
Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 1

Reading
The Fortress Language Specification

Masato Takeichi
IST, University of Tokyo

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 2

The Fortress Language Specification

• Version 1.0 Beta
– March 6, 2007

• Available at
http://research.sun.com/projects/plrg/fortress.pdf

Fortress Interpreter

• Available at
http://fortress.sunsource.net

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 3

Chapter 1 Introduction (1)

• The Fortress Programming Language
– General Purpose
–  Statically Typed
– Component-based

• Designed for
– Producing Robust High-performance Software
– With Programmability

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 4

Chapter 1 Introduction (2)

• Fortress
–  Is a “Growable Language”
–  Supports state-of-the-art compiler optimization

techniques
– Has an extensible component system
–  Supports modular and extensible parsing
– Name derived from Fortran
– Has little relation to Fortran other than its

intended application domain
– Does not support for backward compatibility

with existing versions of Fortran

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 5

Chapter 1 Introduction (3)

• Aspects of Fortress
–  From object-oriented and functional

languages
• Java, NextGen, Scala, Eiffel, Self
• Standard ML, Objective Caml, Haskell, Scheme

– Employs cutting-edge features from
programming language community

– Achieves an unprecedented combination of
performance and programmability

• Fortress is an “Open Source Project”

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 6

1.1 Fortress in a Nutshell (1)

• Object
– Consists of fields and methods specified in

definition

• Trait
– Named program constructs that declare sets

of methods
– A method declared by trait may be either

abstract or concrete
• Abstract methods have headers only
• Concrete methods also have definitions

– May extend other traits
• Inherits the methods provided by the traits it extends

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 7

1.1 Fortress in a Nutshell (2)

traits

field
s

object

method

object

Static checking of
physical dimensions

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 8

1.1 Fortress in a Nutshell (3)

•  Notations
–  Allows Unicode characters, subscripts and superscripts

in identifiers
–  Follows mathematical conventions

• Variable references in italics
• Multiplication expressed by simple juxtaposition

–  Supports operator overloading
–  Facilitates extension of syntax with domain-specific

languages

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 9

1.1 Fortress in a Nutshell (4)

•  Types
–  Statically and nominally typed
–  Types not specified for all fields, nor all method

parameters and return values:
–  Type inference used wherever possible
–  Types can be parametric with respect to other types

and values

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 10

1.1 Fortress in a Nutshell (5)

•  Functions
–  Allows top-level function definitions in addition to

objects and traits
–  Functions are first-class values:

• Functions can be passed to and returned from functions
• Functions are assigned as values to fields and variables

–  Functions and methods can be overloaded
–  Supports keyword parameters and variable size

argument lists

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 11

1.1 Fortress in a Nutshell (6)

•  Components
–  Programs are organized into components
–  Exports and Imports APIs and can be linked together
–  Component “Shape” described by APIs by specifying

types in traits, objects and functions
–  External references are to APIs imported by component

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 12

1.1 Fortress in a Nutshell (7)

•  Parallelism
–  Fortress supports a rich set of operations for defining

parallel execution and distribution of large data
structures

–  “For loops” are parallel by default

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 13

Chapter 2 Overview
2.1 The Fortress Programming Environment
 2.2 Exports, Imports, and Linking Components
 2.3 Automatic Generation of APIs
 2.4 Rendering
 2.5 Some Common Types in Fortress
 2.6 Functions in Fortress
 2.7 Some Common Expressions in Fortress
 2.8 For Loops Are Parallel by Default
 2.9 Atomic Expressions

 2.10 Dimensions and Units
 2.11 Aggregate Expressions
 2.12 Comprehensions
 2.13 Summations and Products
 2.14 Tests and Properties
 2.15 Objects and Traits
 2.16 Features for Library Development

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 14

2.1 The Fortress Programming Environment (1)

• Fortress is platform independent
• A typical programming model:

–  Source code stored in files organized in
directories

– A text-based shell for
• Store environment variables
• Issue commands to execute and compile programs

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 15

2.1 The Fortress Programming Environment (2)

• Running a Program as a script
– Program stored in a file with suffix “.fsx”

– Program executed directly from a shell by
calling “fortress script” command

HelloWorld.fsx

fortress script HelloWorld.fsx

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 16

2.1 The Fortress Programming Environment (3)

•  Running a Program as a compiled code
–  Program stored in a file with suffix “.fss”
–  Program compiled into one or more components stored in a

database fortress

–  Compile program by “fortress compile” command

–  Execute program by “fortress run” command

HelloWorld.fss

fortress compile HelloWorld.fss

fortress run HelloWorld

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 17

2.1 The Fortress Programming Environment (4)

•  Manipulating fortress
–  Components are stored in fortress by compilation
–  New component shadows the old one with the same

name in fortress
–  Components are removed from fortress by “fortress

remove” command

fortress

HelloWorld.fss compile

HelloWorld run

remove

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 18

2.2 Exports, Imports, and Linking Components (1)

•  Exporting API
–  Components can include export statements

•  Export statements list APIs that a components implement

•  APIs are themselves program constructs

Components
implements
Executable

API

varargs parameter

void

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 19

2.2 Exports, Imports, and Linking Components (2)

•  API
–  Defined in files with “.fsi”

–  Compiled with “fortress compile” command

–  API compilation does not shadow existing elements of
a fortress

• error signaled if the same name exists.
–  API removed after all components referring to the API

have been removed with “fortress removeAPI”
command

Blarf.fsi

fortress compile Blarf.fsi

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 20

2.2 Exports, Imports, and Linking Components (3)

•  Exporting API
–  Component exporting API must provide definition for every

construct declared in that API

Component API

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 21

2.2 Exports, Imports, and Linking Components (4)

•  Importing API (1)
–  Component importing API can use any constructs declared in

that API

export

import

qualified
name

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 22

2.2 Exports, Imports, and Linking Components (5)

•  Qualified Name
–  Import statement “import S from A” makes all names in set S

imported from API A
–  Imported names can be referred to as unqualified names in

that component

Set of names

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 23

2.2 Exports, Imports, and Linking Components (6)

•  Component Reference
–  No component refers directly to another component
–  All external references go through APIs

