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Characterizing modal logic in first-order predicate logic has been a hot research topic in mathematical logic. Van
Benthem gave an elegant characterization such that the standard translation of modal formulas coincides with the
class of first-order predicate formulas invariant for bisimulations. Whilehe characterized modal formulas in first-
order predicate logic, we characterize modal proofs in first-order predicate logic in this paper. To be concrete, we
give a complete translation from a term calculus based on intuitionistic modal logic into Barendregt’sλP. This
characterization, identifying equality of proofs, is recently considered tobe significant since a term calculus based
on intuitionistic modal logic is expected to realize staged computation.

1 Introduction

Modal logic is derived from ordinary propositional logic
to gain expressibility with modal operators. In Kripke
semantics, while propositional logic is defined only with
one world, the minimal modal logic K yields the class
of frames, i.e., K has the notion of one-step reachability
between any two worlds. Furthermore, we can define
other formal systems e.g., T, K4, S4, and S5 by adding
some axioms. The axioms give the notions of reflexivity,
positive finite step reachability, finite step reachability,
and connected components, respectively.

On the other hand, first-order predicate logic is en-
riched by quantifiers. A formula in first-order predicate
logic is of the form of∀x. τ. Roughly speaking, a first-
order predicate formula∀x. τ is satisfied if there exists a
structure satisfyingτ for any elementa of the structure
substituted forx.

Many logicians have been interested in relations con-
necting the two enriching notions. In fact, it is well-
known that modal logic is realized in first-order predi-
cate logic. To be precise, van Benthem showed that a
first-order predicate formula invariant for bisimulations
was the result of the following translation of a modal
formula and vice versa [26]:

Φa(P) = Pa

Φa(σ ⊃ σ′) = Φa(σ) ⊃ Φa(σ′)

Φa(�σ) = ∀b.Rab⊃ Φb(σ)

whereP is a propositional variable in modal logic and
a unary predicate symbol in first-order predicate logic.
Also,R is a binary predicate symbol. That is, we assume
that the signature of first-order predicate logic is

{P | P is a propositional variable in modal logic}∪{R} .

While van Benthem clarified a relation between
modal formulas and first-order predicate formulas via
the standard translationΦa, we focusproofsin this pa-
per. In general, proofs in logic correspond to programs

in an appropriate functional language in the sense of
Curry-Howard isomorphism [13]. Now we claim that it
is significant to clarify equality between modal proofs.
This is because some theoretical computer scientists ex-
pect a program based on modal logic to realize staged
computation by regarding its modality as a kind of rela-
tion between stages [7].

Davies and Pfenning’s work has inspired some com-
puter scientists to construct term calculi equipped with
various tastes. For example, Miyamoto and Igarashi
gave a typed calculus for secure information flow [21].
However, any of such calculi was constructed syntac-
tically and its semantics was given implicitly or oper-
ationally. It may be inevitable since Davies and Pfen-
ning’s calculus, the calculus adopted as a basis, was not
shown to have an explicit semantics in their original pa-
per. On the other hand, we give a term calculus based
on modal logic with denotational semantics. Adopting
our calculus as a basis for constructing a new calculus,
one can formalize a term calculus on his semantics more
denotationally. Our calculus is expected to be a new ba-
sis for constructing term calculi equipped with several
tastes.

Furthermore, we characterize equality of modal
proofs from another perspective. We embed our term
calculus based on modal logic into Barendregt’sλP, a
term calculus based on first-order predicate logic, and
investigate the behaviors of modal proofs in it. The em-
bedding is defined as an extension of the standard trans-
lation Φa. TheλP-calculus has been studied for more
than fifteen years. The equality ofλP-terms is the same
as that of proofs in a traditional natural deduction sys-
tem of first-order predicate logic via Curry-Howard iso-
morphism. A formal goal of this paper is to show sound-
ness and completeness of the embedding.

