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Abstract—Rewriting systems are popular in end-user pro-
gramming because complex behavior can be described with
few or no abstractions or variables. However, rewriting sys-
tems have been limited to manipulating non-rotatable ob-
jects on a grid, such as in Agentsheets or Stagecast Creator.
Systems that allow free-form movement of objects must use
other techniques, such as the sequential programming by
demonstration in Squeak. Viscuit is a new rewriting system
that introduces fuzzy rewriting, which allows freely posi-
tioned and rotated objects to interact using only rewriting
rules. The result is a system that allows users to specify
animations in a highly interactive way, without textual lan-
guage or menu selections.

Keywords— Visibility, Rewriting Systems, Rule-based Vi-
sual Language

I. Introduction

Animation is a major part of the Internet and is be-
ing created by more and more. It typically requires
programming-like activity, which can be frustrating to
non-programmers who simply want to make their artis-
tic creations move as desired. Simple techniques, like
keyframe animation, can be tedious and produce static re-
sults. Rewriting systems allow one to create animations
without programming. However, current systems are lim-
ited to animating objects on a fixed grid. Rotation is some-
times possible, but requires the user (or a professional)
write a program. This puts many simple animations out of
the reach of many end-users.

The main problem is that removing grids and allowing
rotation gives each object a large number of possible posi-
tions and orientations. It is not practical to have a differ-
ent rule for each orientation, so we propose a new rewrting
mechnism, fuzzy rewriting, that is organized the following
techniqes:

1. fuzzy matching, which handles a range of relative dis-
tinces and angles; and

2. fuzzy generating, which infers a new (possibly unique)
state that stays within the bounds of user intentions.

A similarity function for object relationships is defined.
It is used during both matching and generating. The func-
tion should be designed according to end-users’ cognition.
In this paper, however, we don’t mention the end-user as-
pect. Our function of similarity is defined artificially and
has many parameters to widely change behavior.

Viscuit is a new rewriting system that introduces fuzzy
rewriting, which allows freely positioned and rotated ob-
jects to interact using only rewriting rules.

This paper is organized as follows. The next section we

compare with our work and anothers. In section three we
describe a behavior of fuzzy rewriting. Viscuit is intro-
duced in section four and its examples are shown in section
five. Section six shows precise computing for fuzzy rewrit-
ing. And we discuss Viscuit in section seven.

II. Related Works

AgentSheet[7] is an if-then rule-based visual language.
It is suitible for simulation. In the condition part, several
primitives, visual coditions or nonvisual conditions, can be
used. The user can express objects’ arrangements to ex-
press conditions in a functional programming manner. An
object is located on a grid, so visual expressions are re-
stricted. Kidsim (Cocoa, Stagecast Creator)[2] is a rewrit-
ing visual langauge for objects on a grid. An object has
several appearances, that can be used for expressing an ob-
ject’s direction, state, and so on. A rule rewrites arrange-
ments of objects with its appearance. Flash and Direc-
tor, by Macromedia, enable animation of objects that can
be rotated, positioned, and scaled. Motion is directed by
keyframes and is scripted exactly. An animation is tightly
controled by keyframes or algorithmically by scripting, so
it is too difficult for our target end-users. BITPICT[3]
and Visulan[8] are rewriting languages for bitmaps. They
find bitmap patterns that are matched by a before-pattern
of a rule and replace them with the after-patterns of the
rules. Visulan has built-in patterns that express the mouse-
button status. When the system knows the mouse-button
status has changed, it changes the pattern into the cor-
responding built-in pattern. To write a program that in-
teracts with a mouse, the user creates a normal rule that
simply looks for the built-in pattern. BITPICT and Vi-
sulan only uses bitmaps for data and programs. There is
no hiding of information. Scott Kim defined this property
as “visibility”. His demonstration system, VIEWPOINT
[5], combines a font editor, a word processer, and a key-
board layout manager. When a user types a key, the sys-
tem copies a font pattern from corresponding key on the
keyboard layout into a cursor. Using this technique plus a
few special rules, VIEWPOINT can function as a word pro-
cessor with word wrap. ChemTrains[1] is a graph-rewriting
visual language. When the system finds a graph pattern
matching the before-pattern of a rule, it replaces it with
the after-pattern of the rule. It is a quite powerful lan-
guage because of the high flexibility and expressiveness of
the graph representation.