•  Component
–  Executable components

• contain no import statements
• export the “API Executable”

–  Executable components are compiled and executed
as stand-alone

–  Non-executable components must be compiled and
linked with other components to form a new
compound component

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 24

2.2 Exports, Imports, and Linking Components (7)

•  Linking Components

Gary

Executable
component

Execute with “fortress run Gary” command

Ralph.fss
Blargh.fss

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 25

2.2 Exports, Imports, and Linking Components (8)

•  Components are encapsulated
–  Compound components contain their own copies of

constituent components in the resident fortress
•  Compound components are upgradable

–  With new components that export some of the APIs used by
theirconstituents

New version compiled

Old version shadowed

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 26

2.3 Automatic Generation of API

•  Components and APIs exist in separate
namespaces
–  Component may have same name as API

Zeepf.fsi

component Zeepf
 export Zeepf
 foo(s)=()
 baz(s)=s
end

Zeepf.fss

automatic
genaration

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 27

2.4 Rendering (1)

•  ASCII representation is rendered as …

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 28

2.4 Rendering (2)

•  ASCII names for Unicode characters

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 29

2.5 Some Common Types in Fortress

• Standard type
–  String
– Boolean
– Numerics

(RR in ASCII) 64-bit precision float
32-bit precision float
64-bit integer

32-bit integer

Infinite precision integer

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 30

2.6 Functions in Fortress (1)

•  Allows (mutually) recursive function definitions

Juxtaposition
for multiplication

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 31

2.6 Functions in Fortress (2)

• 2.6.1 Juxtaposition and function application
–  Juxtaposed exprs of numeric type represent

multiplication
•  n factorial(n-1)

–  Juxtaposition of expr of function type and
another expr represents function application

•  sin x

–  Juxtaposition of expr of string type represents
concatenation

•  “Hi,” “ it’s” “ me” “ again.”

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 32

2.6 Functions in Fortress (3)

•  2.6.2 Keyword Parameters

Calling brings red=0 and blue=0

default value

throw expression
chained boolean operator

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 33

2.6 Functions in Fortress (4)

•  2.6.3 Varargs Parameters
–  Functions with variable number of arguments allowed

varargs parameter

void

testing the number of
arguments

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 34

2.6 Functions in Fortress (5)

•  2.6.4 Function Overloading
–  Functions can be overloaded by parameter types
–  Overloaded calls resolved based on runtime types of

arguments

Overloaded function

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 35

2.6 Functions in Fortress (6)

•  2.6.5 Function Contracts

require contract

ensure contract

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 36

2.7 Some Common Expressions in Fortress

while expression
block

tuple expression

tuple elements evaluated in
parallel

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 37

2.8 For Loops Are Parallel by Default

range
expression

evaluated in
parallel

Result may be 5 4 6 3 7 2 9 10 1 8

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 38

2.9 Atomic Expressions (1)

•  Atomic expression is executed in …
–  All other threads observe that

• The computation has completed, or
• The computation has not begun

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 39

2.9 Atomic Expressions (2)

This block observes
that

both x and y have
been updated, or

neither has

Possible values are 0 and 2

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 40

2.10 Dimensions and Units (1)

•  Numeric types can be annotated with physical
units and dimensions
–  Unit symbols are encoded with trailing underscores and

rendered in roman font

encoded as kg_
and rendered in

roman font

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 41

2.10 Dimensions and Units (2)

•  Longhand and shorthand names provided
–  m, meter, and meters

•  Synonymous unit names provided
–  N is synonymous with kg m/s2
–  Force is synonymous with Mass Acceleration
–  Acceleration is synonymous with Velocity/Time

•  Measurements in the same unit can be …
–  compared, added, subtracted, multiplied, divided

•  Measurements in different units can be …
–  multiplied, divided

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 42

2.10 Dimensions and Units (3)
Correct

static error

static error

unit conversion

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 43

2.11 Aggregate Expressions (1)

•  Support for writing down collections by
enumerating elements
–  Tuple, array, matrix, vector, map, set, list

•  Elements are evaluated in parallel

arrays

Separate
rows

by newlines
or “;”

3rd dimensional
slices separated
by double “;”s

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 44

2.11 Aggregate Expressions (2)

•  Vector written down like one-dim array, Matrix
written down like two-dim array

•  Array aggregate expr evaluates to array, vector,
or matrix from context
–  Elements of vectors and matrices must be numbers

Extra parentheses
required

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 45

2.11 Aggregate Expressions (3)

• Set written down by …
– Elements in braces, separated by commas

• List written down by …
– Elements in angle brackets (written in ASCII

as <|, |>)

• Map written down by …
– Elements in braces with key/value pairs

joined by arrow (written in ASCII as |->)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 46

2.12 Comprehensions (1)

•  Describe elements of collection by providing a
rule

How elements x are
to be generated

Elements for
every valid x

Multiple generators

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 47

2.12 Comprehensions (2)

•  Comprehension can contain filtering expressions
•  Comprehension expression exists for aggregate

except tuple

Filtering expression

List comprehension

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 48

2.12 Comprehensions (3)

• Array comprehension
– Element expr includes a tuple indexing the

elements of the array

[0 0 0
 0 0 0
 0 0 0]

Range expr 0..2 can be used

[1 0 0
 0 1 0
 0 0 1]

