is embedded:

T=P|T|rtAT|TD7|Or
a | | si=1]2

I, X: > X:
AT T >1:2

I'>Mi:o1 I'>Msy: o)

s« T I'>A:1 Ix:A>B:s
I's> (M, Mo): o1 Ao .
(M1, Me): 1 A o I'>TIxXAB: s
I'>M:o1Ao0 I'>M:o1A0 I'sA's x¢rl
I'>nM: oy I'>noM: o) X As X A
I:XO'DMO" I'>M:o>1t I'>N:o I'>A B FI>CSX¢F
I'> AX*M:o >0’ I'>MN:7 .I”X'CDA"B
I'>N:op(0<isn XpeM:o Ix:A>B:C I'sIIXAC:s
I'>boxX beNinM: oo I'> AxAB: IIXAC
where we often use the vector notation due to space lim- I'sD: IAB I'>C: A
ltation. o _ I'>DC: [C/X|B
As remarked beford,= 0 is allowed in the last rule.
At this time the rule is as follows, I'>A:B I'>B:s B=FH
. r'sA: B
> M: o
> boxbeinM: oo where the relatior: is the smallest congruence relation
although it may be seen a strange expression. containing (x.B)C = [C/X]B.
We use various notions of ordinarcalculi, e.g.,  In the original notation, 1 and 2 areandn, respec-

binding, free variable, bound variable-conversion, tively [4]. However, we do not adopt the original nota-
and substitution. The notation is also similar to that tion sincex ando are confusing in this paper.

ordinary A-calculi. In detail, see Barendregt's encyclo- TheAP-calculus is a term calculus based on intuition-
pedic book [3]. In the followinga-convertible terms istic first-order predicate logic just as LF is [12]. In
are identified syntactically (denoted k). However, it this calculus, a type (e.gPX) containing term variable
may be better to describe bindings in box-terms. Bin(e.g.,X) is a predicate (e.gRX), and an abstraction (e.g.,
ings in box-terms are the same as ones in let-termslI.PX) is a universal formula (e.g¥,x. PX). Types de-
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X1 N1 Xy N,
Xi N; X N;
box Xj_1 be Nj 1 inM =box - |be in[x/x;]M
. Xj-1| | Nj1
Xj Ni X; N
Xj+1 Nj+1 ].+l J_+1
Xn Nn Xn Nﬂ
X1 M1 1 Mi
_ . % M;
box| X |bel M linL = box y |bel N |inL .
Xi+1 Mii1 : .
Xi+1 M|+1
Xn Mn Xq M,

Table 2: The strongness condition

pending on terms are calleépendent typesvhich are  Completeness is often proved by the following pro-
directly supported ifepigram[9]. cedure. Assume@,(M) = @,(M’). Next, construct an
Now let us embed our modal calculi inf®. How- inverse function®,™* for the sound translatio®,. Fi-
ever, AP has only1 as connective by definition. Ordi-nally, show that the inverse function preserves equality.
narily, product types are indirectly defined on the waghen,
that it is extended tdigher-order Hence, it is not ex-
pected to embedn and stronglo into AP without re- M = @3~ (Pa(M)) = @5 H(Pa(M)) = M’
moving the unit type and product types. Alsi® does
not haven-equations in origin. Therefore, let us conis derived. However, we had no idea to construct any
sider the{>, o, B}-fragments oflo and strongio in this  iNverse function tab,. We therefore make a detour in
paper, and callo and stronglo de novo. the next section.
We extend the standard translatidn to a function
from not only typesbut alsotermsas in Table 3. In . .
fact, we assume that propositional variabledinand a 3 Strong Normalization and Con-
binary pr_eo!icate symbadR are signa‘Fures inP. In this fluence
sensead, is indeed a function tdP with constants.

The author expects the reader to accept that this trafsthis section we show that anyo-term can be iden-
lation is the most natural mapping to translate mod@ed with a.io-term in normal form. For the purpose
proofs in natural de_ductipn style in_nP-proofS_- Thi_S we give a reduction relation such that its reflexive, sym-
@, translates equations in strong into equations in metric, and transitive closure coincides with the equality
AP as follows, relation inAo, and show strong normalization and con-
Theorem 2.1. Assume that” + M = M’: r in fluence under the reduction relation.
strong A0. Then@,(IN) + @(M) = By(M’): Py(7) First, we define a reduction relation by replacingf
in AP where ®,(X: 01,...%: on) denotes (28) and @B) with — in Table 1. In fact, the relatiors
W: 1 a: Wxg: @a(01),. .., %n: Daop). is defined as the smallest compatible relation containing

Now we are ready to establish our goal formally. Oﬁpe above_ _relation. Obviousl_y the refle_xive, symmgtric,
goal in this paper is to show equality reflected in th%nd fcran_S|t|ve closure ob> coincides with the equality
image ofd,, i.e., completeness @; relation inAo.

