Masato Takeichi
IST, University of Tokyo

The Fortress Language Specification

e Version 1.0 Beta
— March 6, 2007

e Available at
hitp://research.sun.com/projects/plrg/fortress.pdf

Fortress Interpreter

Available aft
http://fortress.sunsource.net

Parallelism
Oblivious 2008-5-2 2 The Fortress Language Specification

Programming

Chapter 1 Introduction (1)

e The Fortress Programming Language
— General Purpose
— Statically Typed
— Component-based

e Designed for
— Producing Robust High-performance Software
— With Programmability

Parallelism
Oblivious 2008-5-2 3 The Fortress Language Specification

Programming

Chapter 1 Infroduction (2)

e Fortress
— Is a "Growable Language”

— Supports state-of-the-art compiler optimization
technigues

— Has an extensible component system
— Supports modular and extensible parsing
— Name derived from Fortran

— Has little relation to Fortran other than its
infended application domain

— Does not support for backward compatibility
with existing versions of Fortran

Parallelism . X
Oblivious 2008-5-2 4 The Fortress Language Specification

Programming

Chapter 1 Introduction (3)

o Aspects of Fortress
— From object-oriented and functional
languages
e Java, NextGen, Scalq, Eiffel, Self
e Standard ML, Objective Caml, Haskell, Scheme

— Employs cutting-edge features from
programming language community

— Achieves an unprecedented combination of
performance and programmability

e Forfress is an “Open Source Project”

Parallelism
Oblivious 2008-5-2 5 The Fortress Language Specification

Programming

1.1 Fortress in a Nutshell (1)

e Object
— Consists of fields and methods specified in
definition
o Trait
— Named program constructs that declare sefts
of methods

— A method declared by trait may be either
abstract or concrete
e Abstract methods have headers only
e Concrete methods also have definitions
— May extend other fraits
e |Inherits the methods provided by the traits it extends

Parallelism
Oblivious 2008-5-2 6 The Fortress Language Specification

Programming

1.1 Fortress in a Nutshell (2)

——em T T TS
- o D -l «
r?:__ ObJeC‘I' ~)_,‘ !:_ 'I'rOI‘I'S \)‘/1
-~ oo

Sl __ "
- ~ ="
S

-

\J

o

___ .Object SolarSystem extends._ {AStcu S\ stem, OrbitingObject }
< fleld _sun = Sol- -~ o gf object -,

\

LS plancte = { Mercury, \onu’s*fcuth Mars, Jupiter, Saturn, Uranus, Neptune }

K “ position = Polar(25000 light Years, O radians)
w : R64 AngularVelocity = 27 radians /226 million years in seconds

wvariation(wa) = o
Cowh=wa O
d; ——————— <z” 7777 SO >-77T 7T SN
- me’rhod o - Static checking of A
T physm:ol dlmen5|ons
Parallelism
Oblivious 2008-5-2 7 The Fortress Language Specification
Programming

1.1 Fortress in a Nutshell (3)

e Notations

— Allows Unicode characters, subscripts and superscripts
in identifiers
— Follows mathematical conventions
e Variable references in italics
o Mulfiplication expressed by simple juxtaposition
— Supports operator overloading

— Facilitates extension of syntax with domain-specific
languages

Parallelism . X
Oblivious 2008-5-2 8 The Fortress Language Specification

Programming

1.1 Fortress in a Nutshell (4)

e Types
— Statically and nominally typed

— Types not specified for all fields, nor all method
parameters and refurn values:

— Type inference used wherever possible

— Types can be parametric with respect to other types
and values

Parallelism . X
Oblivious 2008-5-2 9 The Fortress Language Specification

Programming

1.1 Fortress in a Nutshell (5)

e Functions

— Allows top-level function definitions in addition to
objects and traits
— Functions are first-class values:
e Functions can be passed to and returned from functions
e Functions are assigned as values to fields and variables
— Functions and methods can be overloaded

— Supports keyword parameters and variable size
argument lists

Parallelism
Oblivious 2008-5-2 10 The Fortress Language Specification

Programming

1.1 Fortress in a Nutshell (6)

e Components
— Programs are organized info components
— Exports and Imports APls and can be linked together

— Component “Shape’” described by APIs by specifying
types in traits, objects and functions

— External references are to APIls imported by component

Parallelism
Oblivious 2008-5-2 11 The Fortress Language Specification

Programming

1.1 Fortress in a Nutshell (7)

e Parallelism

— Fortress supports a rich set of operations for defining

parallel execution and distribution of large data
structures

— “For loops” are parallel by default

Parallelism
Oblivious 2008-5-2 12 The Fortress Language Specification

Programming

Chapter 2 Overview

2.1 The Fortress Programming Environment
2.2 Exports, Imports, and Linking Components
2.3 Automatic Generation of APIs
2.4 Rendering
2.5 Some Common Types in Fortress
2.6 Functions in Fortress
2.7 Some Common Expressions in Fortress
2.8 For Loops Are Parallel by Default
2.9 Atomic Expressions
2.10 Dimensions and Units
2.11 Aggregate Expressions
2.12 Comprehensions
2.13 Summations and Products
2.14 Tests and Properties
2.15 Objects and Traits
2.16 Features for Library Development

Parallelism g .
Oblivious 2008-5-2 13 The Fortress Language Specification

Programming

2.1 The Fortress Programming Environment (1)

e Fortress is platform independent

o A typical programming model:

— Source code stored In files organized in
directories

— A text-based shell for

e Store environment variables
e |ssue commands to execute and compile programs

Parallelism
Oblivious 2008-5-2 14 The Fortress Language Specification

Programming

2.1 The Fortress Programming Environment (2)

e Running a Program as a script
— Program stored in a file with suffix “.fsx”

export Executable
run(args) = print “Hello, world!”

HelloWorld.fsx

— Program executed directly from a shell by
calling “fortress script” command

“ fortress script HelloWorld.fsx “

Parallelism
Oblivious 2008-5-2 15 The Fortress Language Specification

Programming

2.1 The Fortress Programming Environment (3)

e Running a Program as a compiled code
— Program stored in a file with suffix “.fss”

— Program compiled into one or more components stored in @
database fortress

component HelloWorld
HelloWorld.fss export Executable
run(args) = print “Hello, world!”
end
— Compile program By "Torress compiie command

“ fortress compile HelloWorld.fss “
— Execute program by “fortress run” command

“ fortress run HelloWorld “

Parallelism
Oblivious 2008-5-2 16 The Fortress Language Specification

Programming

2.1 The Foriress Programming Environment (4)

 Manipulating fortress
— Components are stored in fortress by compilation

— New component shadows the old one with the same
name in fortress

— Components are removed from fortress by “fortress
remove” command

HelloWorld.fss J > compile>

fortress

Parallelism
Oblivious
Programming

2008-5-2 17

O
o

[SisWata [on

The Fortress Language Specification

2.2 Exports, Imports, and Linking Components (1)

e Exporting AP|
— Components can include export statements
e Export statements list APIs that a components implement

- -

- , ~

-~ Com ponen’rs
component HelloWorld i implements

export Executable o » -) Executable -=-

run(args) = print “Hello, world!”
end
* APIs are themselves program constructs

api Executable
run: String ... — ()- | ,
end “ v
v void -~ 5
______________ >,___\:':=:_,/-’
- .) - —‘5;\
s—-- varargs pc:rc:mefer -~ 1 ’
Parallelism g .
Oblivious 2008-5-2 18 The Fortress Language Specification
Programming

2.2 Exports, Imports, and Linking Components (2)

 API

— Defined in files with " fsi" api Zeepf

foo: String — ()

baz: String — String
end

Blarf.fsi

— Compiled with "fortress compile” command
“ fortress compile Blarf.fsi “

— APl compilation does not shadow existing elements of
a fortress

e error signaled if the same name exists.

— APl removed after all components referring to the API

have been removed with “fortress removeAP|"
command

Parallelism
Oblivious 2008-5-2 19 The Fortress Language Specification

Programming

2.2 Exports, Imports, and Linking Components (3)

e Exporting AP|

— Component exporting APl must provide definition for every

construct declared in that API

Component

component HelloWorld
export Executable

end

run(args) = print “Hello, world!’

Parallelism

Oblivious 2008-5-2

Programming

20

API

api Executable
L run: String. .. — ()
end

The Fortress Language Specification

2.2 Exports, Imports, and Linking Components (4)

e Importing API (1)
— Component importing APl can use any constructs declared in

that AP|
<\’_‘__\ Impo”}_ _“>--rapi Zeepf
T component Blargh o) /fOO: String — ()
- expor’r o import Zeepf " baz:String — String
IR 5 export Executable / end
- run(args) = Zeepf.foo(*whatever”
api Executable gi (args) ol f___(__':___________z_{ ______________ 1
run: String ... — () Z 1 component Blargh |
end < : import foo from Zeepf !
(__(,——— —d—"‘ll‘ré’d """" -_:l, i export [Executable i
. AOME co___>=="7 run(args) = foo(“*whatever”)
""""""""" ’ E end :
Parallelism » .
Oblivious 2008-5-2 21 The Fortress Language Specification
Programming

2.2 Exports, Imports, and Linking Components (5)

e Qualified Name

— Import statement “import S from A" makes all names in set S
imported from APl A

— Imported names can be referred to as unqualified names in
that component

import {foo. baz} from Zeepf :‘s api Zeept

- —— foo: String — ()
o ™~ baz: String — String
"""""""""" end

S _———-

Parallelism
Oblivious 2008-5-2 22 The Fortress Language Specification

Programming

2.2 Exports, Imports, and Linking Components (6)

e Component Reference
— No component refers directly to another component
— All external references go through APIs

e Component

— Execufable components
e contain no import statements
e export the "API Executable”
— Executable components are compiled and executed
as stand-alone

— Non-executable components must be compiled and

linked with other components to form a new
compound component

Parallelism
Oblivious 2008-5-2 23 The Fortress Language Specification

Programming

2.2 Exports, Imports, and Linking Components (/)

e Linking Components Blarah.fss
T oont component Blargh an.
Ralph.fss P acep , -
U ——— 1" foo: String — () —— import Zeept
Zeepf- el AP o
export Zeej baz: String — String export Executable
0o(s) =
f_ o(s) = () end — run(args) = Zeepf.foo(*whatever”
baz(s) = s 4 I
— ‘ api Executable /.: end
run: String . .. — ()
end

ess compile Ralph.fss

fortr

fortress compile Blargh.fss

fortress link Gary from Ralph with Blargh
e Executabie T T -
e camponent ..__..-->7777"

Execute with “fortress run Gary” command

The Fortress Language Specification

Parallelism

Oblivious 2008-5-2 24

Programming

2.2 Exports, Imports, and Linking Components (8)

e Components are encapsulated

— Compound components contain their own copies of
constituent components in the resident fortress

e Compound components are upgradable

— With new components that export some of the APIs used by
theirconstituents

- —— _——— ==
—_——— - -- - - -~
- - -
-

I

~ o ’;_—
——— A — - _—— -
Il i I -

“ fortress upgrade NewGary from Gary with Ralph “

“-ortre s upgrade Gary with Ralph “
7. Old version shadowed ---, ">
Parallelism Ha 8
Oblivious 2008-5-2 25 The Fortress Language Specification
Programming

2.3 Automatic Generation of API

e Components and APIs exist in separate

NAMeSPaAcCeEs

— Component may have same name as API

component Zeepf
export Zeepf
foo(s)=()

baz(s)=s

end

Leepf.fss %

“fortress api

Zeepf.