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 49

2.13 Summations and Products

• Syntactic support for “Big” operations

ASCII encoding

is written SUM in ASCII

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 50

2.14 Tests and Properties

•  Support for automated program testing

•  Property declaration for documenting
conditions expected
–  No explicit finite collections
–  Property expected to hold all values of the type

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 51

2.15 Objects and Traits (1)

•  Defining new types as well as objects belonging
to types

•  Multiple inheritance hierarchy rooted at trait
Object

concret
e

method

abstract
method

s

Inherits all
methods in
these traits

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 52

2.15 Objects and Traits (2)

•  Trait declarations can be extended by …
–  trait declaration
– object declaration

• Singleton declaration declares a stand- alone
singleton object

• Constructor declaration declares an object
constructor

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 53

2.15 Objects and Traits (3)

• Singleton declaration
–  Object must provide concrete definitions for all

abstract methods it inherits

Definitions
for abstract
methods in

Moving

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 54

2.15 Objects and Traits (4)

•  Fields can be declared in object definition
•  For every field …

–  Implicit getter is defined
–  If a field includes modifier settable, implicit setter is

defined

getter expr assignment

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 55

2.15 Objects and Traits (5)

•  Every method declared in an object or trait
includes an implicit self parameter
–  self denotes the receiver of the method

self param
provided explicitly self params appear in

nonstandard positions

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 56

2.15 Objects and Traits (6)

•  Constructor declaration declares an object
constructor
–  Declaration includes value param in header

•  Every call to the constructor yields a new object

concrete
definitions

Yields an object

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 57

2.15 Objects and Traits (7)

•  Implicit getters and setters can be overridden

Print a
message

and
return

the field
value

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 58

2.15 Objects and Traits (8)

•  2.15.1 Traits, Getters, and Setters
–  Traits do not include field declarations
–  Traits can include getter and setter

declarations

getter
decl

getter notation can be used for
variable v of type Moving

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 59

2.15 Objects and Traits (9)

•  Getters can be declared using field declaration
syntax

•  Getter declaration can include modifiers
allowed on field declaration
–  settable is used for implicit setter

Field decl syntax

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 60

2.16 Features for Library Development (1)

•  Fortress designed to be a good language for
library programming

•  2.16.1 Generic Types and Static Parameters
– Allow types to be parametric such as Arrays and

Vectors
– Programmer can define new traits, objects,

functions that include static parameters

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 61

2.16 Features for Library Development (2)

•  2.16.2 Specification of Locality and Data
Distribution
– Express programmer intent through data

structure distribution

•  2.16.3 Operator Overloading

Postfix operator for factorial

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 62

2.16 Features for Library Development (3)

•  2.16.4 Definition of New Syntax
– Provides a facility for defining new syntax in

libraries

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 63

Example

Buffon’s needle:
Estimates pi using
Monte Carlo
simulation

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 64

Example

Buffon’s needle
(Rendered version)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 65

Chapter 3 Programs (1)

• Program consists of Unicode 5.0
characters
– May be rendered as subscripts, superscripts,

italicized, …

• Program is valid if it satisfies all static
conditions
– Only valid programs can be executed
– Validity must be checked before execution

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 66

Chapter 3 Programs (2)

• Executing valid program consists of
evaluating expressions
– Evaluation may modify program state yielding

result
– Result is a value, or an abrupt completion

• Characters of a valid program determine a
sequence of input elements

•  Input elements determine program
constructs

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 67

Chapter 3 Programs (3)

• Program constructs may contain other
program constructs
– declaration and expression

• Semantics explained as …
–  Structure of input elements and program

constructs with static constraints
– How outcome of program execution is

determined from sequence of constructs

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 68

Chapter 3 Programs (4)

•  Programs are developed, compiled, and
deployed as encapsulated upgradable
components (Chapter 2.2)

•  Fortress is …
– block-structured

• Program consists of nested blocks of code
• Entire program is a single block

– expression-oriented
• “statements” are expression with type ()

– whitespace-sensitive

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 69

Chapter 4 Evaluation (1)

• State of executing program consists of a
set of threads and a memory

• Communication with outside world
through input and output actions

• Program execution consists of evaluating
… in parallel
– Body expression of run function
–  Initial-value expression of top-level variables

and singleton object fields

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 70

Chapter 4 Evaluation (2)

• Threads evaluate expressions by taking
steps
–  Step may complete the evaluation

• No more steps possible, or
• May result in an intermediate expression

• Dynamic program order: partial order
among expressions
–  See Chapter 13

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 71

Chapter 4 Evaluation (3)

•  Intermediate exprs are generalizations of
Fortress exprs
–  Some cannot be written in programs

• Expr is dynamically contained within
another expr
– All steps for the first are taken between the

beginning and completion of the second

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 72

4.1 Values (1)

• Value is the result of normal completion of
an expr

• Value has …
–  type
– environment
–  finite set of fields

• Every value is an object
– value object
–  reference object
–  function

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 73

4.1 Values (2)

• Type specifies …
– Names and types of its fields
– Which names must be bound in its

environment
– Methods of the object

• Only trait types have methods other than those
inherited from type Any

• Fields …
–  In value object, each field is a value
–  In reference object, each field is a location
–  Functions and the value () have no fields

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 74

4.1 Values (3)

•  Field has a name, which may be an identifier or
an index
–  Only values of type LinearSequence or Heapsequence

have fields named by indices (Sections 40.1 & 40.3)

•  Field in value object is immutable
•  Reference objects may have both mutable and

immutable fields

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 75

4.1 Values (4)

•  Values are constructed by …
–  Top-level function declaration and singleton declaration
–  Evaluating …