All the above systems except VIEWPOINT have two sys-
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tem modes: editing and running. Typically, these systems
involve writing programs, setting the initial state, runing,
and stopping. On the other hand, Vispatch[6] does not dis-
tinguish between these modes. Vispatch is a graph rewrit-
ing visual language, and each rule has an event object in a
before-pattern and zero or more event objects in an after-
pattern. When a user clicks on or drags on an object,
rewriting is started. If an event object in the after-pattern
of a fired rule exists, the system generates a new event that
starts the next rewriting. Vispatch successfully achieves
interactive rewriting. A rule in Vispatch is constructed
as an object that can be rewritten by another Vispatch’s
rule. This enables interactive reflection and makes a self-
extensible graphics editor possible.

There are many reseaches for a motion generation. [11]
generates motion from examples.

III. Fuzzy Rewriting

Fuzzy rewriting is a new rewriting mechanism. Let’s
look at some examples. Fig.1 is a simple rewriting rule.
The horizontal arrow is a rule object that separates an
object group into a before-pattern and an after-pattern.
The left side of a rule object is a before-pattern (called the
rule head), and the right side is an after-pattern (called
the rule body). An arrow in a rule head expresses a mouse
click. The rule head in Fig.1 includes two objects, sun and
star, and one event. The rule body includes two objects
that rotate little from the rule head. This rule means that,
when a sun is clicked, the sun and star rotate.

Fig. 1. Two objects of fuzzy rewriting

A

B

C

target result

Fig. 2. Executions of Fig.1

Fig.2 shows three examples of rewriting with this rule.
When the sun in the target-column is clicked, objects

the corresponding result-column replaces objects the corre-
sponding target-column. In A, the arrangement of target-
column objects is almost the same as the rule, so the result-
ing arrangement is also the same. In B, the star is lower
than the sun, so the star in the result is also lower. In
C, there is a deformation of arrangement, so the result is
deformed.

Consider the possible results of this rewriting. As an
example, Fig.3 shows two objects whose positions are
swapped so that they are opposite from those in the rule
in Fig.1. There are two possible results:1 E preserves lo-
cal constraints of the rule that keep rotation directions for
each kind of object, so the star rotates clockwise and the
sun counter-clockwise. F preserves the global constraints of
the rule that decides rotation direction based on a relative
position (not its kind), so a left-hand-side object rotates
counter-clockwise and a right-hand-side object clockwise.

before after

E

F

Fig. 3. Possible results of Fig.1

Choosing the behaviour raises difficult problems. The
preferences of end-users and the attractiveness of the result
are important. The system needs consistency.

We give a priority to local constraints, because our expe-
rience is that this produces more attractive results. They
are also the easiest to implement. Our system therefore
works like E (not F).

Let’s compare a traditional rewriting system and a fuzzy
rewriting one. Figure 4 shows a data space and several
rewritings on it, where a is a rewriting by a rule that has
no variables, b is one by a rule that has variables, and c
represents fuzzy rewriting. In a, a certain point (an in-
put) is translated into another point (an output). In b, a
certain area is translated into other certain area, and the
correspondence between the input and the output area is
defined by the rule. In c, like a, the rule that has no vari-
ables. Points surrounding an input point are translated
into other points surrounding an output point. Unlike b,
input and output areas have no clear border.

1Of course, there is another possibility: the rules don’t fire for
different positions of objects like this. We can control this by changing
the threshold for matching. This is discussed later.
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Fig. 4. Several Rewritings

IV. Viscuit

Viscuit is a new visual langauge that rewrites objects
using the fuzzy techniques. In this section, we discuss how
programs are written and run with Viscuit.