QO
- -

~ —— o _ S A

Parallelism
Oblivious
Programming

26

api Zeept
foo: String — ()
baz: String — String

Leepf.fsi

=

end

The Fortress Language Specification

2.4 Rendering (1)

o ASCIl representation is rendered as ...

f(x) = x"2 + sin X — cos 2 x

=

f(x) = 2* + sinax — cos 2x

alil j>

Parallelism

Oblivious 2008-5-2 27

Programming

The Fortress Language Specification

2.4 Rendering (2)

e ASCII names for Unicode characters

BY becomes X TIMES becomes X
DOT becomes CROSS becomes X
cup becomes U cap becomes M
BOTTOM becomes L TOP becomes T
suM becomes > PRODUCT becomes ||
INTEGRAL becomes | EMPTYSET becomes ()
SUBSET becomes C NOTSUBSET becomes
SUBSETEQ becomes C NOTSUBSETEQ becomes &
EQUIV becomes = NOTEQUIV becomes #
IN becomes < NOTIN becomes &
LT becomes < LE becomes <
GT becomes > GE becomes =
£Q becomes NE becomes #
AND becomes /N OR becomes
NOT becomes — XOR becomes b
INF becomes o SQRT becomes ./
Parallelism
Oblivious 2008-5-2 28 The Fortress Language Specification

Programming

2.5 Some Common Types in Fortress

e Standard type
— String
— Boolean
— Numerics

64-pbit precision float ®E (RRin ASCll) R64
32-bit precision float R32

64-bit integer Z64

32-bit infeger 732

Infinite precision integer Z

Parallelism g .
Oblivious 2008-5-2 29 The Fortress Language Specification

Programming

2.6 Functions in Fortress (1)

e Allows (mutually) recursive function definitions

factorial(n) =
if n = 0 then 1
else n factorial(n — 1) end

l’\,
oo Juxtaposition A
7= for multiplication .-~
L - e)
Parallelism
Oblivious 2008-5-2 30 The Fortress Language Specification
Programming

2.6 Functions in Fortress (2)

e 2.6.1 Juxtaposition and function application

— Juxtaposed exprs of numeric type represent
multiplication
e n factorial(n-1)
— Juxtaposition of expr of function type and
another expr represents function application

* sin X
— Juxtaposition of expr of string type represents
concatenation
° HHi'” 7] i.I.lSH 7] me” 1] Clg(]iﬂ,”

Parallelism
Oblivious 2008-5-2 31 The Fortress Language Specification

Programming

2.6 Functions in Fortress (3)

e 2.6.2 Keyword Parameters

-~ ,~__-'
Il R

makeColor(red : 264 = 0, vqr('('n : 264 = 0, blue : 264 = 0) =
if 0 < red < 255 A0 < green < 255 A0 < blue < 255
then Color(red, green, blue) :
else throw Error end

_____________’_— - <

-

T m—e T <l ___ - _ - == __-
e e e e e e T el =TT

SN ——— -
i e P _— -

Calling makeColor(green = 255) | brings red=0 and blue=0

Parallelism
Oblivious 2008-5-2 32 The Fortress Language Specification

Programming

2.6 Functions in Fortress (4)

e 2.6.3 Varargs Parameters
— Functions with variable number of arguments allowed

api Executable
run: String . .. — (),

end . O TN
: . : 3 - void ~ 5
printFirst(zs :R...) = oo S
if |zs| > 0 then print zsg el varargs parameter S
else throw Errorend | 77T
I festing the number of =77~ e R,)
[-arguments -7
Parallelism - .
Oblivious 2008-5-2 33 The Fortress Language Specification
Programming

2.6 Functions in Fortress (5)

e 2.6.4 Function Overloading
— Functions can be overloaded by parameter types
— Overloaded calls resolved based on runtime types of

arguments
- Overlooded function e
912(’(\11) = ()
size(x: Cons) = 1 + size(rest(x))
Parallelism
gff;ri%mmg 2008-5-2 34 The Fortress Language Specification

2.6 Functions in Fortress (6)

e 2.6.5 Function Contracts

-

\—__.=-~-

—_—

e — e m T T T e T =~

-
-—

———————

- -

= if n = (0 then 1

factorial(n) requires {n > 0}

else n factorial(n — 1) end

factorial(n)
requires {n > 0}

— if n = () then 1

ensures { result > 0} » ©

else n factorial(n — 1) end

————— - - o

-

“.--| ensure contract --.__12>

- -
= Smm =
- =
———— =~ ___--

Parallelism
Oblivious
Programming

2008-5-2 35

The Fortress Language Specification

2.7 Some Common Expressions in Fortress

' . block
— Wh'le expression _ printThree Words() = do
while 1 < 10 do print “print”
print x print “three”
r +=1 print “words”
end end

tuple expression

(“this”, “is”, “a”,“tuple”,“of”, “mostly”, “strings”,0)

do
factorial(100)
(factorial(100), factorial(500), factorial(1000)) <:> also do
- factorial (500)
L also do
e fUple elements evaluatedin "=l factorial (1000)
e parallel ... T end
Parallelism
gff;ri%mmg 2008-5-2 36 The Fortress Language Specification

2.8 For Loops Are Parallel by Default

—mmm— e, T T T T, T T~

Ry range |
e eXPIession .-
fori:« 1:10do evaluated in
print(i * 7)°© @, parallel
end

Resultmaybe 54637291018

Parallelism
Oblivious 2008-5-2 37 The Fortress Language Specification

Programming

2.9 Atomic Expressions (1)

e Afomic expression is executed in ...

— All other threads observe that
e The computation has completed, or
 The computation has not begun

atomic do
T +=1
y +=1
end
Parallelism X
Oblivious 2008-5-2 38 The Fortress Language Specification
Programming

2.9 Atomic Expressions (2)

This block observes
that

both x and y have

been updated, or

neither has

- -

N—— o
=~

—— e — e e e e =
~_____________. _________

do
r:Z:=0
y: Z =10
z: 4 =10
atomic do
r+=1
y +=1
also atomic do
Zi=Tr+Y
end
end
Parallelism
AT

39 The Fortress Language Specification

2.10 Dimensions and Units (1)

e Numeric types can be annotated with physical
units and dimensions

— Unit symbols are encoded with trailing underscores and
rendered in roman font

kineticEnergy(m : R _% :Rm/s): Rkgm?/s? = (mv?)/2

encoded as kg
and rendered in

roman font

Parallelism
Oblivious 2008-5-2 40 The Fortress Language Specification

Programming

2.10 Dimensions and Units (2)

e Longhand and shorthand names provided
— m, meter, and meters
e Synonymous unit names provided
— N is synonymous with kg m/s?
— Force is synonymous with Mass Acceleration
— Acceleration is synonymous with Velocity/Time

e Measurements in the same unit can be ...
— compared, added, subtracted, multiplied, divided

e Measurements in different units can be ...
— multiplied, divided

Parallelism
Oblivious 2008-5-2 4] The Fortress Language Specification

Programming

2.10 Dimensions and Units (3)

Correct
v:Rm/s = (3meters + 4 meters) /5 seconds |

v:Rm/s = (3meters + 4 seconds) /5 seconds

static error

v:Rm/s = (3meters + 4 meters) /5

static error

kineticEnergy(3.14kg,32f/s in m/s)

i TR
= ———— »
-

<= unit conversion -, %

———————
e~ ___-=-"

Parallelism
Oblivious 2008-5-2 42 The Fortress Language Specification

Programming

2.11 Aggregate Expressions (1)

e Support for writing down collections by
enumerating elements
— Tuple, array, matrix, vector, map, set, list

e Elements are evaluated in parallel

amays e le=[12
oo a1 | 4 Separate) 34::56
a=1234 [oL 781910
‘.. bynewlines ~ S r2 ¥
3 (’_‘, ‘\\ or “;” ,l"/ ’,———-(’__‘7”——\/"'—-\\'_\J.J. 12]
DN -< I A . . ~
h = [3 4o b ‘... /=7 _{ 3rd dimensional
5 (i] N slices seporc‘n"rfd
‘ by double “;"s
Parallelism
Oblivious 2008-5-2 43 The Fortress Language Specification
Programming

2.11 Aggregate Expressions (2)

e Vector written down like one-dim array, Matrix
written down like two-dim array

e Array aggregate expr evaluates to array, vector,
or matrix from context

— Elements of vectors and maftrices must be numbers

——_——— e m ===

[(cos @)(— sin 0‘)%)(:,(\:_{ Exfrorggﬁgfgeses A
(sin@)(cos) | e o P

Parallelism
Oblivious 2008-5-2 44 The Fortress Language Specification

Programming

2.11 Aggregate Expressions (3)

e Set written down by ...
— Elements in braces, separated by commas

e List wriffen down by ...

— Elements in angle brackets (written in ASCII
as <[, |>)

e Map written down by ...