•  Object expression
•  Function expression
•  Local function declaration
•  Call to object constructor
•  Literal
•  Spawn expression
•  Aggregate expression
•  Comprehension

 with constructed value as the result of normal completion of
evaluation

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 76

4.2 Normal and Abrupt Completion of
Evaluation (1)

•  Expression is evaluated until it completes
•  Evaluation may …

–  Complete normally resulting in a value, or
–  Complete abruptly

•  Abrupt completion has an associate value
–  Exception value thrown and uncaught
–  Exit value of an exit expression

•  Exception …
–  Programmer-defined; thrown by a throw expression
–  Predefined exception; thrown by Fortress standard

libraries, e.g., DivideByZeroException

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 77

4.2 Normal and Abrupt Completion of
Evaluation (2)

• On abrupt completion…
– Control passes to dynamically immediately

enclosing expression
– Until it is handled either by …

• try expression if exception is being thrown, or
• label expression if exit expr was evaluated

•  If abrupt completion is not handled within
a thread, thread itself completes abruptly

•  If the main thread completes abruptly,
program completes abruptly

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 78

4.3 Memory and Memory Operations (1)

•  Memory: a set of abstract locations
–  Used to model sharing and mutation

•  Location has an associated type and contains a
value of that type
–  Type of value is a subtype of type of location

•  Location can have non-object trait types; Value
always has an object type

•  Operations performed on memory …
– Allocation
– Read
– Write

Memory behavior
described in Chapter 21

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 79

4.3 Memory and Memory Operations (2)

• Allocation creates a new location of a
given type

• Allocation occurs when …
– A mutable variable is declared
– A reference object is constructed

• A new location allocated for each field

• Locations are never reclaimed
–  In practice, reclaimed by garbage collection

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 80

4.3 Memory and Memory Operations (3)

•  Allocated location afresh is uninitialized
•  Fortress guarantees …

–  An initializing write performed if it is ever read
–  Initializing write occurs before any read

•  Any location whose value …
–  can be written after initialization is mutable
–  cannot be written after initialization is immutable

•  Mutable locations include
–  mutable variables
–  settable fields of a reference object

•  Immutable locations include
–  Non-transient, non-settable fields

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 81

4.4 Threads and Parallelism (1)

• Two kinds of threads in Fortress …
–  Implicit threads
–  Spawned (explicit) threads

• Objects created by spawn construct

• Thread may be in one of five states
– Not started
– Executing
–  Suspended
– Normally completed
– Abruptly completed

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 82

4.4 Threads and Parallelism (2)

• Every thread has a body and an
execution environment
– Body is an intermediate expression
–  Thread evaluates it in the context of

execution environment
– Both the body and the environment may

change when the thread takes a step

• Execution environment is used to look up
names in scope
– Environment of newly created thread is that of

the thread that created the new thread

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 83

4.4 Threads and Parallelism (3)
- Implicit thread
• A number of Fortress constructs are

implicitly parallel
– An implicitly parallel construct creates a

group of implicit threads

•  Implicitly parallel constructs …
–  Tuple expressions

• Each element evaluated in a separate implicit
thread

– also do blocks
• Each sub-block evaluated in a separate implicit

thread

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 84

4.4 Threads and Parallelism (4)
- Implicit thread

•  Implicitly parallel constructs … (Cont.)
– Method invocations and function calls

• Receiver/function and each argument evaluated in
a separate implicit thread

–  for loops, comprehensions, sums, generated
expressions, and big operators

• Parallelism in loops specified by generators
• Generators other than sequential generator

execute each iteration in a separate implicit thread

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 85

4.4 Threads and Parallelism (5)
- Implicit thread

•  Implicitly parallel constructs … (Cont.)
– Extremum expressions

• Each guarding expression evaluated in a separate
implicit thread

–  Tests
• Each test evaluated in a separate implicit thread

Extremum expression

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 86

4.4 Threads and Parallelism (6)
- Implicit thread
•  Implicit threads run “fork-join” style

– All threads in a group created together and
must complete before the group completes

– Programmer cannot single out implicit thread
and operate upon it

–  Implicit threads need not be scheduled fairly

May loop forever

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 87

4.4 Threads and Parallelism (7)
- Implicit thread

•  If any implicit thread completes abruptly, the
group completes abruptly
–  Result of the group is the result of constituent thread

that completes abruptly
–  Reduction variables should not be accessed after

abrupt completion(Section 4.4.1)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 88

4.4 Threads and Parallelism (8)
- Spawned thread
•  Spawned thread objects are reference objects

of …

•  This trait has methods …
–  val returns value computed by spawn

•  Invocation of val may block until thread completes

–  wait waits for thread completion without return value
–  ready returns true if thread completes, false otherwise
–  stop attempts to terminate thread (Sec 32.6)

στατιχ τψπε of expr
spawned

Type of thread object

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 89

4.4 Threads and Parallelism (9)
- Spawned thread

•  Spawned thread has been observed to
complete after invoking val or wait methods, or
when ready invocation returns true

•  In case of resource shortage, attempt made to
run subexpression of spawn before continuing
–  The rest evaluated after the parallel block spawned off

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 90

4.4 Threads and Parallelism (10)

• Thread can be suspended in …
–  Thread that creates thread group is suspended

until that group has completed
–  Thread that invokes val or wait is suspended

until the spawned thread completes
–  Invoking abort function within atomic

expression may cause thread to suspend

• Threads can perform operations
simultaneously on shared objects
– atomic expression synchronizes data access

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 91

4.4.1 Reduction Variables (1)

• Special treatment to reductions for loops
• Reduction operator for type T is an

operator on T generating a monoid
–  The operator is an associative infix on T

Reduction operator

T is a subtype of Monoid

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 92

4.4.1 Reduction Variables (2)

• Reduction variable for thread group
–  Is of the form var op=expr using reduction

operator or its group inverse
– Value not read otherwise in the thread group
– Variable is not a free variable of a functional