This paper deals with intuitionistic logic in contrast to
van Benthem’s characterization for classical logic. Clas-
sical logic is more difficult than intuitionistic logic in the
treatment of proofs, while classical logic is easier than
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Table 1: Axioms forλ�

intuitionistic logic with respect to provability. Equal-
ity of proofs in intuitionistic logic has been character-
ized in various fields, e.g.,λ-calculi, categorical seman-
tics, game semantics, etc. On the other hand, studies on
proofs in classical logic is now being developed [11, 22].
Since the studies are energetically being done, some ele-
gant characterizations of classical proofs must be found
in future. We believe that this work will give some con-
tributions to various studies on classical modal proofs
then. In fact, we envision that the calculus given in this
paper can be extended to a calculus based on classical
modal calculus according to personal communication
with Kakutani [16].

Related Work. No work has dealt with classical
modal proofs. An early work on intuitionistic modal
proofs is found in Martini and Masini’s paper [19].
Martini and Masini studied which natural deduction of
modal logic is suitable for the construction of term cal-
culi, and gave a term calculus based on intuitionistic S4.

Pfenning and Wong defined a term calculus by giving
some equations in consideration of Curry-Howard iso-
morphism [23]. Furthermore, they obtained some syn-
tactical results such assubject reduction.

Bierman and de Paiva, Bellin et al., and Alechina
et al. gave definitions of intuitionistic S4, intuitionis-
tic K, and constructive S4 in category theory, respec-
tively [6, 5, 2]. In particular, Bierman and de Paiva gave
a term calculus based on the class of cartesian closed
categories with coproducts, monoidal comonads, and�-
strong monads as seen later in this paper.

A term calculus based on classical modal proofs is
being developed by Kakutani [16].

Outline. In Section 2 we give some formal notions,
and formally establish the goal of this paper, based on
motivation in Section 1. In Section 3 we explain a pro-
cedure for reaching the goal, and prove two important
properties, strong normalization and confluence, on the
way of the procedure. In Section 4 we give a proof of
the goal. In Section 5 we refer to other modalities. In
Section 6 we describe what have been accomplished and
what have not been accomplished in this paper, and ex-
plain problems and solution candidates for the the prob-
lems.

2 Preliminary

First, we consider the following natural deduction sys-
tem:

τF P | ⊤ | τ ∧ τ | τ ⊃ τ | �τ

Γ, τ ⊲ τ

Γ ⊲ ⊤
Γ ⊲ σ1 Γ ⊲ σ2

Γ ⊲ σ1 ∧ σ2

Γ ⊲ σ1 ∧ σ2

Γ ⊲ σ1

Γ ⊲ σ1 ∧ σ2

Γ ⊲ σ2

Γ, σ ⊲ σ′

Γ ⊲ σ ⊃ σ′
Γ ⊲ σ ⊃ τ Γ ⊲ σ

Γ ⊲ τ

Γ ⊲ �ρi (0 ≤ i ≤ n) ρ1, . . . , ρn ⊲ σ

Γ ⊲ �σ

whereP is a propositional variable andΓ denotes a set
of formulas. We assume that the strength order of con-
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nectives is�, ∧, and⊃. In the following,Γ ⊢ τ means
thatΓ ⊲ τ is derivable. As well we adopt this notation
in other natural deduction systems.

Remark thati = 0 in the last rule is allowed. In the
case ofi = 0, the last rule is as follows,

⊲ σ
⊲ �σ .

This is required by the fact that we can give a Hilbert-
style formal system with the same provability as that of
the natural deduction system. It is as follows,

axioms: ⊤

(ρ ⊃ σ ⊃ τ) ⊃ (ρ ⊃ σ) ⊃ ρ ⊃ τ
σ ⊃ τ ⊃ σ

σ ∧ τ ⊃ σ

σ ∧ τ ⊃ τ

σ ⊃ τ ⊃ σ ∧ τ

�(σ ⊃ τ) ⊃ �σ ⊃ �τ
inference rules: σ ⊃ τ andσ imply τ

σ implies�σ .

The formal system is thus an intuitionistic fragment
of the minimal logic K.