— Elements in braces with key/value pairs
joined by arrow (written in ASCIl as | ->)

s =1{0,1,2,3,4} [=(0,1,2,3,4)

m = {'a"+— 0,/ + 1) +s 2}

Parallelism
Oblivious 2008-5-2 45 The Fortress Language Specification

Programming

2.12 Comprehensions (1)

e Describe elements of collection by providing @
rule

_____ 7’——__\/"_1:—)“\ ’___::__‘a’""—“~,/’——_-“,-’——_-"\\F~
<" Elements for .- How elements x are)
T everyvalidx .. 7 fobe generated -

TTeesl_ L ~. ‘/; ______ < T S See . ’, _______ -
u={xr+y|xr—syt}
“=--__Mulfiple generators -
Parallelism
Oblivious 2008-5-2 46 The Fortress Language Specification
Programming

2.12 Comprehensions (2)

e Comprehension can contain filfering expressions

e Comprehension expression exists for aggregate
except tuple

v = {;1_.‘ | r—t.x > ()} List comprehension
- 2z | z «— v)

i >- -~
-

-~

_______ -=~~_________—

Parallelism
Oblivious 2008-5-2 47 The Fortress Language Specification

Programming

2.12 Comprehensions (3)

e Array comprehension

— Element expr includes a fuple indexing the
elements of the array

(z,y) =0 |z« {0,1,2},y « {0,1,2}] [000
000
---------------------- coee [000]
<2 Range expr0..2 canbe used -~ -
(z,y) =02« 0:2,y «— 0:2 [100
(z,2) =12« 0:2] 010
| 00T]
Parallelism
gff;j;’;‘fmmg 2008-5-2 48 The Fortress Language Specification

2.13 Summations and Products

e Syntactic support for “Big” operations

factorial(n) = [i

1+—1:n

~_ ASClIl encoding
factorial(n) = PRODUCT[1 <- 1l:n] 1

Z is written SUM in ASCII

Parallelism
Oblivious 2008-5-2 49 The Fortress Language Specification

Programming

2.14 Tests and Properties

e Support for automated program testing

test factorialResultLarger[z « 0:100] = x < factorial(x)

 Property declaration for documenting
condifions expected
— No explicit finite collections
— Property expected to hold all values of the type

property factorialResultAlwaysLarger = ¥(x : Z) (x < factorial(x))

Parallelism
Oblivious 2008-5-2 50 The Fortress Language Specification

Programming

to types
e Multiple inheritance hierarchy rooted at trait
Object
-~ -=-~--~_ |trait Moving extends { Tangible, Object } | .--=-<" > TN
Jabstract ™| position(): (R Length)? o 0 Inherits all |
‘.. mefhod \L,,"(-)O?z..'(:locity():(IR Velocity)? \.._ mefhodsin .
.S 4" |end (1 these traits

/’_—*’—‘\'
concret

2.15 Objects and Traits (1)

e Defining new types as well as objects belonging

-

PAGEREN

\
{
p; gz s /}
‘_/
~-«_method._.-
?ara[[e[{s;n
Oblivious

Programming

Soo =N
~

~ -

ih o =velocity() = [0 0 (299 792 458 m/s))]

trait Fast extends Moving

end

2008-5-2 51 The Fortress Language Specification

>_.’

2.15 Objects and Traits (2)

e Trait declarations can be extended by ...
— trait declaration

— object declaration

e Singleton declaration declares a stand- alone
singleton object

e Constructor declaration declares an object
consfructor

Parallelism
Oblivious 2008-5-2 52 The Fortress Language Specification

Programming

2.15 Objects and Traits (3)

e Singleton declaration

— Object must provide concrete definitions for all

abstract methods it inherits

- -

’ N . ~

P \/ I‘o \\
- S

7’ o

P

-

4
/

! Definitions y

/“ | -

.. methodsin >~/ —
Moving

~ -

Parallelism
Oblivious
Programming

2008-5-2

object Sol extends { Moving, Stellar }

spectralClass = (o
-, _position() = [0 0 0]

end

53 The Fortress Language Specification

2.15 Objects and Traits (4)

e Fields can be declared in object definition

e For every field ...
— Implicit getter is defined
— If a fleld includes modifier settable, implicit sefter is

defined
getter expr assignment
Sol.spectral Class Sol.spectralClass = G5

Parallelism
Oblivious 2008-5-2 54 The Fortress Language Specification

Programming

2.15 Objects and Traits (5)

e Every method declared in an object or trait
includes an implicit self parameter

— self denotes the receiver of the method

object Sol extends {Moving, Stellar} trait List
spectralClass = G cons(xz: Object, self): List
self.position() = [0 0 0] append (xs: List, self) : List
velocty() = [0 0 0] end >
end)
¢ self param \ :
<. rowded oy I|C|TI - - self params appearin
p _______ p y nons’rondard posmons i
Parallelism
Oblivious 2008-5-2 55 The Fortress Language Specification
Programming

2.15 Objects and Traits (6)

e Constructor declaration declares an object
constructor
— Declaration includes value param in header

e Every call to the constructor yields a new object

object Particle(position : (R Length)?, p1 = Particle([3 2 5]m, [1 0 0Jm/s)
velocity : (R Velocity)?) .
extends Moving 7, &
end ,,--\(-Z\,__\)___ ------------------------ ~—

concrete - 5 _______

~-
~—___...\-___ __,

-~" definitions -~
-)

———-

Parallelism
Oblivious 2008-5-2 56 The Fortress Language Specification

Programming

2.15 Objects and Traits (7)

e Implicit getters and setters can be overridden

-~

L= 7 Ny
N

\ return
'~ the field
\ value

Parallelism
Oblivious

Programming

P

object Particle(position : (R Length)®,
l'(lO(ity : (R Velocity)®)
extends Movi n;g
getter v(locffJ) = do
~ print /veloc:lty getter accessed’
:clocth
end
end
2008-5-2 57

The Fortress Language Specification

2.15 Objects and Traits (8)

e 2.15.1 Traits, Getters, and Setters
— Traits do not include field declarations

— Traits can include getter and setter
declarations

trait Moving extends { Tangible, Object }
P SN getter position(): (R Length)?
- gefter -] getter velocity(): (R Velocity)?
.~ decl \}/' end

v:Moving = ... | getter notation can be used for
v.position variable v of type Moving

Parallelism

gff;ri%mmg 2008-5-2 58 The Fortress Language Specification

2.15 Objects and Traits (?)

o Getters can be declared using field declaration
syntax

e Getter declaration can include modifiers
allowed on field declaration
— settable is used for implicit setter

trait Moving extends { Tangible, Object }
position: (R Length)?
velocity: (R Velocity)?

end .
- Field decl syntax --.__C
Parallelism
Oblivious 2008-5-2 59 The Fortress Language Specification
Programming

2.16 Features for Library Development (1)

e Foriress designed to be a good language for
library programming

e 2.16.1 Generic Types and Static Parameters

— Allow types to be parametric such as Arrays and
Vectors

— Programmer can define new traits, objects,
functions that include static parameters

Parallelism
Oblivious 2008-5-2 60 The Fortress Language Specification

Programming

2.16 Features for Library Development (2)

e 2.16.2 Specification of Locality and Data
Distribution

— Express programmer intent through data
structure distribution

e 2.16.3 Operator Overloading

et e I N
- -~

Yy -

e e e ===
e =~ __ i mmTTmmmmm—

Parallelism
Oblivious 2008-5-2 61 The Fortress Language Specification

Programming

2.16 Features for Library Development (3)

e 2.16.4 Definition of New Syntax

— Provides a facility for defining new syntax in
libraries

Parallelism
Oblivious 2008-5-2 62 The Fortress Language Specification

Programming

component fortress.executable

Example

export Executable

run(args:String...) : ()=do
------------------------------- needleLength = 20

BUffon , S needle: x13.:1211‘:;;:i;h:tl.:o=6need(];e:.).ength numRows
. . . var hits : RR64 = 0.
Estimates pl using i vern: rrea=o0.0
Monte Carlo
. . for i <- 1#3000 do
SlmUIGTIOH delta X = random(2.0) - 1

_______________________________ 1 delta Y = random(2.0) - 1

rsq = delta_X"2 + delta ¥Y*2

if 0 < rsq < 1 then
yl tableHeight random(1.0)
y2 yl + needleLength (delta Y / sqrt(rsq))
(y_L, y H) = (yl MIN y2, yl MAX y2)
if ceiling(y_L/needlelength) = floor(y_H/needlelLength) then

atomic do hits += 1.0 end

println("Starting parallel Buffons")
recordTime (6.0)

end
atomic do n += 1.0 end
end
end
probability = hits/n
pi_est = 2.0/probability
printTime (6.0)

println("")

print("estimated Pi = ")

println(pi_est)

end

end

Parallelism
Oblivious 2008-5-2 63 The Fortress Language Specification
Programming

EXO m p | e run(args : String...): () = do
needleLength = 20
numRows = 10
tableHeight = needleLength numRows

var hits : R64 = 0.0
var n: R64 = 0.0

println(“Starting parallel Buffons”)
record Time(6.0)
_________________________________ ! for i « 1 #3000 do
! dx = random(2.0) — 1
I dy = random(2.0) — 1
: rsq = 0% + 0%
: if 0 < rsq < 1 then
y1 = tableHeight random/(1.0)
Y2 = y1 + needleLength(dy /sqrt(rsq))
(yL,yu) = (y1 MIN yo,y1 MAX ys)
if ceiling(yy/needleLength) = floor(yu/needleLength) then
atomic do hits += 1.0 end

end
atomic do n += 1.0 end
end
end
probability = hits/n
Test = 2.0/ probability
printTime(6.0)
printin(*)
print(“estimated Pi = ")

println(mest)
end
end
Parallelism
Oblivious 2008-5-2 64 The Fortress Language Specification
Programming

Chapter 3 Programs (1)

e Program consists of Unicode 5.0
characters
— May be rendered as subscripts, superscripts,

italicized, ...

e Program is valid if it satisfies all static
conditfions
— Only valid programs can be executed
— Validity must be checked before execution

Parallelism
Oblivious 2008-5-2 65 The Fortress Language Specification

Programming

Chapter 3 Programs (2)

e Executing valid program consists of
evaluating expressions

— Evaluation may modity program state yielding
result

— Result is a value, or an abrupt completion

 Characters of a valid program deftermine @
sequence of inpuf elements

* Input elements determine program
constructs

Parallelism

Oblivious 2008-5-2 66 The Fortress Language Specification

Programming

Chapter 3 Programs (3)

e Program constructs may contain other
program constructs
— declaration and expression

e Semantics explained as ...

— Structure of input elements and program
constructs with static constraints

— How outcome of program execution is
determined from sequence of constructs

Parallelism
Oblivious 2008-5-2 67 The Fortress Language Specification

Programming

Chapter 3 Programs (4)

e Programs are developed, compiled, and
deployed as encapsulated upgradable
components (Chapter 2.2)

e Fortressis ...

— block-structured
* Program consists of nested blocks of code

e Entfire program is a single block

— expression-oriented
e “statements” are expression with type ()

— whitespace-sensitive

Parallelism
Oblivious 2008-5-2 68 The Fortress Language Specification

Programming

Chapter 4 Evaluation (1)

e State of executing program consists of o
set of threads and a memory

e Communication with outside world
through input and oufput actions

e Program execution consists of evaluating
... In parallel
— Body expression of run function

— Initial-value expression of top-level variables
and singleton object fields

Parallelism
Oblivious 2008-5-2 69 The Fortress Language Specification

Programming

Chapter 4 Evaluation (2)

 Threads evaluate expressions by taking
steps

— Step may complete the evaluation

e NO more steps possible, or
 May result in an infermediate expression

e Dynamic program order: partial order
among expressions
— See Chapter 13

Parallelism
Oblivious 2008-5-2 70 The Fortress Language Specification

Programming

Chapter 4 Evaluation (3)

e Infermediate exprs are generalizations of
Fortress exprs

— Some cannot be written in programs
e Expris dynamically contained within
another expr

— All steps for the first are taken between the
beginning and completion of the second

Parallelism
Oblivious 2008-5-2 71 The Fortress Language Specification

Programming

4.1 Values (1)

e Value is the result of normal completion of
an expr

e Value haos ...
- fype
— environment
— finite set of fields
e Every value is an object
— value object

— reference object
— function

Parallelism
Oblivious 2008-5-2 72 The Fortress Language Specification

Programming

4.1 Values (2)

e Type specifies ...
— Names and types of its fields

— Which names must be bound in its
environment

— Methods of the object

e Only trait types have methods other than those
inherited from type Any

e Fields ...