Reduction variable

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 93

4.4.1 Reduction Variables (3)

•  Other threads simultaneously reference a
reduction variable see an arbitrary value

•  Updates by those threads may be lost
•  Association of terms in the reduction guided by

loop generators (Sec 32.8)
•  Fortress libraries declare common math operator

to be monoid

Monoid operators

also allowed for

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 94

4.4.1 Reduction Variables (4)

•  Implementation of reduction
– Reduction var is assigned identity of reduction

operator at beginning of iteration
– When all iteration are complete, initial value

and value of implicit thread are reduced and
assigned to reduction var

Reductio
n variable

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 95

4.4.1 Reduction Variables (5)

• Parallel slack :
 (available work)/(number of threads)

–  Slack in hundreds or more proves beneficial
with support for lightweight threading

– Very slack computations easily adapt to
differences in the number of processors

–  Slack is a desirable property

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 96

4.5 Environments (1)

• Environments maps names to values or
locations
– Environment is immutable

• Program starts with with empty environment
• Environments extended with mappings by

– Variable/function/object declarations
–  Function calls

• After initializing top-level variables and
singleton objects, top-level environment is
constructed

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 97

4.5 Environments (2)

•  Environment of value determined by how it is
constructed
–  For object/function expr and local function decl, env of

the constructed value is the lexical env in which expr/
decl was evaluated

–  For others, env of the constructed value is top-level env
of component in which expr/decl occurs

•  Env of spawned thread for body is distinct from
env of associated thread object in which calls to
thread method are evaluated

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 98

4.6 Input and Output Actions

•  Certain functionals (functions or methods)
perform primitive input/output actions

•  Any functional which may perform I/O action
directly/indirectly must be declared with io
modifier

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 99

Chapter 5 Lexical Structure

• Program consists of Unicode 5.0
characters
– Every character is part of an input element
– Partitioning of char sequence into input

elements determined uniquely

• Standard ways to render (display) input
elements described

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 100

5.1 Characters (1) Code point

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 101

5.1 Characters (2)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 102

5.1 Characters (3)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 103

5.1 Characters (4)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 104

5.1 Characters (5)

• Forbidden and Restricted Characters
– No control characters allowed except

whitespace characters and SUBSTITUTE (U
+001A, “control-Z”)

– Control characters cause static error if appear
outside comment

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 105

5.2 Words and Chunks

• Chunk is a nonempty contiguous
subsequence of program

• Word is a maximal chunk consising only
word characters
–  Letters, digits, connecting punctuation, prime

characters, apostrophe

• Restricted word is a maximal chunk with
only restricted-word characters
– ASCII letters, digits, underscore characters

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 106

5.3 Lines, Pages and Position

• Characters partitioned into lines and
pages

• Line terminator
–  LINE FEED
– CARRIAGE RETURN not immediately followed

by LINE FEED
–  LINE SEPARATOR
– PARAGRAPH SEPARATOR

• Page terminator
–  FORM FEED

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 107

5.4 ASCII Conversion

• An equivalent program containing only
ASCII characters exists for every Fortress
program

• ASCII conversion in three steps
– Pasting words across line breaks
– Replacing restricted words, sequences of

operator/special characters with single
Unicode characters

– Replacing apostrophes in numerals with digit-
group separators

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 108

5.5 Input Elements and Scannning

• ASCII conversion is followed by scanning
– Program partitioned into input elements

•  Input elements …
– Whitespace element (comments included)
–  Token

• Reserved word
• Literal

–  Boolean, character, string, void, numeral
• Identifier
• Operator token
• Special token

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 109

5.6 Comments

• Opening and closing comment delimiters
…
 (* , *)

• Characters between balanced comment
delimiters comprise a comment
– Comment delimiters may be included in

comments

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 110

5.7 Whitespace Elements
• Maximal chunk consisting of …

– Comments
– Whitespace characters not within string/

character literals, numerals
– Ampersands not within string/character literals

• Line-breaking whitespace distinguished
from non-line-breaking whitespace

• Static error if ampersand occurs unless …
– Within character/string literal
– Within comments
–  Immediately followed by line terminator or

line-terminating comment

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 111

5.8 Reserved Words

•  Operators on units are also reserved
–  cubed, cubic, in, inverse, per, square, squared

•  Reserved to avoid confusion (no special meaning in Fortress)
–  goto, idiom, public, pure, reciprocal, static

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 112

5.9 Character Literals

•  Character literal
consists of one or
more characters
enclosed in single
quotation marks
–  ‘ … ’, ’… ’, ‘ … ’

•  Enclosed characters may
be …
–  Single character
–  Sequence of hexadecimal

digits for Unicode code
point

–  Official Unicode 5.0
name/alternative name

–  ASCII characters
converted to a Unicode
character Character-
literal escape sequence

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 113

5.10 String Literals

• String literal consists of sequence of
characters enclosed in double quotation
marks

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 114

5.11 Boolean Literals

• Boolean literals are false and true

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 115

5.12 The Void Literal

• Void literal is ()

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 116

5.13 Numerals (1)

• Numeric literal (numeral) is a maximal
chunk consisting one or more words
satisfying …
– Each word consists of only digits and letters

• The last word may have one underscore as part of a
radix specifier

– Consecutive words separated by exactly one
char, either a digit-group separator or ‘.’