Theorem 2.2. If @y(I") + Da(M) = D4(M’): dy(1r), Proposition 3.1. If ' + M: rand M — M’, thenl" +
then' + M = M’ tin strongAD. M”: 1.
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D0 2 o) = IIxP) . p, (o)
D4(00) = TTbY TTuRE®. @by, ()

D4(X) = X
D,(A1x7 M) = X% P, (M)
Pa(MN) = Da(M)P4(N)

- .
@,(boxx’ beN in M) = AbW AR, (Ax,. - - - (AX1.Pp(M))(Da(N1)bu) - - - )(Pa(Nn)bu)
Table 3: A translation fromo into AP

We give the following terminologies, for conveProof. See Appendix. [
nience.M is said to be in normal form iM A~ M’ for
anyM’. M is said to be have a normal formNf —* M’
andM’ is in normal form. Of coursey* is the reflexive
and transitive closure 6. M is strongly normalizable Theorem 3.4. Ao is strongly normalizable.
if there exists no infinite sequendéy, M4, ..., M, ... )
such thatM = My andM; — M,y for anyi € w. A Proof. Assume that” + Mp: v and there exists a se-

term calculus is strongly normalizable if all the typabl@8U€NceMo, My, ..., My, ... such thatM; — M, for

terms are strongly normalizable. anyi € w. By Lemma 3.2[[I'] + [Mo]: [7]. In ad-
Next, we will show strong normalization under th&ition, IMill — [Mi.1] for anyi € w by Lemma 3.3.

above relation—. We reduce the strong normalizatiod Neése contradict the fact thav is strongly normaliz-

problem ofAo to strong normalization of a term calcu@ble. u

lus. Le_t us recall a term calculus known to be strongly Furthermore, we define the following terminologies.
normalizable [24, 10, 8]: M andN are called confluent if there existssuch that
t=P|L|rtDoT|TVT M —* L andN —* L. A term calculus is called conflu-
ent if any pair of typable equal terms is confluent.

In fact, we have already reduced the strong normal-
ization problem ofio to that of AV as follows,

Lxrexit Lemma 3.5. All the critical pairs' are confluent.

I'xxo>M:0" T'>M:ocd>t I'bNio Proof. See Appendix. ]
s AXM: o0’ I'>MN: 7 . .
Lemma 3.5 of a strongly normalizable calculus is
I'>M:oy I'>M:op called Knuth-Bendix's confluent condition. Knuth-
I'>inlM: o1Vo I'sinftM: o1V oo Bendix’s confluent condition implies confluenceAs:
I'>N:oyVo, I¥:oi>M:t(i=12) Theorem 3.6. A0 is confluent.
I'> caseN of x, i My [ X2 iInMz: 7 Proof. By Theorem 3.4 and Lemma 3.5 [25]. n

Here, L does not express a contradiction but is mere .
a special symbol. Indeed, this calculus does not have g%rollary 3.7. Anyac-term has a unique normal form.
so-calledabsurdityrule, L + 7. The reduction relation Proof. By Theorems 3.4 and 3.6. ™
is as in Table 4. We often use horizontal bars instead of
vertical bars as separating symbols at some places in this
paper, for readability. Let us call this calculug in this 4 Completeness
paper. For readers unfamiliar with strong normalization
proofs, we note that easy proofs have recently studik@ft Us 9o back to the proof for completeness. The set of
for calculi containingpermutative conversiorjgs, 8].  terms in normal form is formally defined by
We give a translation fromo into AV as in Table 5. F = x|FG

Lemma 3.2. If '+ M: 7, then[I'] + [M]: [[=]. G:=F|IXG| box? beT:) inG .

’ + ’
Lem.ma 33.1f M — M, then[M] —* [M’] where 1The terminology in term rewriting system is abused. In desaié
—* is the transitive closure of>. Terese’s book [25].
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(AX.M)N — [N/X]M
caseinN of x; in M1 | Xxoin Mz — [N/x]M;
case inN of x3 in My | X in My — [N/X2]M>
in M X1inL incaseMj of xginLq | X2 inL
fyain My 1nby | oseNof 2 100X | 1] 2inLa
y2in My — xpinlsy y2incaseMyof xginLy | X2in Ly

casecasBl o

Table 4: The reduction rules far

Any Ao-term in normal form is not ambiguous in the l}’a(F)bu/xj ¥,(G) is given. The diference in substitut-

above grammar. Therefore, a functi#f from the set g yariables for,(F) is collapsed by the strongness
of terms in normal form can be inductively defined by -4 4ition. -

Pa(X) = X Our goal in this paper is accomplished as follows,

_ ‘pa(‘r)
Pa(AX7.G) = X ¥4(G) Proof of Theorem 2.2 etG andG’ be the normal forms
Pa(FG) = Ya(F) ¥a(G) of M and M’ in Ao, respectively. By Theorem 2.1,
iy _ @a(M) = @,(G) holds. Also,®,(G) = ¥a(G) holds
w,(box X beF in G) = AW AR, (Fbu/x ¥(G) . %2 a
a(boxx'beF inG) . a(FPWXF(G) - described. Similarly, consider the casdBf Then,
In general ¥,(G) does not coincide witkb,(G), e.g., ¥3(G) = #,(G’) hold. This inducess = Gl/ In strong
P,(box>¢ beyin ¥) # d4(boxx’ beyin x°). However, A0 by Lemma 4.2. We finally obtaiiM = M’ in strong
,(G) is always equal tab,(G), i.e., ¥a(G) = ®,(G) - u
holds. Furthermore?, has the following pleasant prop-

erty instead of being restricted to the set of normg On Other Modalities
forms.