— In value object, each field is a value
— In reference object, each field is a location
— Functions and the value () have no fields

Parallelism
Oblivious 2008-5-2 73 The Fortress Language Specification

Programming

4.1 Values (3)

e Field has a name, which may be an identifier or
an index

— Only values of type LinearSequence or Heapseguence
have fields named by indices (Sections 40.1 & 40.3)

e Field in value object is immutable

e Reference objects may have both mufable and
immutable fields

Parallelism
Oblivious 2008-5-2 74 The Fortress Language Specification

Programming

4.1 Values (4)

 Values are constructed by ...
— Top-level function declaration and singleton declaration
— Evaluating ...

Object expression
Function expression

Local function declaration

Call to object constructor
Literal

Spawn expression
Aggregate expression
Comprehension

with constructed value as the result of normal completion of
evaluation

Parallelism
Oblivious
Programming

2008-5-2

75

The Fortress Language Specification

4.2 Normal and Abrupt Completion of
Evaluation (1)

e Expression is evaluated until it completes
e Evaluation may ...

— Complete normally resulting in a value, or

— Complete abruptly

e Abrupt completion has an associate value
— Exception value thrown and uncaught
— Exit value of an exit expression

e Exception ...

— Programmer-defined; thrown by a throw expression

— Predefined exception; thrown by Fortress standard
libraries, e.qg., DivideByZeroException

Parallelism

Oblivious 2008-5-2 76 The Fortress Language Specification
Programming

4.2 Normal and Abrupt Completion of
Evaluation (2)

e On abrupt completion...

— Control passes to dynamically immediately
enclosing expression

— Unfil it is handled either by ...

e try expression if exception is being thrown, or
e label expression if exit expr was evaluated

e |f abrupt completion is not handled within
a thread, thread itself completes abruptly

e |f the main thread completes abruptly,
program completes abruptly

Parallelism
Oblivious 2008-5-2 77 The Fortress Language Specification

Programming

4.3 Memory and Memory Operations (1)

e Memory: a set of abstract locations
— Used to model sharing and mutation

e Location has an associated type and contains a
value of that type
— Type of value is a subtype of type of location

e Location can have non-object frait types; Value
always has an object type

e Operations performed on memory ...

- —_—~_ - -—o

— Allocation JUS— ,

o Memory behavior by
- Read _descrlbed in Chop’rer 21 “’;___-/
— Write T

Parallelism

Oblivious 2008-5-2 /8 The Fortress Language Specification

Programming

4.3 Memory and Memory Operations (2)

e Allocation creates a new location of a
given type
e Allocation occurs when ...

— A mutable variable is declared

— A reference object is constructed
* A new location allocated for each field

e Locations are never reclaimed
— In practice, reclaimed by garbage collection

Parallelism
Oblivious 2008-5-2 79 The Fortress Language Specification

Programming

4.3 Memory and Memory Operations (3)

Allocated location afresh is uninitialized

e Fortress guarantees ...
— An initializing write performed if it is ever read
— Initializing write occurs before any read
e Any location whose value ...
— can be written after initialization is mutable
— cannot be written after initialization is immutable
Mutable locations include
— mutable variables
— settable fields of a reference object
Immutable locations include
— Non-transient, non-settable fields

Parallelism

Oblivious 2008-5-2 80 The Fortress Language Specification

Programming

4.4 Threads and Parallelism (1)

 Two kinds of threads in Fortress ...
— Implicit threads
— Spawned (explicit) threads
 Objects created by spawn construct
e Thread may be in one of five states
— Nof started
— Executing
— Suspended
— Normally completed
— Abruptly completed

Parallelism
Oblivious 2008-5-2 81 The Fortress Language Specification

Programming

4.4 Threads and Parallelism (2)

e Every thread has a body and an
execution environment
— Body is an intermediate expression

— Thread evaluates it in the context of
execution environment

— Both the body and the environment may
change when the thread takes a step
e Execution environment is used to look up
Nnames in scope

— Environment of newly created thread is that of
the thread that created the new thread

Parallelism
Oblivious 2008-5-2 82 The Fortress Language Specification

Programming

4.4 Threads and Parallelism (3)
- Implicit thread

e A number of Fortress constructs are
implicitly parallel
— An implicitly parallel construct creates @
group of implicit threads
o Implicitly parallel constructs ...

— Tuple expressions

e Each element evaluated in a separate implicit
thread

— also do blocks

e Each sub-block evaluated in a separate implicit
thread

Parallelism
Oblivious 2008-5-2 83 The Fortress Language Specification

Programming

4.4 Threads and Parallelism (4)
- Implicit thread

o Implicitly parallel constructs ... (Cont.)

— Method invocations and function calls
e Receiver/function and each argument evaluated in
a separate implicit thread
— for loops, comprehensions, sums, generated
expressions, and big operators
e Parallelism in loops specified by generators

e Generators other than sequential generator
execute each iteration in a separate implicit thread

Parallelism
Oblivious 2008-5-2 84 The Fortress Language Specification

Programming

4.4 Threads and Parallelism (5)
- Implicit thread

o Implicitly parallel constructs ... (Cont.)

— Extremum expressions

e Each guarding expression evaluated in a separate
implicit thread

— Tests
e Each test evaluated in a separate implicit thread

case largest of

I mile = “miles are larger”

1 kilometer = “we were wrong again”
end

Parallelism
Oblivious 2008-5-2 85 The Fortress Language Specification

Programming

4.4 Threads and Parallelism (6)
- Implicit thread

o Implicit threads run “fork-join™ style

— All threads in a group created together and
must complete before the group completes

— Programmer cannot single out implicit thread
and operate upon it

— Implicit threads need not be scheduled fairly

r: 264 =0
(r:=1,while r = (0 do end)

- e R N

-

-
—————

I
e e > _aAmmm=

Parallelism
Oblivious 2008-5-2 86 The Fortress Language Specification

Programming

4.4 Threads and Parallelism (7)
- Implicit thread

e If any implicit thread completes abruptly, the
group completes abruptly

— Result of the group is the result of constituent thread
that completes abruptly

— Reduction variables should not be accessed after
abrupt completion(Section 4.4.1)

Parallelism

Oblivious 2008-5-2 87 The Fortress Language Specification

Programming

4.4 Threads and Parallelism (8)
- Spawned thread

e Spawned thread objects are reference objects
of ...

e ———— -
—

_—— e T TTTT S T2 T TS

-
—_——— o ="

-~
-_————

e This trait has methods ...
— valreturns value computed by spawn
e Invocation of val may block until thread completes
— wait waits for thread completion without return value
— ready returns frue if thread completes, false otherwise
— stop attempts to terminate thread (Sec 32.6)

Parallelism
Oblivious 2008-5-2 88 The Fortress Language Specification

Programming

4.4 Threads and Parallelism (?)
- Spawned thread

e Spawned thread has been observed 1o
complete after invoking val or wait methods, or
when ready invocation returns true

e |In case of resource shortage, attempt made to
run subexpression of spawn before continuing
— The rest evaluated after the parallel block spawned off

Parallelism
Oblivious 2008-5-2 89 The Fortress Language Specification

Programming

4.4 Threads and Parallelism (10)

e Thread can be suspendedin ...

— Thread that creates thread group is suspended
until that group has completed

— Thread that invokes val or wait is suspended
until the spawned thread completes

— Invoking abort function within atomic
expression may cause thread 1o suspend
 Threads can perform operations
simultaneously on shared objects

— atomic expression synchronizes data access

Parallelism
Oblivious 2008-5-2 90 The Fortress Language Specification

Programming

4.4.1 Reduction Variables (1)

e Special freatment to reductions for loops

e Reduction operator for type Tis an
operator on T generating a monoid

— The operator is an associative infix on T

___———___‘:——————_’_— - - -—o
-

~
- - -
—_— - 2. —_—
- ——— - — -
- - B -

____..__,_-————3‘ ————————

- -
~ -
Il L . _-“ -

Parallelism
Oblivious 2008-5-2 21 The Fortress Language Specification

Programming

4.4.1 Reduction Variables (2)

e Reduction variable for thread group

— Is of the form var op=expr using reduction
operator or its group inverse

— Value not read otherwise in the thread group
— Variable is not a free variable of a functional

[, B i e
- =

~
—_—— - =

-
—_—— === -

| P=e

Parallelism
Oblivious 2008-5-2 92 The Fortress Language Specification

Programming

4.4.1 Reduction Variables (3)

-~

—— =

Other threads simultaneously reference a
reduction variable see an arbitrary value

Updates by those threads may be lost

Association of terms in the reduction guided by
loop generators (Sec 32.8)

Fortress libraries declare common math operator
to be monoid

_—______‘__—____’,_———.._'_ ________

Monoid operators ,” ool ALV, and V.,

-

e e e e e ="

=

rO=Y| also allowed for Group|[T', &, O]

Parallelism

Oblivious 2008-5-2 93 The Fortress Language Specification

Programming

4.4.1 Reduction Variables (4)

 Implementation of reduction
— Reduction var is assigned identity of reduction
operator at beginning of iteration
— When all iteration are complete, initial value
and value of implicit thread are reduced and
assigned to reduction var

arraySum[nat zf(a:Z64[z]):Z64 = do
s sum: Z64 =0
) " fori « a.indices do

sum += ali]

-

-{ Reductio =+

\

o . ~ end

77 nvariable

RSN R sum

o end

Parallelism . X
Oblivious 2008-5-2 94 The Fortress Language Specification
Programming

4.4.1 Reduction Variables (5)

e Parallel slack :

(available work)/(number of threads)

— Slack in hundreds or more proves beneficial
with support for lightweight threading

— Very slack computations easily adapt to
differences in the number of processors

— Slack is a desirable property

Parallelism
Oblivious 2008-5-2 95 The Fortress Language Specification

Programming

4.5 Environments (1)

Environments maps names to values or

locations

— Environment is immutable
Program starts with with empty environment

Environments extended with mappings by
— Variable/function/object declarations
— Function calls

After initializing top-level variables and

singleton objects, top-level environment is
constructed

Parallelism
Oblivious
Programming

2008-5-2 96 The Fortress Language Specification

4.5 Environments (2)

e Environment of value determined by how it is
constructed

— For object/function expr and local function decl, env of
the constructed value is the lexical env in which expr/
decl was evaluated

— For others, env of the constructed value is top-level env
of component in which expr/decl occurs
e Env of spawned thread for body is distinct from
env of associated thread object in which calls to
thread method are evaluated