–  The first word begins with a digit or the last
word has a radix specifier

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 117

5.13 Numerals (2)

•  Radix specifier is a word suffix consisting of
– An underscore followed by

• a sequence of one or more digits (interpreted in
base 10), or

• English name in all uppercase ASCII letters of an
integer from 2 to 16

Valid numerals

Invalid numerals

Both upper- and lowercase
not allowed

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 118

5.14 Operator Tokens

•  Operator word is …
–  Not reserved
–  Consists only of uppercase letters and underscores
–  Does not begin or end with underscore
–  Has at least two different letters

•  Base operator is …
–  Ordinary operator character
–  Two-character sequence “**”
–  Sequence of two or more vertical-line char “|”
–  Multicharacter enclosing operator (Section 5.14.1)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 119

5.15 Identifiers

• Word beginning with a letter and is not a
reserved word, operator word, or all or
part of a numeral

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 120

5.16 Special Tokens

• Every special character that is not part of
a token

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 121

5.17 Rendering of Fortress Programs
5.17.1 Fonts

•  Roman
•  Italic
• Math
•  Script
• Fraktur
• Sans-serif
•  Italic sans-serif
• Monospace
•  Double-struck

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 122

5.17.2 Numerals

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 123

5.17.3 Identifiers

• Complex rules for rendering identifiers …

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 124

Chapter 6 Declarations

• Declarations introduce named entities
– Declaration declares an entity and a name
–  The declared name refers to the declared

entity

• Not a one-one correspondence between
declarations and named entities

• Declaration may contain other decls
–  Trait decl may contain method decls
–  Function decl may contain parameter decls

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 125

6.1 Kinds of Declarations (1)

•  Two kinds of declarations …
–  Top-level declaration
–  Local declaration

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 126

6.1 Kinds of Declarations (2)

•  Top-level declarations …
–  Trait declarations (Chapter 9)
–  Object declarations (Chapter 10)

• singleton decl/ constructor decl

–  Top-level variable declarations (Section 6.2)
–  Top-level function declarations (Chapter 12)/ top-level

operator declarations (Chapter 16)
–  Dimension declarations (Chapter 18)
–  Unit declarations (Chapter 18)
–  Top-level type aliases (Section 8.9)
–  Test declarations (Chapter 19)
–  Top-level property declarations (Chapter 19)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 127

6.1 Kinds of Declarations (3)

•  Local declarations occur in another declaration or in some
expression …
–  Field declarations (Section 10.2)

•  Occur in object decl and object expr
•  Include field decl in param list of constructor decl

–  Method declarations (Section 9.2)
•  Occur in trait/object decl, object expr

–  Coercion declarations (Chapter 17)
•  Occur in trait/object decl

–  Local variable declarations (Section 6.3)
•  Occur in block expr

–  Local function declarations (Section 6.4)
•  Occur in block expr

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 128

6.1 Kinds of Declarations (4)
•  Local declarations occur in another declaration

or in some expression … (cont’d)
–  Labeled blocks (Section 13.2)
–  Static-parameter declarations

• Declare type param, nat param, int param, bool param,
dim param, unit param, opr param, ident param

• Occur in static-param lists of trait/object decl, top-level
type aliases, top-level function decls, method decls

–  Hidden-type-variable declarations
• Occur in where clauses of trait/object decls, top-level

function decls, method decls
–  Type aliases in where clauses of trait/object decls, top-

level function decls, method decls
–  (Value) parameter declarations

• Occur in …

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 129

6.1 Kinds of Declarations (5)

•  Some declarations are syntactic sugar for other decls
–  Apparent field decls in trait decls are method decls (Section

9.2)
–  Dimension/unit decl may desugar into several separate decls

(Section 35.3)
–  After desugaring, the kinds of decls listed are disjoint

•  Implicitly declared names
–  self implicitly declared as param of dotted methods (Section

9.2)
–  result implicitly declared as variable for ensures clause of a

contract(Section 12.4)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 130

6.1 Kinds of Declarations (6)

•  Type declarations declare names that refer to
types
–  Trait declarations
–  Object declarations
–  Top-level type aliases
–  Type-parameter declarations
–  Hidden-type-variable declarations

•  Dimension declarations
–  Dimension declarations

–  dim-parameter declarations
•  Unit declarations

–  Unit declarations
–  unit-parameter declarations

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 131

6.1 Kinds of Declarations (7)
•  Functional declarations

–  Constructor declarations
–  Top-level function declarations
–  Method declarations
–  Local function declarations

•  Variable declarations
–  Singleton declarations
–  Top-level variable declarations
–  Field declarations
–  Local variable declarations; incl implicit decl of result
–  (value) parameter declarations; incl implicit decl of self

•  Static-variable declarations
–  Static-parameter declarations
–  Hidden-type-variable declarations

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 132

6.1 Kinds of Declarations (8)

• Most declarations declare a single name
given explicitly in the declaration

• One exception …
– Wrapped field declarations (Section 9.3) in

object decl and object expr
• Declare both the field name and names for methods

provided by the declared type of the field

• Method declarations in trait may be either
abstract or concrete
– Abstract decls do not have bodies
– Concrete decls (called definitions) have bodies

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 133

6.2 Top-Level Variable Declarations (1)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 134

6.2 Top-Level Variable Declarations (2)

 Immutable variable

Mutable
variable

Initial value

subtype of Type

Initial value
option

al

 for multiple declarations

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 135

6.2 Top-Level Variable Declarations (3)

Examples of variable declarations

Example of multiple variable declaration using tuple notation

Equivalent
declaration

s

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 136

6.3 Local Variable Declarations (1)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 137

6.3 Local Variable Declarations (2)

Variable decl without initial value

mutability

Type and definition are
separated

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 138

6.4 Local Function Declarations

•  Functions can be declared within block
expressions
–  Via the same syntax as top-level func decls with

modifiers private and test excluded

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 139

6.5 Matrix Unpasting (1)

• Matrix unpasting is an extension of local
variable declaration syntax as a
shorthand for breaking a matrix into parts

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 140

6.5 Matrix Unpasting (2)

Cache-oblivious
Matrix

Multiplication

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 141

6.5 Matrix Unpasting (3)

Bind the Upper left square
matrix to squareShape

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 142

Chapter 7 Names

• Names used to refer to entities in Fortress
program

• Names may be simple or qualified
–  Simple name: identifier or operator
– Qualified name: API name followed by “.”