We define a term calculusλ� based on modal logic by
introducing proof terms to the natural deduction system:

τF P | ⊤ | τ ∧ τ | τ ⊃ τ | �τ

Γ, x: τ ⊲ x: τ

Γ ⊲ ∗ : ⊤
Γ ⊲ M1 : σ1 Γ ⊲ M2 : σ2

Γ ⊲ 〈M1,M2〉 : σ1 ∧ σ2

Γ ⊲ M : σ1 ∧ σ2

Γ ⊲ π1M : σ1

Γ ⊲ M : σ1 ∧ σ2

Γ ⊲ π2M : σ2

Γ, x: σ ⊲ M : σ′

Γ ⊲ λxσ.M : σ ⊃ σ′
Γ ⊲ M : σ ⊃ τ Γ ⊲ N : σ

Γ ⊲ MN : τ

Γ ⊲ Ni : �ρi (0 ≤ i ≤ n) −−−→x: ρ ⊲ M : σ

Γ ⊲ box
−→
xρ be

−→
N in M : �σ

where we often use the vector notation due to space lim-
itation.

As remarked before,i = 0 is allowed in the last rule.
At this time the rule is as follows,

⊲ M : σ
⊲ box be inM : �σ

although it may be seen a strange expression.
We use various notions of ordinaryλ-calculi, e.g.,

binding, free variable, bound variable,α-conversion,
and substitution. The notation is also similar to that in
ordinaryλ-calculi. In detail, see Barendregt’s encyclo-
pedic book [3]. In the following,α-convertible terms
are identified syntactically (denoted by≡). However, it
may be better to describe bindings in box-terms. Bind-
ings in box-terms are the same as ones in let-terms in

many programming languages, i.e.,xρ binds freexρs in
M in “box xρ beN in M”.

How should we define equality between proofs? It is
surely a method giving some equations to identify two
proofs which we want to identify. However, we commit
equality of proofs to category theory, just as intuitionis-
tic propositional logic is sound and complete to the class
of cartesian closed categories. Kakutani and the author
have constantly discussed term calculi based on modal
logic committed to category theory. In the discussion
Kakutani extracted axioms sound and complete to the
class of cartesian closed categories with monoidal end-
ofunctors. The axioms are as in Table 1 where we use
embracing squares at some places in this paper, not as a
syntax but for readability.

Furthermore, we consider the equations in Table 2.
Intuitively, the former equation denotescontractionand
the latter denotesweakening.It is said to bethe strong-
ness conditionwhen these equations hold. The origin of
the word depends on the fact thatλ�with the strongness
condition is sound and complete to the class of carte-
sian closed categories withstrongmonoidal endofunc-
tors [18, 16].

Next, let us recall Barendregt’sλP [4] into which our
modal calculus is embedded:

sF 1 | 2

⊲ 1: 2

Γ ⊲ A: 1 Γ, x: A ⊲ B: s

Γ ⊲ ΠxA.B: s

Γ ⊲ A: s x< Γ
Γ, x: A ⊲ x: A

Γ ⊲ A: B Γ ⊲ C : s x< Γ
Γ, x: C ⊲ A: B

Γ, x: A ⊲ B: C Γ ⊲ ΠxA.C : s

Γ ⊲ λxA.B: ΠxA.C

Γ ⊲ D : ΠxA.B Γ ⊲ C : A
Γ ⊲ DC : [C/x]B

Γ ⊲ A: B Γ ⊲ B′ : s B= B′

Γ ⊲ A: B′

where the relation= is the smallest congruence relation
containing (λx.B)C = [C/x]B.

In the original notation, 1 and 2 are∗ and�, respec-
tively [4]. However, we do not adopt the original nota-
tion since∗ and� are confusing in this paper.

TheλP-calculus is a term calculus based on intuition-
istic first-order predicate logic just as LF is [12]. In
this calculus, a type (e.g.,Px) containing term variable
(e.g.,x) is a predicate (e.g.,Px), and an abstraction (e.g.,
Πx.Px) is a universal formula (e.g.,∀x.Px). Types de-
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...
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...
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N1
...
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...
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box

x1
...

xi
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...

xn

be

M1
...
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Mi+1
...