Parallelism
Oblivious 2008-5-2 97 The Fortress Language Specification

Programming

4.6 Input and Output Actions

e Certain functionals (functions or methods)
perform primitive input/output actions

e Any functional which may perform |/O action
directly/indirectly must be declared with io
modifier

Parallelism
Oblivious 2008-5-2 98 The Fortress Language Specification

Programming

Chapter 5 Lexical Structure

e Program consists of Unicode 5.0
characters
— Every character is part of an input element

— Partitioning of char sequence into input
elements defermined uniquely

e Standard ways to render (display) input
elements described

Parallelism
Oblivious 2008-5-2 99 The Fortress Language Specification

Programming

5.1 Characters (1)

e special non-operator characters, which are:

U+0026
U+0028
U+002C
U+0038
U+2026
U+2200
U+2254
U+27E6
U+27E7

AMPERSAND &
LEFT PARENTHESIS (
COMMA

SEMICOLON

HORIZONTAL ELLIPSIS
FOR ALL v

COLON EQUALS =
MATHEMATICAL LEFT WHITE SQUARE BRACKET [
MATHEMATICAL RIGHT WHITE SQUARE BRACKET ﬂ

e special operator characters, which are

U+003A
U+005B
U+005E
U+007C
U+2192

COLON

LEFT SQUARE BRACKET [
CIRCUMFLEX ACCENT

VERTICAL

~

LINE |

RIGHTWARDS ARROW —

U+0027
U+0029
U+002E
U+005C
U+21A6
U+2203

U+003D
U+005D
U+007B
U+007D
U+21D2

———————————

~
-<_ VRS

APOSTROPHE !
RIGHT PARENTHESIS)
FULL STOP

REVERSE SOLIDUS
RIGHTWARDS ARROW FROM BAR
THERE EXISTS

wy—"

EQUALS SIGN -
RIGHT SQUARE BRACKET]
LEFT CURLY BRACKET {
RIGHT CURLY BRACKET }
RIGHTWARDS DOUBLE ARROW =

e [etters, which are characters with Unicode general category Lu, LI, Lt, Lm or Lo—those with Unicode general
category Lu are uppercase letters—and the following honorary letters:

U+221E

INFINITY

o0 U+22A4

DOWN TACK

e connecting punctuation (Unicode general category Pc);

e digits (Unicode general category Nd);

Parallelism
Oblivious
Programming

2008-5-2

100

T U+22A5 up Tack L

The Fortress Language Specification

5.1 Characters (2)

e prime characters, which are:

U+2032 PRIME U+2033 DOUBLE PRIME
U+2034 TRIPLE PRIME U+2035 REVERSED PRIME
U+2036 REVERSED DOUBRLE PRIME U+2037 REVERSED TRIPLE PRIME

e whitespace characters, which are spaces (Unicode general category Zs) and the following characters:

U+0009 CHARACTER TABULATION U+000A LINE FEED

U+000B LINE TABULATION U+000C FORM FEED

U+000D CARRIAGE RETURN

U+001C INFORMATION SEPARATOR FOUR U+001D INFORMATION SEPARATOR THREE
U+00lE INFORMATION SEPARATOR TWO U+00lF INFORMATION SEPARATOR ONE
U+2028 LINE SEPARATOR U+2029 PARAGRAPH SEPARATOR

e character literal delimiters, which are:

U+0060 GRAVE ACCENT \
U+2018 LEFT SINGLE QUOTATION MARK '
U+2019 RIGHT SINGLE QUOTATION MARK

e string literal delimiters, which are:

U+0022 QUOTATION MARK "
U+201C LEFT DOUBLE QUOTATION MARK *
U+201D RIGHT DOUBLE QUOTATION MARK

Parallelism
Oblivious 2008-5-2 101 The Fortress Language Specification

Programming

5.1 Characters (3)

e ordinary operator characters, enumerated (along with the special operator characters) in Appendix F, which
include the following characters with code points less than U+007F:

U+0021 EXCLAMATION MARK ! U+0023 NUMBER SIGN #
U+0024 DOLLAR SIGN S U+0025 PERCENT SIGN Yo
U+002B PLUS SIGN + U+002D HYPHEN-MINUS —
U+003F QUESTION MARK ? U+0040 COMMERCIAL AT @
U+002A ASTERISK * U+002F soLibus /

U+003C LESS-THAN SIGN < U+003E GREATER-THAN SIGN >
U+007E TILDE -

and most (but not all) Unicode characters specified to be mathematical operators (i.e., characters with code
points in the range 2200-22FF) are operators in Fortress.

Parallelism
Oblivious 2008-5-2 102 The Fortress Language Specification

Programming

5.1 Characters (4)

control characters are those with Unicode general category Cc;

ASCII characters are those with code points U+007F and below:

protected characters are the ASCII characters, control characters, and string literal delimiters;
word characters are letters, digits, connecting punctuation, prime characters, and apostrophe;

restricted-word characters are ASCII letters, ASCII digits, and the underscore character (i.e., ASCII word
characters other than apostrophe);

hexadecimal digits are the digits and the ASCII letters 2, B, C, D, E, ¥, a, b, ¢, d, e and £
the digit-group separator is NARROW NO-BREAK SPACE (U+202F);

operator characters are special operator characters and ordinary operator characters;
special characters are special non-operator characters and special operator characters;

enclosing characters are the enclosing operator characters enumerated in Section F.1, left and right parenthesis
characters, and mathematical left and right white square brackets;

Parallelism
Oblivious 2008-5-2 103 The Fortress Language Specification

Programming

5.1 Characters (5)

e Forbidden and Restricted Characters

— No control characters allowed except
whitespace characters and SUBSTITUTE (U
+001Aa, “conftrol-Z")

— Control characters cause static error it appear
outside comment

U+0009 CHARACTER TABULATION U+000B LINE TABULATION

U+001C INFORMATION SEPARATOR FOUR U+00ID INFORMATION SEPARATOR THREE
U+001E INFORMATION SEPARATOR TWO U+001F INFORMATION SEPARATOR ONE
Parallelism - .
Oblivious 2008-5-2 104 The Fortress Language Specification
Programming

5.2 Words and Chunks

e Chunkis a nonempty contiguous
subsegquence of program

e Word is a maximal chunk consising only
word characters

— Letters, digits, connecting punctuation, prime
characters, apostrophe

e Restricted word Is a maximal chunk with
only restricted-word characters
— ASCll letters, digits, underscore characters

Parallelism
Oblivious 2008-5-2 105 The Fortress Language Specification

Programming

5.3 Lines, Pages and Position

e Characters partitioned into lines and
pages
e Line terminator

— LINE FEED

— CARRIAGE RETURN not immediately followed
by LINE FEED

— LINE SEPARATOR
— PARAGRAPH SEPARATOR

e Page terminator
— FORM FEED

Parallelism
Oblivious 2008-5-2 106 The Fortress Language Specification

Programming

5.4 ASCII Conversion

e An equivalent program containing only
ASCIlI characters exists for every Fortress
program

o ASCI| conversion in three steps
— Pasting words across line breaks

— Replacing restricted words, sequences of
operator/special characters with single
Unicode characters

— Replacing apostrophes in numerals with digit-
group separators

Parallelism
Oblivious 2008-5-2 107 The Fortress Language Specification

Programming

5.5 Input Elements and Scannning

o ASCIl conversion is followed by scanning
— Program partitioned into input elements

* Input elements ...
— Whitespace element (comments included)

— Token
e Reserved word
e |iteral
— Boolean, character, string, void, numeral
e |dentifier
e Operator tfoken

e Special token

Parallelism
Oblivious 2008-5-2 108 The Fortress Language Specification

Programming

5.6 Comments

e Opening and closing comment delimiters

"7
e Characters between balanced comment
delimiters comprise a comment

— Comment delimiters may be included in
comments

Parallelism
Oblivious 2008-5-2 109 The Fortress Language Specification

Programming

5.7 Whitespace Elements

e Maximal chunk consisting of ...
— Comments

— Whitespace characters not within string/
character literals, numerals

— Ampersands not within string/character literals
e [ine-breaking whitespace distinguished
from non-line-breaking whitespace
e Static error it ampersand occurs unless ...
— Within character/string literal
— Within comments
— Immediately followed by line terminator or

g Eerferminating comment

Oblivious 2008-5-2 110 The Fortress Language Specification

Programming

5.8 Reserved Words

BIG SI_unit absorbs abstract also api as
asif at atomic bool case catch coerces
coercion component comprises default dim do elif
else end ensures except excludes exit export
extends finally fn for forbid from getter
hidden ident if import in int invariant
io juxtaposition label largest nat object of
opr or private property provided requires self
settable setter smallest spawn syntax test then
throw throws trait transient try tryatomic type
typecase unit value var where while widening
widens with wrapped
e QOperators on units are also reserved

— cubed, cubic, 1n, 1nverse, per, square, squared

e Reserved to avoid confusion (no special meaning in Fortress)

— goto,

Parallelism
Oblivious
Programming

idiom,

public,

2008-5-2

pure,

111

reciprocal,

static

The Fortress Language Specification

5.9 Character Literals

Character literal
consists of one or
more characters
enclosed in single
quotation marks

‘ L 4 ’ \
o o0 Y4 o o0 ,

e Enclosed characters may
be ...

— Single character

— Sequence of hexadecimal
digits for Unicode code
point

— Official Unicode 5.0
name/alternative name

\b
\t
\n
\f
\r
\"
AR
\
W

U+0008 BACKSPACE

U+0009 CHARACTER TABULATION
U+000A LINE FEED

U+000C FORM FEED

U+000D CARRIAGE RETURN
U+0022 QUOTATION MARK
U+005C REVERSE SOLIDUS

U+201C LEFT DOUBLE QUOTATION MARK
U+201D RIGHT DOUBLE QUOTATION MARK

— ASCIl characters
converted to a Unicode
character Character-
literal escape sequence

Parallelism

Oblivious 2008-5-2

Programming

112 The Fortress Language Specification

5.10 String Literals

e String literal consists of sequence of
characters enclosed in double quotation
marks

Parallelism
Oblivious 2008-5-2 113 The Fortress Language Specification

Programming

5.11 Boolean Literals

e Boolean literals are false and frue

Parallelism
Oblivious 2008-5-2 114 The Fortress Language Specification

Programming

5.12 The Void Literal

e Void literal is ()

5.13 Numerals (1)

e Numeric literal (numeral) is a maximal
chunk consisting one or more words
saftistying ...

— Each word consists of only digits and letters

e The last word may have one underscore as part of a
radix specifier

— Consecutive words separated by exactly one
char, either a digit-group separator or .’