Viscuit is composed of paper and objects. A user can
place several objects with free position and rotation (but
no scaling) on a piece of paper. Three objects have special
use: A rule object has two sets of objects, the head set and
body set. A rule head includes one event object and a rule
body includes zero or more event objects. An event object
indicates where a click event is expected (in rule heads) or
will be generated (in rule bodies). A pointer object refers
to another piece of paper.

When a user clicks on a piece of paper, the system traces
pointer objects on the paper recursively, and collects all
rules from the traversed paper. Using the position of a click
and the arrangement of objects on the clicked paper, the
system selects the rule and the most similar arrangement
of target objects. Afterthat the system rewrites objects
according to the selected rule.

object palette

paper

drag and drop

rule

head body

Fig. 5. Create a rule

From Fig.5 through Fig.8 show user views. There is an
object palette in the left of Fig.5. To create new object,
a user drags the desired object from a palette and drops
it into target paper directly. A rule object captures its
neighbor objects as rule head’s or body’s. After preparing
a rule, and setting up an object to rewrite, the user clicks

click

event object

Fig. 6. Execute a program

event object

click

Fig. 7. Continuous rewriting

the object, then the user will see rewriting result. In Fig.6,
the rule sais when a car is clicked then it moves forward, so
this car (showing middle of the figure) moves forward by a
user click.

When a rule fires, an event object in a rule body
genarates a click event and enqueues it into the event
queue, where it behaves like an actual user click. When
there is no user interaction, the system dequeues a posted
event and tries to rewrite. In Fig.7, the rule body has an
event object. By clicking the target car, it moves upper-
ward continuously and disappears. A continuous rewriting

rotate

Fig. 8. Rotating a car
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behaves a thread. Therefore if there are several cars and
they are clicked each by the user, then they move simulta-
neously.

Viscuit permits modifing rules anytime by the user. In
Fig.8, the user rotates the car in the rule body while the
target car moves straight. After modifying the rule, the
target car turns. The user can drive the car by modifing
rule.

V. Execution Examples

S

R

L

Fig. 9. Rules for driving (A)

Figs. 9 and 10 are two sets of rules that describe how
a car should turn for a certain a steering-wheel position.
The difference between them is whether each rule includes
a stand or not. In Fig.9, the car wants to move to the
same absolute direction as the steering wheel. When the
car heads upward and the steering wheel is turned toward
the right, then the car turns right because the rule R is
fired. Now that both the car and the steering wheel are
pointing in the same direction, the rule S will fire and the
car will go straight (Fig.11, line A).

On the other hand, when the rules in Fig.10 are applied
to the target in Fig.11, the rule R in Fig.10 is always fired.
So the car turns always (Fig.11, line B). If the steering
wheel turns left, then the car always turns left by the rule
L. If the steering wheel is straightened out, the rule S would
always fire and the car would always go straight.

The difference in these actions depends on the impor-

S

R

L

Fig. 10. Rules for driving with a stand (B)

tance assigned to each relationship. In Fig.9, there is only
one relationship, which is the relative angle between the
steering-wheel heading and the car heading. The car di-
rection therefore affects the rule selection every time. On
the other hand, in Fig.10, the stand overlaps the steering
wheel. Ovarlapped objects’ relationships make higher sim-
ilarity. Their relationship is assigned a higher importance
than the car/steering-wheel relationship. Therefore, the
rule is selected by a relative angle between steering-wheel
and stand.

Figure 12 shows a single rule that animates soccer players
kicking a ball. Its meaning is that when a soccer ball gets
near the soccer player’s foot, the ball should be moved out
and in front of the player’s head. In Fig.13, for each click by
a user or the system on the ball, the soccer player nearest
the ball is selected, and the ball moves close to the foot of
the next soccer player. In the resulting animation, the ball
rotates clockwise like in a soccer pass.