Mn

in L = box

x1
...

xi

y

xi+1
...

xn

be

M1
...

Mi

N
Mi+1
...

Mn

in L .

Table 2: The strongness condition

pending on terms are calleddependent types, which are
directly supported inEpigram[9].

Now let us embed our modal calculi intoλP. How-
ever,λP has onlyΠ as connective by definition. Ordi-
narily, product types are indirectly defined on the way
that it is extended tohigher-order. Hence, it is not ex-
pected to embedλ� and strongλ� into λP without re-
moving the unit type and product types. Also,λP does
not haveη-equations in origin. Therefore, let us con-
sider the{⊃,�, β}-fragments ofλ� and strongλ� in this
paper, and callλ� and strongλ� de novo.

We extend the standard translationΦa to a function
from not only typesbut alsotermsas in Table 3. In
fact, we assume that propositional variables inλ� and a
binary predicate symbolR are signatures inλP. In this
senseΦa is indeed a function toλP with constants.

The author expects the reader to accept that this trans-
lation is the most natural mapping to translate modal
proofs in natural deduction style intoλP-proofs. This
Φa translates equations in strongλ� into equations in
λP as follows,

Theorem 2.1. Assume thatΓ ⊢ M = M′ : τ in
strong λ�. ThenΦa(Γ) ⊢ Φa(M) = Φa(M′) : Φa(τ)
in λP where Φa(x1 : σ1, . . . xn : σn) denotes
W: 1,a: W, x1 : Φa(σ1), . . . , xn : Φa(σn).

Now we are ready to establish our goal formally. Our
goal in this paper is to show equality reflected in the
image ofΦa, i.e., completeness ofΦa:

Theorem 2.2. If Φa(Γ) ⊢ Φa(M) = Φa(M′) : Φa(τ),
thenΓ ⊢ M = M′ : τ in strongλ�.

Completeness is often proved by the following pro-
cedure. AssumeΦa(M) = Φa(M′). Next, construct an
inverse functionΦa

−1 for the sound translationΦa. Fi-
nally, show that the inverse function preserves equality.
Then,

M = Φa
−1(Φa(M)) = Φa

−1(Φa(M′)) = M′

is derived. However, we had no idea to construct any
inverse function toΦa. We therefore make a detour in
the next section.

3 Strong Normalization and Con-
fluence

In this section we show that anyλ�-term can be iden-
tified with aλ�-term in normal form. For the purpose
we give a reduction relation such that its reflexive, sym-
metric, and transitive closure coincides with the equality
relation inλ�, and show strong normalization and con-
fluence under the reduction relation.

First, we define a reduction relation by replacing= of
(⊃β) and (�β) with→ in Table 1. In fact, the relation→
is defined as the smallest compatible relation containing
the above relation. Obviously the reflexive, symmetric,
and transitive closure of→ coincides with the equality
relation inλ�.

Proposition 3.1. If Γ ⊢ M : τ and M→ M′, thenΓ ⊢
M′ : τ.
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Φa(P) = Pa

Φa(σ ⊃ σ′) = ΠxΦa(σ).Φa(σ′)

Φa(�σ) = ΠbW.ΠuRab.Φb(σ)

Φa(x) = x

Φa(λxσ.M) = λxΦa(σ).Φa(M)

Φa(MN) = Φa(M)Φa(N)

Φa(box
−→
xρ be

−→
N in M) = λbW.λuRab.(λxn. · · · (λx1.Φb(M))(Φa(N1)bu) · · · )(Φa(Nn)bu)

Table 3: A translation fromλ� into λP

We give the following terminologies, for conve-
nience.M is said to be in normal form ifM 6→ M′ for
anyM′. M is said to be have a normal form ifM →∗ M′

andM′ is in normal form. Of course,→∗ is the reflexive
and transitive closure of→. M is strongly normalizable
if there exists no infinite sequenceM0,M1, . . . ,Mn, . . .

such thatM ≡ M0 and Mi → Mi+1 for any i ∈ ω. A
term calculus is strongly normalizable if all the typable
terms are strongly normalizable.