— The first word begins with a digit or the last
word has a radix specifier

Parallelism
Oblivious 2008-5-2 116 The Fortress Language Specification

Programming

5.13 Numerals (2)

e Radix specifier is a word suffix consisting of

— An underscore followed by
e O sequence of one or more digits (interpreted in

base 10), or

e English name in all uppercase ASCII letters of an
integer from 2 to 16

Valid numerals

17 7fff_16 Offf_SIXTEEN 10101101_2 XE_12 3.14159265 DEAD.BEEF_16
e T T TS ST = N-—l L
o-m=t Both upper- and lowercase
. Pt not allowed R NI -7
Invalid numerals ~ "------ o T TN
0.a O0x6A35 FF_EIGHT 12.52.23 57_50 PI_FIFTEEN dead.BEEF_16
Parallelism - .
Oblivious 2008-5-2 117 The Fortress Language Specification
Programming

5.14 Operator Tokens

e Operatorwordis ...
— Noft reserved
— Consists only of uppercase letters and underscores
— Does not begin or end with underscore
— Has at least two different letters

e Base operatoris ...
— Ordinary operator character
— Two-character sequence "**"
- Sequence of two or more vertical-line char * | ”
— Multicharacter enclosing operator (Section 5.14.1)

Parallelism

Oblivious 2008-5-2 118 The Fortress Language Specification

Programming

5.15 Identifiers

e Word beginning with a letter and is not @
reserved word, operator word, or all or
part of a numeral

Parallelism
Oblivious 2008-5-2 119 The Fortress Language Specification

Programming

5.16 Special Tokens

e Every special character that is not part of
a token

Parallelism
Oblivious 2008-5-2 120 The Fortress Language Specification

Programming

5.17 Rendering of Fortress Programs

5.17.1 Fonts

e Roman

o Jtalic

* Math

’ Sc’zipt

. fraktur

e Sans-serif

e [talic sans-serif

e Monospace
0 DOUBLE-STRUGCKE

Parallelism

Oblivious 2008-5-2 121

Programming

The Fortress Language Specification

5.17.2 Numerals

27

TFFF_16
10101101_.TwWO
37X8E2.12
deadbeef SIXTEEN
dead.beef_ 16
3.143159265
3.11037552.8
3.243f6b_16

11.001001000011111101101010_22

is rendered as
is rendered as
is rendered as
is rendered as
is rendered as
is rendered as
is rendered as
is rendered as
is rendered as
is rendered as

27

TFFF 4

10101101rwo

37X8E2:5

deadbeefSIXTEEN

dead.beef;q

3.143159265

3.1137552¢

3.243f6b¢
11.001001000011111101101010,

Parallelism
Oblivious
Programming

2008-5-2

122 The Fortress Language Specification

5.17.3 Identifiers

e Complexrules for rendering identifiers ...

Parallelism
Oblivious 2008-5-2 123 The Fortress Language Specification

Programming

Chapter 6 Declarations

e Declarations infroduce named entities
— Declaration declares an entity and a name

— The declared name refers fo the declared
enftity

e Not a one-one correspondence between
declarations and named entities
e Declaration may contain other decls

— Trait decl may contain method decls
— Function decl may contain parameter decls

Parallelism
Oblivious 2008-5-2 124 The Fortress Language Specification

Programming

6.1 Kinds of Declarations (1)

Syntax:
Decl = TraitDecl
ObjectDecl
VarDecl
FnDecl
DimUnitDecl
TypeAlias
TestDecl
PropertyDecl
e Two kinds of declarations ...
— Top-level declaration
— Local declaration
Parallelism
gff;ri%mmg 2008-5-2 125 The Fortress Language Specification

6.1 Kinds of Declarations (2)

e Top-level declarations ...
— Trait declarations (Chapter 9)

— Object declarations (Chapter 10)
e singleton decl/ constructor decl

— Top-level variable declarations (Section 6.2)

— Top-level function declarations (Chapter 12)/ top-level
operator declarations (Chapter 16)

— Dimension declarations (Chapter 18)

— Unit declarations (Chapter 18)

— Top-level type aliases (Section 8.9)

— Test declarations (Chapter 19)

— Top-level property declarations (Chapter 19)

Parallelism
Oblivious 2008-5-2 126 The Fortress Language Specification

Programming

6.1 Kinds of Declarations (3)

e Local declarations occur in another declaration or in some
expression ...
— Field declarations (Section 10.2)
e Occurin object decl and object expr
* Include field decl in param list of constructor decl
— Method declarations (Section 9.2)
e Occurin frait/object decl, object expr
— Coercion declarations (Chapter 17)
e Occurin frait/object decl
— Local variable declarations (Section 6.3)
e Occurin block expr
— Local function declarations (Section 6.4)
e Occurin block expr

Parallelism
Oblivious 2008-5-2 127 The Fortress Language Specification

Programming

6.1 Kinds of Declarations (4)

e |Local declarations occur in another declaration
or in some expression ... (cont'd)
— Labeled blocks (Section 13.2)

— Static-parameter declarations

e Declare type param, nat param, int param, bool param,
dim param, unit param, opr param, ident param

e Occur in static-param lists of trait/object decl, top-level
type aliases, top-level function decls, method decls

— Hidden-type-variable declarations

e Occurin where clauses of trait/object decls, top-level
function decls, method decls

— Type aliases in where clauses of trait/object decls, top-
level function decls, method decls

— (Value) parameter declarafions
e Occurin ...

Parallelism
Oblivious 2008-5-2 128 The Fortress Language Specification

Programming

6.1 Kinds of Declarations (5)

 Some declarations are syntactic sugar for other decls

— Apparent field decls in trait decls are method decls (Section
9.2)

— Dimension/unit decl may desugar into several separate decls
(Section 35.3)

— After desugaring, the kinds of decls listed are disjoint

e Implicitly declared names

— self implicitly declared as param of dotted methods (Section
9.2)

— result implicitly declared as variable for ensures clause of a
contract(Section 12.4)

Parallelism

Oblivious 2008-5-2 129 The Fortress Language Specification
Programming

6.1 Kinds of Declarations (6)

e Type declarations declare names that refer to
types

— Trait declarations

— Object declarations

— Top-level type aliases

— Type-parameter declarations

— Hidden-type-variable declarations
e Dimension declarations

— Dimension declarations

— dim-parameter declarations
e Unit declarations

— Unit declarations
— unit-parameter declarations

Parallelism g .
Oblivious 2008-5-2 130 The Fortress Language Specification

Programming

6.1 Kinds of Declarations (7)

e Functional declarations
— Constructor declarations
— Top-level function declarations
— Method declarations
— Local function declarations
e Variable declarations
— Singleton declarations
— Top-level variable declarations
— Field declarations
— Local variable declarations; incl implicit decl of result
— (value) parameter declarations; incl implicit decl of self
e Static-variable declarations
— Static-parameter declarations
— Hidden-type-variable declarations

Parallelism
Oblivious 2008-5-2 131 The Fortress Language Specification

Programming

6.1 Kinds of Declarations (8)

e Most declarations declare a single name
given explicitly in the declaration

e One exception ...

— Wrapped field declarations (Section 9.3) in
object decl and object expr

e Declare both the field name and names for methods
provided by the declared type of the field

e Method declarations in trait may be either
abstract or concrete
— Abstract decls do not have bodies
— Concrete decls (called definitions) have bodies

Parallelism
Oblivious 2008-5-2 132 The Fortress Language Specification

Programming

6.2 Top-Level Variable Declarations (1)

Syntax:
VarDecl = VarWTypes InitVal
VarWoTypes = Expr
VarWoTypes : TvpeRef ... InitVal
VarWoTypes : SimpleTupleType InitVal
VarWTypes = VarWType
(VarWType(. VarWType)™)
VarWType = VarMods? Id IsType
VarWoTypes = VarWoType
(VarWoType(. VarWoType)™)
VarWoType = VarMods? Id
InitVal (=|:=) Expr
SimpleTupleType ::= (TypeRef , TypeRefList)
TypeRefList = TypeRef(, TypeRef)”
VarMods = VarMod™
VarMod = var | UniversalMod
IsType = : TypeRef
Parallelism
Oblivious 2008-5-2 133 The Fortress Language Specification

Programming

6.2 Top-Level Variable Decloro’rlons (2)

————————

id : Type = c;z,p'r

id = expr

—_————_———

-=-Immutable variable

L I . S o Mutable

var id : Type = expr ? vd : T'ype := expr !
V] , pr| |var d : Type (J Pl o
mTTmeTTTTT N o o‘p’rlon “‘; s A Y-y
‘=- Inifial value -._ -, al . o ‘=- Initial value -._

S
Sm———-~____-"

S
Sm———-~____-"

(id(,1d)") : (Type(, Type)™)

(id(,id)™): Type...

Parallelism

Oblivious 2008-5-2

Programming

(id(: Type)?(,id(: Type)?)™) ::>for multiple declarations

134 The Fortress Language Specification

6.2 Top-Level Variable Declarations (3)

Examples of variable declarations

m = 3.141592653589793238462643383279502884197169399375108209749445923078

m:R64 = 3.141592653589793238462643383279502884197169399375108209749445923078

Example of multiple variable declaration using tuple notation

var (z,y):Z64... = (5,6)

(x,y,2) : (Z64,7264,7264) = (0,1, 2) EdGvGlent

(x: 264, y: 264, z: Z64) = (0,1,2) -)(‘,'\',_ declaration ‘x:"

(2., 4,) 264 ... = ((), 1,) el . \5“//__/,
Parallelism

Oblivious 2008-5-2 135 The Fortress Language Specification

Programming

6.3 Local Variable Declarations (1)

LocalVarDecl = LocalVarWTypes InitVal
| LocalVarWTypes
| LocalVarWoTypes = Expr
| LocalVarWoTypes : TypeRef ... InitVal?
| LocalVarWoTypes : SimpleTupleType InitVal?