followed by an identifier
– Operator cannot be qualified

• Simple names are introduced by
declarations
– Declaration may be implicit
– Every declaration has a scope

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 143

7.1 Namespaces

• Fortress supports disjoint namespaces
–  Type namespace: Type declarations declare

names and …
• Static-variable declarations
• Dimension declarations

– Value namespace: Function and variable
declarations declare names and …

• nat, int, bool, unit, opr, ident parameters

–  Label namespace: names declared by
labeled blocks

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 144

7.2 Reach and Scope of a Declaration (1)

• Reach of declaration
– Reach of labeled block: the block itself
– Reach of functional method declaration:

component containing that declaration
– Reach of dotted method declaration in trait T:

declaration of T and any trait or object decl/
expr that extends T

– Reach of other declaration: the smallest block
strictly containing that declaration

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 145

7.2 Reach and Scope of a Declaration (2)

•  If two declarations with overlapping
reaches declare the same name in the
same namespace, and the declarations
are not overloaded, then one declaration
shadows the other for that name in that
namespace

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 146

7.2 Reach and Scope of a Declaration (3)
•  Name is in scope in a namespace within the

reach of any declaration that declares that
name unless one of the conditions holds …
–  Declaration is shadowed at the program point for the

name in that namespace
–  Declaration is a type alias, a dimension declaration, or

unit declaration; program point is in the declaration
–  Declaration is a field, local variable or parameter

declaration; program point is in the declaration or
lexically precedes the declaration

–  Declaration is a parameter declaration of an object
declaration; program point is in the body of a method
declaration of that object declaration

–  Declaration is a labeled block; program point is in a
spawn expression in the labeled block

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 147

7.3 Qualified Names

• Fortress provides a component system
– Entities declared in a component are

described by an API

• Component imports APIs
– Allows to refer to entities declared by the

imported APIs
–  In some cases, references to these entities

must be qualified by the API name

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 148

Chapter 8 Types
•  Fortress provides …

–  Trait types
–  Tuple types
–  Arrow types
–  BottomType
–  Other types provided in libraries

•  Some types …
–  Have names
–  May be parameterized by types and values (generic types)

•  Types are identical iff …
–  They are the same kind
–  Their names and arguments (if any) are identical

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 149

8.1 Relationships between Types (1)
•  Types may be related by …

–  Subtyping relation
–  Exclusion relation
–  Coercion

•  Subtyping relation is …
–  Reflexive, transitive, and antisymmetric
–  Defined by extends clause of trait and object decl and

object expr

T is a subtype of U

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 150

8.1 Relationships between Types (2)

•  Every expr has a static type
•  Every value has a runtime type (dynamic type)
•  Programs checked before executed to …

–  ensure the runtime type of the value is a subtype of the
static type of the expr

•  Fortress defines an exclusion relation between types which
relates two disjoint types
–  No value can have a type that is a subtype of two types that

exclude each other

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 151

8.1 Relationships between Types (2)

•  Exclusion relation is …
–  Irreflexive and symmetric
–  Defined by excludes and comprises clauses of trait

declarations
–  Implied from these by subtyping relation

S and T excludes
each other

T excludes
U All subtypes

excluded
as well

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 152

8.1 Relationships between Types (3)

•  Coercion between types
–  Coercion from T to U is defined in declaration of U

U defines a coercion from T

T can be coerced to U

•  Fortress type hierarchy is acyclic wrt subtyping and
coercion except …
–  There exists a bidirectional coercion between two tuple types

iff they have the same sorted form

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 153

8.2 Trait Types

•  Traits are declared by trait declarations (Chapter
9)

•  Trait has a trait type of the same name

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 154

8.3 Object Trait Types

•  Named objects are declared by
object declarations (Chapter
10)
–  Named object has an object

trait type of the same name

•  Anonymous objects are
declared by object expressions
(Section 13.9)
–  Anonymous object has an

anonymous object trait type

•  Object trait type is a special kind
of trait type

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 155

8.4 Tuple Types (1)

•  Tuple is an ordered sequence of keyword-value
pairs (Section 13.27)

•  Tuple type consists of a parenthesized comma-
separated list of …
– A plain type T
– A vararg type T…
– A keyword-type pair identifier=T

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 156

8.4 Tuple Types (2)

•  Element type in tuple type corresponds to one in
tuple type iff …
–  Both are plain types in the same position
–  Both are vararg types, or
–  Both are keyword-type pairs with the same keyword

•  Every tuple type is a subtype of Tuple
–  Tuple types are not subtypes of Object
–  Tuple types cannot be extended by other trait types

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 157

8.4 Tuple Types (3)

•  Tuple types are covariant; tuple type X is a
subtype of tuple type Y iff …
–  Correspondence between their element types is

bijective
–  For each element type in X, the type in the element

type is a subtype in the corresponding element type in
Y

–  Keyword-type pairs in X and Y appear in the same
order

•  Sorted form X’ for tuple type X
– Created by reordering keyword-type pairs
–  There is a coercion from tuple type X to tuple

type Y iff X and Y have the same sorted form

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 158

8.4 Tuple Types (4)

•  Tuple type excludes any nontuple type other
than Any

•  Two tuple types exclude each other unless the
correspondence between their element type is
bijective
–  Two tuple types with bijective correspondence exclude

each other if either any type of one excludes the type
of the other, or their keyword-type pair do not appear
in the same order