Next, we will show strong normalization under the
above relation→. We reduce the strong normalization
problem ofλ� to strong normalization of a term calcu-
lus. Let us recall a term calculus known to be strongly
normalizable [24, 10, 8]:

τF P | ⊥ | τ ⊃ τ | τ ∨ τ

Γ, x: τ ⊲ x: τ

Γ, x: σ ⊲ M : σ′

Γ ⊲ λx.M : σ ⊃ σ′
Γ ⊲ M : σ ⊃ τ Γ ⊲ N : σ

Γ ⊲ MN : τ

Γ ⊲ M : σ1

Γ ⊲ inl M : σ1 ∨ σ2

Γ ⊲ M : σ2

Γ ⊲ inr M : σ1 ∨ σ2

Γ ⊲ N : σ1 ∨ σ2 Γ, xi : σi ⊲ Mi : τ (i = 1,2)
Γ ⊲ caseN of x1 in M1 | x2 in M2 : τ

.

Here,⊥ does not express a contradiction but is merely
a special symbol. Indeed, this calculus does not have the
so-calledabsurdityrule,⊥ ⊢ τ. The reduction relation
is as in Table 4. We often use horizontal bars instead of
vertical bars as separating symbols at some places in this
paper, for readability. Let us call this calculusλ∨ in this
paper. For readers unfamiliar with strong normalization
proofs, we note that easy proofs have recently studied
for calculi containingpermutative conversions[15, 8].

We give a translation fromλ� into λ∨ as in Table 5.

Lemma 3.2. If Γ ⊢ M : τ, then~Γ� ⊢ ~M� : ~τ�.

Lemma 3.3. If M → M′, then~M� →+ ~M′� where
→+ is the transitive closure of→.

Proof. See Appendix. �

In fact, we have already reduced the strong normal-
ization problem ofλ� to that ofλ∨ as follows,

Theorem 3.4. λ� is strongly normalizable.

Proof. Assume thatΓ ⊢ M0 : τ and there exists a se-
quenceM0,M1, . . . ,Mn, . . . such thatMi → Mi+1 for
any i ∈ ω. By Lemma 3.2,~Γ� ⊢ ~M0� : ~τ�. In ad-
dition, ~Mi� → ~Mi+1� for any i ∈ ω by Lemma 3.3.
These contradict the fact thatλ∨ is strongly normaliz-
able. �

Furthermore, we define the following terminologies.
M andN are called confluent if there existsL such that
M →∗ L andN →∗ L. A term calculus is called conflu-
ent if any pair of typable equal terms is confluent.

Lemma 3.5. All the critical pairs1 are confluent.

Proof. See Appendix. �

Lemma 3.5 of a strongly normalizable calculus is
called Knuth-Bendix’s confluent condition. Knuth-
Bendix’s confluent condition implies confluence ofλ�:

Theorem 3.6. λ� is confluent.

Proof. By Theorem 3.4 and Lemma 3.5 [25]. �

Corollary 3.7. Anyλ�-term has a unique normal form.

Proof. By Theorems 3.4 and 3.6. �

4 Completeness

Let us go back to the proof for completeness. The set of
terms in normal form is formally defined by

F F x | FG

GF F | λxσ.G | box
−→
xρ be

−→
F in G .

1The terminology in term rewriting system is abused. In detail, see
Terese’s book [25].
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(λx.M)N→ [N/x]M

case inlN of x1 in M1 | x2 in M2→ [N/x1]M1

case inrN of x1 in M1 | x2 in M2→ [N/x2]M2

case caseN of
y1 in M1

y2 in M2
of

x1 in L1

x2 in L2
→ caseN of

y1 in caseM1 of x1 in L1 | x2 in L2

y2 in caseM2 of x1 in L1 | x2 in L2

Table 4: The reduction rules forλ∨

Any λ�-term in normal form is not ambiguous in the
above grammar. Therefore, a functionΨa from the set
of terms in normal form can be inductively defined by

Ψa(x) = x

Ψa(λxσ.G) = λxΦa(σ).Ψa(G)

Ψa(FG) = Ψa(F)Ψa(G)

Ψa(box
−→
xρ be

−→
F in G) = λbW.λuRab.