LocalVarWTypes ::= LocalVarWType
| (LocalVarWType(, LocalVarWType)™)
LocalVarWType = var? Ild IsType
LocalVarWoTypes ::= LocalVarWoType
| (LocalVarWoType(., LocalVarWoType)™)
LocalVarWoType == var?ld
| Unpasting
Parallelism

Oblivious 2008-5-2 136 The Fortress Language Specification

Programming

6.3 Local Variable Declarations (2)

e e m T T e g e mmmm— -

== m m m m — — e - ——
- -

5 . “z----- Variable decl without initial value ----.___ 2=
var? id : Type{ - - et
<L mutability -2
_____ <7 TypsTand definition are” T T
S separated .- ST
7 : Float
7 = 3.141592653589793238462643383279502884197169399375108209749445923078
Parallelism
gffg’ringmmg 2008-5-2 137 The Fortress Language Specification

6.4 Local Function Declarations

LocalFnDecl ::= LocalFnMods? FnHeaderFront FnHeaderClause = Expr
LocalFnMod atomic | io
LocalFnMods ::= LocalFnMod™

e Functions can be declared within block
expressions

— Via the same syntax as top-level func decls with
modifiers private and test excluded

Parallelism
Oblivious 2008-5-2 138 The Fortress Language Specification

Programming

6.5 Matrix Unpasting (1)

Unpasting = [UnpastingElems]
UnpastingElems = UnpastingElem RectSeparator UnpastingElems
| Unpasting Elem
UnpastingElem ::= Id ([UnpastingDim])?
| Unpasting
UnpastingDim .= ExtentRange (x ExtentRange)™
ExtentRange = StaticArg? # StaticArg?
| StaticArg? : StaticArg?
| StaticArg
RectSeparator n= 3+
| Whitespace

 Matrix unpasting is an extension of local
variable declaration syntax as a
shorthand for breaking a matrix into parts

Parallelism
Oblivious 2008-5-2 139 The Fortress Language Specification

Programming

6.5 Matrix Unpasting (2)

Cache-oblivious
Matrix
Multiplication

Parallelism
Oblivious
Programming

mm/[nat m,nat n,nat p[(left : R™>™ right : R™*P result : R"™*P): ()

case largest of
1 = resulty o += (left, oright,)
m = [lefttop
leftbottom | = left
[resulttop
resultbottom | = result
t, = spawn mm(lefttop, right, resulttop)
mm(leftbottom, right, resultbottom)
t.wait()
p = [rightleft rightright | = right
[resultleft resultright | = result
t, = spawn mm(left, rightleft, resultleft)
mm(left, rightright, resultright)
t u'azf()
n = [leftleft leftright | = left
[righttop
rightbottom | = right
mm (leftleft, righttop, result)
mm (leftright, rightbottom, result)
end

2008-5-2 140 The Fortress Language Specification

6.5 Matrix Unpasting (3)

Bind the Upper left square
matrix to squareShape

Parallelism

Oblivious 2008-5-2

Programming

foo[nat m,nat n](A:R™*"): () =
if m < n then
[squareShape

mxm 71(58t] — A

elif m > n then

[squareShape,, .,
rest] = A

else (* A already square)
squareShape = A

end

141 The Fortress Language Specification

Chapter /7 Names

e Names used to refer 1o entities in Fortress
orogram

e Names may be simple or qualified

— Simple name: identifier or operator

— Qualified name: APl name followed by *“.
followed by an identfifier

— Operator cannot be qualified
e Simple names are intfroduced by
declarations

— Declaration may be implicit
— Every declaration has a scope

Parallelism
Oblivious 2008-5-2 142 The Fortress Language Specification

Programming

/.1 Namespaces

e Fortress supports disjoint namespaces

— Type namespace: Type declarations declare
names and ...

e Static-variable declarations
e Dimension declarations

— Value namespace: Function and variable
declarations declare names and ...
e nat, int, bool, unit, opr, ident parameters

— Label namespace: names declared by
labeled blocks

Parallelism
Oblivious 2008-5-2 143 The Fortress Language Specification

Programming

/.2 Reach and Scope of a Declaration (1)

e Reqch of declaration
— Reach of labeled block: the block itself

— Reach of functional method declaration:
component containing that declaration

— Reach of dotted method declaration in frait T:
declaration of T and any frait or object decl/
expr that extends T

— Reach of other declaration: the smallest block
strictly containing that declaration

Parallelism
Oblivious 2008-5-2 144 The Fortress Language Specification

Programming

/.2 Reach and Scope of a Declaration (2)

e |f fwo declarations with overlapping
reaches declare the same name in the
same namespace, and the declarations
are not overloaded, then one declaration
shadows the other for that name in that

namespace

Parallelism
Oblivious 2008-5-2 145 The Fortress Language Specification

Programming

/.2 Reach and Scope of a Declaration (3)

e Name is in scope in a namespace within the
reach of any declaration that declares that
name unless one of the conditions holds ...

— Declaration is shadowed at the program point for the
name in that namespace

— Declaration is a type alias, a dimension declaration, or
unit declaration; program point is in the declaration

— Declaration is a field, local variable or parameter
declaration; program point is in the declaration or
lexically precedes the declaration

— Declaration is a parameter declaration of an object
declaration; program point is in the body of a method
declaration of that object declaration

— Declaration is a labeled block; program pointisin a
spawn expression in the labeled block

Parallelism

Oblivious 2008-5-2 146 The Fortress Language Specification

Programming

/.3 Qualified Names

Syntax:
Dottedld

Id(. Id)*

e Forfress provides a component system

— Entities declared in a component are
described by an AP|

e Componentimports APIs

— Allows to refer to entities declared by the
imported APIs

— In some cases, references to these entities
must be qualified by the APl name

Parallelism
Oblivious 2008-5-2 147 The Fortress Language Specification

Programming

Chapter 8 Types

e Fortress provides ...

— Trait types

— Tuple types

— Arrow types

— BottomType

— Other types provided in libraries
e Some types ...

— Have names

— May be parameterized by types and values (generic types)
e Types are identical iff ...

— They are the same kind

— Their names and arguments (if any) are identical

Parallelism
Oblivious 2008-5-2 148 The Fortress Language Specification

Programming

8.1 Relationships between Types (1)

e Types may be related by ...
— Subtyping relation
— Exclusion relation
— Coercion

e Subtyping relationis ...

— Reflexive, transitive, and antfisymmetric

— Defined by extends clause of frait and object decl and
object expr

—_——————T =~ > - ~
-

T<U}l} - o <= TisasubtypeofU - >

~ -
——
————e =~ ="

I'<UwhenT <UandT # U

Parallelism
Oblivious 2008-5-2 149 The Fortress Language Specification

Programming

8.1 Relationships between Types (2)

 Every expr has a static type
 Every value has aruntime type (dynamic type)
 Programs checked before executed to ...

— ensure the runtime type of the value is a subtype of the
static type of the expr

e Fortress defines an exclusion relation between types which
relates two disjoint types

— No value can have a type that is a subtype of two types that
exclude each other

Parallelism
Oblivious 2008-5-2 150 The Fortress Language Specification

Programming

3.1

—""s’-— -——

O (r'- “\“'— =~ ’)
l ooV ;-
. S - U , /

S~

—_—_—— -

TOU = VTI' <T:T' O U

e Exclusionrelationis ...
— lrreflexive and symmetric

?elo’rlonshlps between Types_(Q)

-- \

/
li

-\

~
N

AII subTypes)

excluded .)
as well -

- -\ s ="

__//

— Defined by excludes and comprises clauses of trait

declarations

— Implied from these by subtyping relation

trait S comprises {U,V'} end
trait 7" comprises {V, W} end
object U extends S end -
object V extends {S,7"} end
object W extends 7" end

7N\

Parallelism
Oblivious
Programming

2008-5-2 151

</ Mo

P e —— = ——
- ~

s and T excludes
each other .-~

——————

The Fortress Language Specification

8.1 Relationships between Types (3)

e Coercion between types
— Coercion from T to U is defined in declaration of U

I L T X -~ - il N
- =~

.
T — (," v oIl U defines a coercion fromT ---_, % ;

.

Tl = AT <T' NT'—U

e ———— -
-

SN— oo
~

‘-——-—._ A==
—_———mm =l -

e Fortress type hierarchy is acyclic wrt subtyping and
coercion except ...

— There exists a bidirectional coercion between two tuple types
iff they have the same sorted form

Parallelism
Oblivious 2008-5-2 152 The Fortress Language Specification

Programming

8.2 Trait Types

Syntax:
TypeRef

TraitType

e Traits are declared by trait declarations (Chapter

?)

e Trait has a tfrait type of the same name

Parallelism
Oblivious
Programming

2008-5-2

153

The Fortress Language Specification

8.3 Object Trait Types

e Named objects are declared by

object declarations (Chapter
10)

— Named object has an object
traif type of the same name

e Anonymous objects are
declared by object expressions
(Section 13.9)

— Anonymous object has an
anonymous object trait type

 QObject trait type is a special kind

of frait type

Parallelism
Oblivious
Programming

2008-5-2 154

object Empty extends List
first() = throw Error
rest() = throw Error
cons(x) = Cons(x, self)
append(xs) = xs

end

object extends { List }
first() = throw Error
rest() = throw Error
cons(x) = Cons(z, self)
append(xs) = s

end

The Fortress Language Specification

8.4 Tuple Types (1)

TypeRef = TupleType

TupleType = ((TypeRef ,)" (TypeRef)? KeywordType(, KeywordType)™)
| ((TypeRef ,)* TypeRef ...)
| SimpleTupleType

KeywordType - Id = TypeRef

SimpleTupleType ::= (TypeRef , TypeRefList)

e Tuple is an ordered sequence of keyword-value
pairs (Section 13.27)

e Tuple type consists of a parenthesized comma-
separated list of ...

— A plain type T
— A vararg type T...
— A keyword-type pair identifier=T

Parallelism

Oblivious 2008-5-2 155 The Fortress Language Specification

Programming

8.4 Tuple Types (2)

e Element type in tuple type corresponds to one in
tuple type iff ...
— Both are plain types in the same position
— Both are vararg types, or
— Both are keyword-type pairs with the same keyword

e Every tuple type is a subtype of Tuple

— Tuple types are not subtypes of Object
— Tuple types cannot be extended by other frait types

Parallelism
Oblivious 2008-5-2 156 The Fortress Language Specification

Programming

8.4 Tuple Types (3)

e Tuple types are covariant; fuple type X is a
subtype of tuple type Y iff ...
— Correspondence between their element types is
bijective
— For each element type in X, the type in the element

type is a subtype in the corresponding element type in
Y

— Keyword-type pairs in X and Y appear in the same
order

e Sorted form X’ for tuple type X
— Created by reordering keyword-type pairs

— There is a coercion from tuple type X to tuple
type Y iff X and Y have the same sorted form

Parallelism

Oblivious 2008-5-2 157 The Fortress Language Specification

Programming

3.4 Tuple Types (4)

e Tuple type excludes any nontuple type other
than Any

e Two tuple types exclude each other unless the
correspondence between their element type is
bijective
— Two tuple types with bijective correspondence exclude

each other if either any type of one excludes the type

of the other, or their keyword-type pair do not appear
In the same order

e |nfersection of nonexclusive tuple types are
defined elementwise

Parallelism g .
Oblivious 2008-5-2 158 The Fortress Language Specification
Programming

8.5 Arrow Types (1)

Syntax:
TypeRef

ArrowType

ArrowType
TypeRef — TypeRef Throws?

e Arrow types: types of function values

— Functions can be passed as arguments and
refurned as values

e Every arrow type is a subtype of Object

o Arrow types are noft tfrait types

— Arrow types cannot be extended by other
trait types

Parallelism
Oblivious 2008-5-2 159 The Fortress Language Specification

Programming

8.5 Arrow Types (2)

——-— —-_——-T

Examples of arrow types o
(R64,R64) — R64 | 57 e T '