•  Intersection of nonexclusive tuple types are
defined elementwise

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 159

8.5 Arrow Types (1)

• Arrow types: types of function values
–  Functions can be passed as arguments and

returned as values

• Every arrow type is a subtype of Object
• Arrow types are not trait types

– Arrow types cannot be extended by other
trait types

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 160

8.5 Arrow Types (2)

•  Parameter types are contravariant; return types
are covariant

Examples of arrow types Optional throw clause

is a subtype of
iff
•  D is a subtype of A and
•  B is a subtype of E and
•  For all X in C, there exists Y in F such that X is a subtype of

Y

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 161

8.6 Bottom Type

• Fortress provides a special BottomType
• No value in Fortress has the bottom type

–  throw and exit expressions have the bottom
type

• Bottom type is a subtype of every type
•  Intersection of any exclusive types is the

bottom type

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 162

8.7 Types in the Fortress Standard Libraries (1)

•  Fortress standard libraries define simple standard
types for literals (Section 13.1)
–  BooleanLiteral[b]
–  () (pronounced “void”)
–  Character
–  String
–  Numeral[n,m,r,v]
–  Several simple numeric types

•  Simple standard types for literals are mutually
exclusive

•  Values of these types are immutable

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 163

•  Numeric types share the common supertype Number
–  Arbitrary-precision integers Z
–  Unsigned arbitrary-precision integers N
–  Rational numbers Q
–  Fixed-size representation for integers

• Z8, Z16, Z32, Z64, Z128

–  Fixed-size representation for unsigned integers
• N8, N16, N32, N64, N128

–  Floating-point numbers
–  Intervals Interval[X]

• X can be instantiated with any number type

–  Imaginary and complex numbers in …
•  rectangular form Cn (n=16, 32, 64, 128, 256)
• Polar form Polar[X] (X is instantiated with any real number

type)

8.7 Types in the Fortress Standard Libraries (2)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 164

8.7 Types in the Fortress Standard Libraries (3)

• Floating-point numbers
– R32, R64 to be 32 and 64-bit IEEE754 floating-

point numbers

• Two functions on types …
– Double[F] is a floating-point type twice the

size of floating-point type F
– Extended[F] is a floating-point type sufficiently

larger than floating-point type F to perform
summations

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 165

8.7 Types in the Fortress Standard Libraries (4)

• Fortress standard libraries also define …
– Any
– Object
– Exception
– Boolean
– BooleanInterval
–  LenearSequence
– HeapSequence
– BinaryWord
– …

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 166

8.8 Intersection and Union Types (1)

•  Intersection type of a set of types S is a
subtype of every set T in S and of the
intersection of every subset of S

• Union type of a set of types S is a
supertype of every set T in S and of the
union of every subset of S

• Neither intersection nor union are first-
class types
– Used solely for type inferences (Chapter 20)
– Cannot be expressed directly in programs

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 167

8.8 Intersection and Union Types (2)

•  Intersection of a set of types S is equal to a named type U
when any subtype of T in S and of the intersection of every
subset of S is a subtype of U

•  Union of a set of types S is equal to a named type U when
any supertype of T in S and of the union of every superset
of S is a subtype of U

Any subtype
of S and T
must be a

subtype of V;
V is an

intersection
of S and T

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 168

8.8 Intersection and Union Types (3)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 169

8.8 Intersection and Union Types (4)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 170

8.9 Type Aliases

•  Fortress allows names to serve as aliases for more
complex type instantiations
–  All use of type aliases are expanded before type

checking
–  Type aliases do not define new types nor nominal

equivalence relations among types

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 171

Chapter 9 Traits

• Traits are declared by trait declaration
• Traits define new named types
• Trait specifies a collection of methods
• Trait can extend others

–  Trait inherits the methods from those traits
–  Type defined by that trait is a subtype of traits

it extends

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 172

9.1 Trait Declarations (1)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 173

9.1 Trait Declarations (2)

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 174

9.1 Trait Declarations (3)

•  Trait declaration:
[modifier] trait trait_name static_params
 [extended traits]
 [excluded traits] [comprises on the trait]
 [where clause]
 {abstract_fields, getter_methods, setter_ methods}
 method_declarations
end

•  extends, excludes, comprises {trait_references}
–  If clause contains only one trait, { } may be elided

•  comprises clause may include “…”
•  Trait_references in comprises clause is a declared trait

identifier or an abbreviated type for aggregate
expressions

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 175

9.1 Trait Declarations (4)

• Every trait extends the trait Object
• extends clause every trait listed in its

clause
–  If T extends U, T is a subtrait of U; U is a

supertrait of T
– Extension is transitive; if T extends U it also

extends all supertraits of U
– Extension relation is the smallest relation

satisfying transitivity
– Relation must form acyclic hierarchy rooted

at trait Object

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 176

9.1 Trait Declarations (5)

• Trait T strictly extends U iff T extends U and
T is not U

• Trait T immediately extends U iff T strictly
extends U and there is no trait V s.t. T
strictly extends V and V strictly extends U
– U is an immediate supertrait of T
–  T is an immediate subtrait of U

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 177

9.1 Trait Declarations (6)

•  Trait with excludes clause excludes every trait
listed in its clause
–  If T excludes U, T and U are mutually exclusive
–  No third trait can extend them both and neither can

extend the other

•  If trait decl of T includes comprises clause
–  If comprises clause of T does not include “…”, the trait

must not be extended with immediate subtraits other
than those listed in its comprises clause

–  If comprises clause of T includes “…”, any subtrait of T is
not exposed by API

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 178

9.1 Trait Declarations (7)

Return type ()

self explicitly declared as a param

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 179

9.1 Trait Declarations (8)

Molecule can be
Immediately

extended
by

OrganicMolecule
or

InorganicMolecule
OrganicMolecule and

InorganicMolecule
May be exclusive

Parallelism
Oblivious
Programming 2008-5-2 The Fortress Language Specification 180

9.2 Method Declarations (1)