−−−−−−−−−−−→
[Ψa(F)bu/x]Ψb(G) .

In general,Ψa(G) does not coincide withΦa(G), e.g.,
Ψa(boxxρ bey in xρ) . Φa(boxxρ bey in xρ). However,
Ψa(G) is always equal toΦa(G), i.e.,Ψa(G) = Φa(G)
holds. Furthermore,Ψa has the following pleasant prop-
erty instead of being restricted to the set of normal
forms.

Proposition 4.1. AnyλP-term in the image ofΨa is in
normal form.

Proof. Ψa translates applications andλ-abstractions of
λ� into applications andλ-abstractions ofλP, respec-

tively. Hence, we should take only
−−−−−−−−−−−−→
[Ψa(F)bu/xρ]Ψb(G)

into account. In fact,Ψa(F) is not a λ-abstraction.
Also, substituting applications for variables raises no re-
dex. �

We are ready to prove completeness in a partial sense.

Lemma 4.2. If Φa(Γ) ⊢ Ψa(G) = Ψa(G′) : Φa(τ), then
Γ ⊢ G = G′ : τ in strongλ�.

Proof. SinceλP is known to be strongly normalizable
and confluent,Ψa(G) = Ψa(G′) meansΨa(G) ≡ Ψa(G′)
by Proposition 4.1. By induction onG, we show that
the setΨa

−1[Ψa(G)] is contained by the set of strong
λ�-terms equal toG. SinceW does not belong to the
image ofΦa, any term in the formλxΦa(σ).Ψa(G) does

not coincide withλb′W.λu′Ra′b′ .
−−−−−−−−−−−−−−→
[Ψa′ (F′)b′u′/x′]Ψb′ (G′).

It is therefore sufficient to consider only the case of
−−−−−−−−−−−→
[Ψa(F)bu/x]Ψb(G) ≡

−−−−−−−−−−−−→
[Ψa(F′)bu/x′]Ψb(G′) where the

length of−→x may not be the same as the one of
−→
x′.

Any G in the image ofΨb has no occurrenceb except
as an index for a variable. Also,b does not occur freely

in Ψa(F). We can therefore identify
−−−−→
Ψa(F) whenever

−−−−−−−−−−−→
[Ψa(F)bu/x]Ψb(G) is given. The difference in substitut-

ing variables for
−−−−→
Ψa(F) is collapsed by the strongness

condition. �

Our goal in this paper is accomplished as follows,

Proof of Theorem 2.2. LetG andG′ be the normal forms
of M and M′ in λ�, respectively. By Theorem 2.1,
Φa(M) = Φa(G) holds. Also,Φa(G) = Ψa(G) holds
as described. Similarly, consider the case ofM′. Then,
Ψa(G) = Ψa(G′) hold. This inducesG = G′ in strong
λ� by Lemma 4.2. We finally obtainM = M′ in strong
λ�. �

5 On Other Modalities

As seen in Kakutani’s paper [16], we can define a term
calculus corresponding to intuitionistic T by adding a
family of constants{ ετ : �τ ⊃ τ } satisfying T in Table 6.
In accordance with this, we add a family of constants
{ea : Raa} into λP and extendΦa such that

Φa(ετ) = λzΠbW.ΠuRab.Φa(τ).zaea .

ThisΦa is sound, i.e., ifΓ ⊢ M = M′ : τ in T, then
Φa(Γ) ⊢ Φa(M) = Φa(M′) : Φa(τ) in λP.

Also, we can define a term calculus corresponding
to intuitionistic K4 by adding a family of constants
{ δσ : �σ ⊃ ��σ } satisfying 4 in Table 6. In this case
we can show the similar result by adding a family of
constants{dabc: ΠuRab.ΠvRbc.Rac} and translateδσ into

λzΠbW.ΠuRab.Φa(σ).λbW.λuRab.λcW.λvRbc.zc(dabcuv) .