N — (N, N) throws [OException
(String, N....p = Printer) — N

e Parameter types are contravariant; return types
are covariant

A — B throws C'| s a subtype of | — £ throws F

Iff
e Disasubtype of A and

e Bis asubtype of Eand

e Forall Xin C, there exists Y in F such that X is a subtype of
Y

Parallelism
Oblivious 2008-5-2 160 The Fortress Language Specification

Programming

8.6 Bottom Type

e Fortress provides a special BottomType

e No value in Fortress has the bottom type
— throw and exit expressions have the boftom
type
e Boffom type is a subtype of every type

e Intersection of any exclusive types is the
pbottom type

Parallelism
Oblivious 2008-5-2 161 The Fortress Language Specification

Programming

8.7 Types in the Fortress Standard Libraries (1)

e Forfress standard libraries define simple standard
types for literals (Section 13.1)
— BooleanlLiteral[b]
— () (pronounced “void”)
— Character
— String
— Numeral[nh,m,r,Vv]
— Several simple numeric types
e Simple standard types for literals are mutually
exclusive

e Values of these types are immutable

Parallelism
Oblivious 2008-5-2 162 The Fortress Language Specification

Programming

8.7 Types in the Fortress Standard Libraries (2)

e Numeric types share the common supertype Number

— Arbitrary-precision integers Z

— Unsigned arbitrary-precision infegers N

— Rational numbers Q

— Fixed-size representation for integers
e /8,116,132, 164,7128

— Fixed-size representation for unsigned integers
e N3, NT6, N32, N64, N128

— Floating-point numbers

— Intervals Interval [X]
e X can be instantiated with any number type

— Imaginary and complex numbersin ...
e rectangular form Cn (n=16, 32, 64, 128, 256)
e Polar form Polar[X] (X is instantiated with any real number

ype)
Parallelism
Oblivious 2008-5-2 163 The Fortress Language Specification

Programming

8.7 Types in the Fortress Standard Libraries (3)

e Floating-point numbers
— R32, R64 10 be 32 and 6é4-bit IEEE/ 54 floating-
point numbers
e Two functions on types ...

— DoublelF] is a floating-point type twice the
size of floating-point type F

— Extended]F] is a floating-point type sufficiently
larger than floating-point type F to perform
summartions

Parallelism
Oblivious 2008-5-2 164 The Fortress Language Specification

Programming

8.7 Types in the Foriress Standard Libraries (4)

e Fortress standard libraries also define ...
— Any
— Object
— Exception
— Boolean
— Booleaninterval
— LenearSequence
— HeapSeqguence
— BinaryWord

Parallelism
Oblivious 2008-5-2 165 The Fortress Language Specification

Programming

8.8 Intersection and Union Types (1)

e Intersection type of a set of types Sis a
subtype of every set Tin S and of the
Infersection of every subset of S

e Union type of a set of types Sis o
supertype of every set Tin S and of the
union of every subset of S

e Neither intersection nor union are first-
class types

— Used solely for type inferences (Chapter 20)
— Cannot be expressed directly in programs

Parallelism
Oblivious 2008-5-2 166 The Fortress Language Specification

Programming

8.8 Intersection and Union Types (2)

e |ntersection of a set of types S is equal to a named type U

when any subtype of Tin S and of the infersection of every
subset of S is a subtype of U

e Union of a set of types S is equal to a named type U when
any supertype of Tin S and of the union of every superset

of Sis a subtype of U
//’_‘\(‘ 1 ! “\
trait S comprises {U,V'} end / Anysubtype
trait 7" comprises {V, W} end 4 ofsandT "
P . must be a A

\

trait U extends S excludes W end | ! subtype of V;

. r 1 h ," BN i \ ,
trait V extends {S,7'} end NN Visan \

. , ! infersection 1./
trait W extends 7' end ! ofSandT !

\
1
1
)

Parallelism

Oblivious 2008-5-2 167 The Fortress Language Specification
Programming

8.8 Intersection and Union Types (3)

Intersection types (denoted by M) possess the following properties:
e Commutativity: T'NU = UNT.
e Associativity: SN (T'NU) = (SNT)nNU.
e Subsumption: If S <7 then SNT = S.
e Preservation of shared subtypes: If 7" < Sand 1" < U thenT < SN U.
e Preservation of supertype: If S < 7' thenVU. SNU <171

e Distribution over union types: SN (T'UU) = (SNT)Uu(SnNU).

Parallelism
Oblivious 2008-5-2 168 The Fortress Language Specification

Programming

8.8 Intersection and Union Types (4)

Union types (denoted by LJ) possess the following properties:
e Commutativity: 77U U = U UT.
e Associativity: SU(T'UU) = (SUT)uUU.
e Subsumption: If S < 7then SUT = T.
e Preservation of shared supertypes: If S < T and U <T'then SUU < T.
e Preservation of subtype: If 7' < Sthen vU. T < SUU.

e Distribution over intersection types: S U (T'NU) = (SUT)n(SUU).

Parallelism
Oblivious 2008-5-2 169 The Fortress Language Specification

Programming

8.9 Type Aliases

Syntax:
TypeAlias = type Id StaticParams? = TypeRef

e Fortress allows names 1o serve as aliases for more
complex type instantiations

— All use of type aliases are expanded before type
checking

— Type aliases do not define new types nor nominal
equivalence relations among types

type IntList = List[Z64]
type BinOp = Float x Float — Float
type SimpleFloat[nat e, nat s] = DetailedFloat[Unity, e, s, false, false, false, false, true]

Parallelism
Oblivious 2008-5-2 170 The Fortress Language Specification

Programming

Chapter 9 Traits

e Traits are declared by trait declaration

e Trai
e Trai
e Trai

ts define new named types
t specifies a collection of methods

t can extend others

— Trait inherits the methods from those traits

— Type defined by that trait is a subtype of traits
It extends

Parallelism
Oblivious
Programming

2008-5-2 171 The Fortress Language Specification

9.1 Trait Declarations (1)

Syntax:
TraitDecl = TraitHeader GolnATrait? end
TraitHeader = TraitMods? trait Id StaticParams? Extends? TraitClauses?
TraitClauses = TraitClause™
TraitClause = Excludes
| Comprises
| Where
GolnATrait = GoFrontinATrait GoBackIinATrait?
| GoBackInATrait
GoFrontInATrait = GoesFrontInATrait™
GoesFrontinATrait ::= AbsFldDecl
| GetterSetterDecl
| PropertyDecl
GoBackinATrait = GoesBackInATrait™
GoesBackInATrait ::= MdDecl
| PropertyDecl
TraitMods = TraitMod™
TraitMod = value | UniversalMod
UniversalMod = private | test
Extends = extends TraitTypes
Excludes = excludes TraitTypes
Comprises = comprises ComprisingTypes
TraitTypes = TraitType
| { TraitTypeList }
TraitTypeList = TraitType(., TraitType)”
Parallelism
Oblivious 2008-5-2 172 The Fortress Language Specification
Programming

9.1 Trait Declarations (2)

ComprisingTypes
ComprisingTypelList

TraitType

StaticArgList
StaticArg

Number
ArraySize

TraitType
{ ComprisingTypeList }

TraitType(, TraitType)™ (, ...)?
Dottedld ([StaticArgList ||)?

{ TypeRef +— TypeRef }

{ TypeRef)
TypeRef [ArraySize?]
TypeRef ~ StaticArg
TypeRef =~ (ExtentRange (< ExtentRange)™)
StaticArg(, StaticArg)™
Number

Op

true

false

Unity

dimensionless
StaticArg + StaticArg
StaticArg - StaticArg
StraticArg StaticArg
SraticArg [/ StaticArg

1 / StaticArg
StaticArg = StaticArg
StaticArg per StaticArg
DUPreOp StaticArg
StraticArg DUPostOp

NOT SraticArg
StaticArg OR StaticArg
StaticArg AND StaticArg
StaticArg IMPLIES SraticArg
TypeRef

(StraticArg)
IntLiteral
ExtentRange(, ExtentRange)”

Parallelism
Oblivious
Programming

2008-5-2

173 The Fortress Language Specification

9.1 Trait Declarations (3)

e Trait declaration:

[modifier] trait frait_name static_params
[extended traifs]
[excluded fraits] [comprises on the trait]
[where clause]
{abstract_fields, getter_methods, sefter_ methods}
method_declarations

end

e extends, excludes, comprises {trait_references}
— If clause contains only one fraif, { } may be elided
e comprises clause may include “..."

e Trait_references in comprises clause is a declared trait
identifier or an abbreviated type for aggregate
expressions

Parallelism
Oblivious 2008-5-2 174 The Fortress Language Specification

Programming

9.1 Trait Declarations (4)

e Every trait extends the trait Object

e extends clause every frait listed In its
clause

— If T extends U, Tis a subtrait of U; U is a
supertrait of T

— Extension is transitive; if T extends U it also
extends all supertraits of U

— Extension relation is the smallest relation
satistying transitivity

— Relation must form acyclic hierarchy rooted
at frait Object

Parallelism
Oblivious 2008-5-2 175 The Fortress Language Specification

Programming

9.1 Trait Declarations (5)

e Trait T strictly extends U iff T extends U and
Tis not U

o Trait Timmediately extends U iff T strictly
extends U and there is no trait V s.1. T
strictly extends V and V strictly extends U
— U is an immediate supertrait of T
— Tis an immediate subtrait of U

Parallelism
Oblivious 2008-5-2 176 The Fortress Language Specification

Programming

9.1 Trait Declarations (6)

e Trait with excludes clause excludes every fraif
listed in its clause
— If T excludes U, T and U are mutually exclusive
— No third trait can extend them both and neither can
extend the other
e |f frait decl of T includes comprises clause

— If comprises clause of T does not include “..."”, the trait
must not be extended with immediate subtraits other
than those listed in its comprises clause

— If comprises clause of Tincludes “...", any subftrait of T is
not exposed by API

Parallelism
Oblivious 2008-5-2 177 The Fortress Language Specification

Programming

9.1 Trait Declarations (7)

T T e T TN m TS

2_ Re’rum ’rype () -~
trait Catalyst extends Object =TT T
self.catalyze(reaction: Reaction): ()
end .
“i-ii- __self explicitly declared as a param ----_____: T

Parallelism - .
Oblivious 2008-5-2 178 The Fortress Language Specification
Programming

9.1 Trait Declarations (8)

trait Molecule comprises { OrganicMolecule, InorganicMolecule }|--7=~ /7 “v" 7
mass(): Mass N ' [
end /' Molgcule can be
| Immediately
S extended A~
(+ Not allowed! *)) O 4) \ oy .
trait ExclusiveMolecule extends Molecnlé end \I‘A_ OrganicMolecule
___________ | or \|’,’/
e SO > .__ _ InorganicMolecule ;
I OrganicMolecule and o ‘
- InorganicMolecule) P
May be exclusive

- <N\
=~ - ~ - v

trait OrganicMolecule extends Molecule excIudes InorganicMolecule end

trait InorganicMolecule extends Molecule end

(= Not allowed! *)
trait InclusiveMolecule extends { InorganicMolecule, OrganicMolecule } end

Parallelism
Oblivious 2008-5-2 179 The Fortress Language Specification

Programming

9.2 Method Declarations (1)