As seen in Kakutani’s paper [16], we can define a term
calculus corresponding to intuitionistic T by adding a
family of constant$ ™ : or o 7} satisfying T in Table 6.
¢ In accordance with this, we add a family of constants
€. Raa} into AP and extendp, such that

Proposition 4.1. Any AP-term in the image of?; is in
normal form.

Proof. ¥, translates applications andabstractions o

A0 into applications andi-abstractions oftP, respec- {
—_— ' Rab

tively. Hence, we should take onff¥(F)bu/x] #(G) Dy(e7) = A2 00 zag

into account. In fact,?,(F) is not a A-abstraction. This &, is sound, i.e., i - M = M’: 7in T, then

Also, substituting applications for variables raises ro r%a(r) F Da(M) = Ba(M'): Ba(7) in AP.

dex. Also, we can define a term calculus corresponding

) , to intuitionistic K4 by adding a family of constants
We are ready to prove completeness in a partial Sense:: oy 5 oo} satisfying 4 in Table 6. In this case

we can show the similar result by adding a family of
constantg dape: TIURLITYRPC Rac) and translaté? into

AZ " TIFR(0) YW 3 yRab AW 3yRC 7 (o cliv)

Lemma 4.2. If @4(I) + ¥a(G) = ¥L(G'): D4(1), then
I'+ G =G’ 7in strongAn.

Proof. SinceAP is known to be strongly normalizable S

and confluent?,(G) = ¥,(G’) means¥,(G) = (&) However, we must take care to consider intuitionistic
by Proposition 4.1. By induction o, we show that S4- The modality of intuitionistic S4 is considered to
the set¥,[¥a(G)] is contained by the set of strongPe a comonad on the analogy of the modality “I" of

Ao-terms equal td5. SinceW does not belong to thelNtuitionistic linear logic. Itis therefore ingficient only
image of®,, any term in the formix?(. ¥,(G) does to add T and 4. In fact, we add cqerand com in Table 6

) —— i
not coincide withib™_au R T (FNDT /x| iy (G), 2 consider

It is therefore sfficient to consider only the case of Oa, 258, (Tay 8,8, Un)w = g, a0, U(0ayaqa,0w)
—_—
[Pa(F)bu/X] Pp(G) = [Pa(F")bu/X]%¥,(G’) where the Oaap€all = appue, = U
-
length of X may not be the same as the onexf plusy-equations intP.

Any G in the image of}, has no occurrendeexcept  Thus we can characterize somermalmodal calculi
in Y3(F). We can therefore identifyPa(FS whenever AP.
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[PI=P
[codl=lcl>lo]
[Ool =Ml Vv L
[x] = x
[AX°.M] = AX.[M]
[MN] = [MIINI
Xpininl[M]
Xn in--- casd] of w1 ininr w1
- = :
[boxx’ beN in M] = casgN,] of o it

Table 5: A translation fromo into AV

6 Conclusion Hagiya, Masahito Hasegawa, Ryu Hasegawa, Daisuke
Kimura, and Koji Nakazawa for providing useful ad-

In this paper we clarified a relation between modal logiice.

and first-order predicate logic at proof-level. Formally,
we gave a complete translation from strothg into AP R
as an extension of the standard translation from modal
logic to first-order predicate logic. On the way of prov-[1]
ing the completeness, we showed strong normalization
and confluence ofo. This is also a contribution.

We indeed proved completeness for only thea, 8}-
fragment of intuitionistic modal calculus. In general, for
any calculus complete to a class of cartesian closed cdf
egories it is very diicult to give an appropriate reduc-
tion relation whose reflexive, symmetric, and transitive
closure is equality of the calculus. This is because re-
duction relations are often required to have the strong
normalization and confluence properties for solving 3]
decision problenof equality between terms. Also in this
paper we showed strong normalization and confluenc&r]
of Ao for identifying any term with a term in normal
form. However, calculi with the unit typg tend to fail
either strong normalization or confluence [17].

For the purpose of repairing the defect, Mints
switched somen-equations fromn-reduction to -
expansion in the term calculus sound and complete to
the class of cartesian closed categories [20]. Althoug
it was not obvious that the term calculus was strongly
normalizable and confluent, Jay and Akama proved ib]
independently [14, 1]. We conjecture that via a simi-
lar method the full intuitionistic modal calculus can be[S]
completely embedded into intuitionistic first-order pred-
icate calculus.

5]

9]
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