However, we must take care to consider intuitionistic
S4. The modality of intuitionistic S4 is considered to
be a comonad on the analogy of the modality “!” of
intuitionistic linear logic. It is therefore insufficient only
to add T and 4. In fact, we add com1 and com2 in Table 6
and consider

da1a3a4(da1a2a3uv)w = da1a2a4u(da2a3a4vw)

daabeau = dabbueb = u

plusη-equations inλP.
Thus we can characterize somenormalmodal calculi

by adding appropriate constants and their equations to
λP.
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~P� = P

~σ ⊃ σ′� = ~σ� ⊃ ~σ′�

~�σ� = ~σ� ∨ ⊥

~x� = x

~λxσ.M� = λx.~M�

~MN� = ~M�~N�

~box
−→
xρ be

−→
N in M� = case~Nn�of

xn in · · ·
case~N1�of

x1 in inl~M�
w1 in inrw1
...

wn in inrwn

Table 5: A translation fromλ� into λ∨

6 Conclusion

In this paper we clarified a relation between modal logic
and first-order predicate logic at proof-level. Formally,
we gave a complete translation from strongλ� into λP
as an extension of the standard translation from modal
logic to first-order predicate logic. On the way of prov-
ing the completeness, we showed strong normalization
and confluence ofλ�. This is also a contribution.

We indeed proved completeness for only the{⊃,�, β}-
fragment of intuitionistic modal calculus. In general, for
any calculus complete to a class of cartesian closed cat-
egories it is very difficult to give an appropriate reduc-
tion relation whose reflexive, symmetric, and transitive
closure is equality of the calculus. This is because re-
duction relations are often required to have the strong
normalization and confluence properties for solvingthe
decision problemof equality between terms. Also in this
paper we showed strong normalization and confluence
of λ� for identifying any term with a term in normal
form. However, calculi with the unit type⊤ tend to fail
either strong normalization or confluence [17].

For the purpose of repairing the defect, Mints
switched someη-equations fromη-reduction to η-
expansion in the term calculus sound and complete to
the class of cartesian closed categories [20]. Although
it was not obvious that the term calculus was strongly
normalizable and confluent, Jay and Akama proved it
independently [14, 1]. We conjecture that via a simi-
lar method the full intuitionistic modal calculus can be
completely embedded into intuitionistic first-order pred-
icate calculus.
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Appendix

Proof of Lemma 3.3. By induction onM → M′. In
particular, we only refer to a case of a box-term of the
length 2, for readability. It is as in Figure 1. The other
cases are trivial. �

Proof of Lemma 3.5. The difference from ordinaryλ-
calculi is the existence of box-terms. This difference
raises new critical pairs. For instance, Figure 2 is a case
that both reductions are ones with respect to box-terms.
The other cases are left to the reader. �
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~box
x1

x2
be

M1

boxybeN in M2
in L� = case case~N�of

y in inl~M�
v in inr v

of
x2 in case~M1�of

x1 in inl~L�
w1 in inrw1

w2 in inrw2

→ case~N�of
y in case inl~M�of

x2 in case~M1�of
x1 in inl~L�
w1 in inrw1

w2 in inrw2

v in case inrvof
x2 in case~M1�of

x1 in inl~L�
w1 in inrw1

w2 in inrw2

→ case~N�of
y in case~M1�of

x1 in inl[~M�/x2]~L�
w1 in inrw1

v in[v/w2] inr w2

≡ case~N�of
y in case~M1�of

x1 in inl~[M/x2]L�
w1 in inrw1

v in inr v

= ~box
x1

y
be

M1

N
in[M2/x2]L�

Figure 1: Preservation of a reduction of box-terms

boxxρ be boxyσ be boxzτ beN in M in L in K

vvlllllllllllll

((RRRRRRRRRRRRR

boxyσ be boxzτ beN in M in[L/x]K

��

boxxρ be boxzτ beN in[M/y]L in K

��

boxzτ beN in[M/y][L/x]K ≡ boxzτ beN in[[ M/y]L/x]K

Figure 2: Confluence of a critical pair