Figure 14 only has one soccer player, but still produces a
continuious animation because after the rule fires, the ball
is still close enough to the soccer players foot to make the
rule fire again. When a user clicks, the ball bounces around
the player’s head. This is good because the system never
gets in a state totally unlike any of the body patterns.
Therefore while the system is unpredictable at the fine-
grain level, its overall behaviour can be predicted from the
rules.
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A

B

pointer object

Fig. 11. Execution of driving

Fig. 12. Rule of soccer’s pass

Figure 15 is a rule that shows a pass between two players.
For each click on some player A, another player B is selected
by object arrangement and the rule fires. This makes the
ball move to B, and the system clicks B. Both A and B
also move a small distance because they are shifted in the
rule body pattern. The result is that players move about
and seem to be passing the ball. Fig.16 shows a snapsnot
of the game in mid-play.

VI. Matching and Generating Objects

In implementing Viscuit, our strategy is as follows:
1. Define a function rel2 that computes the arrangement

similarity between a pair of objects and another pair
of objects.

Fig. 13. Animation of soccer’s pass

Fig. 14. Single play

Fig. 15. Rule of soccer play

2. Use rel2 to define a function rel that computes the
arrangement similarity between one group of objects
and another group of objects.

3. Select the rule and its mapping between head objects
and target objects that maximize the value of rel .

4. Fire the rule if normarized rel is higher than thresh-
old.

5. Remove and generate objects whose arrangement
maximizes the value of rel .

We define an object as having four attributes: kind, x,
y, and direction, kind is the kind of object, x and y are
real numbers that express a center position of the object,
and direction is a real number between −180 and 180 that
expresses the screen direction of the object.

The distance between the center of an object P and the
center of an object Q is |PQ|, the relative direction from P
to Q is rdir(P ,Q), and the difference between the heading
of P and the heading of Q is angle(P ,Q) (See Fig.17).

The function rel2 (A,B ,X ,Y ), which computes the sim-
ilarity between relationship A and B and relationship X
and Y is defined as,

rel2 (A,B ,X ,Y ) = C0δ(|AB|, |XY |,W0)
+ξC1δ(rdir(A,B), rdir(X ,Y ),W1 )
+ξC2δ(rdir(B ,A), rdir(Y ,X ),W2 )
+C3δ(angle(A,B), angle(X ,Y ),W3 )

where difference δ and weight ξ are

δ(X, Y,W ) = e−(X−Y )2/W
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Fig. 16. Animation of soccer play

ξ = 1− e
− C4

(|AB|+|XY |+ε)2

(1)

The δ(X, Y,W ) becomes 1 if X and Y are the same, oth-
erwise close to 0. ξ becomes 0 if A and B have the same
position and X and Y have the same position, otherwise
close to 1. Parameters Cj and Wi are constants for tuning
the system behavior.

The first term of rel2 is a value showing how close dis-
tance |AB| is to distance |XY |. The second term is one
showing how close the relative direction rdir(A,B) is to
the relative direction rdir(X ,Y ). The third term is one
showing how close the relative direction rdir(B ,A) is to
the relative direction rdir(Y ,X ). rdir(A,B) is unstable if
A and B are very close. Weight ξ is therefore multiplied in
the second and third terms to stabilize rel2 behavior. The
fourth term is a value how close between the angle(A,B)
and the angle(X ,Y ).
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Fig. 17. Similarity between two pairs

Using rel2 (A,B ,X ,Y ), we define function rel , which
computes the similarity between an object group A and an-

other object group that defined by mapping function map
as,

rel(A,map) =
∑

i∈A,j∈A
i 6=j

w(i, j)rel2(i, j, map(i),map(j))

where w(i, j) is a weight whose value changes according to
whether object i and object j overlap or not. If they do,
w has a higher value. This means ovarlapped objects get
priority over other relationships.

Fig.18 shows an example of a fuzzy rewriting. There is a
rule that includes head objects (a, b, c), body objects (A,
B, C) and an event object on object a of the head. When
a user clicks on object 2, the system is activated. The
system tries to match head objects and several objects on
the target. Here, let some mapping mat be 2 = mat(a), 3 =
mat(b) and 4 = mat(c). The value of rel({a, b, c},mat),
called the matching value of the rule, is computed by

rel({a, b, c},mat) = w(a, b)rel2(a, b, 2, 3)
+w(b, c)rel2(b, c, 3, 4)
+w(c, a)rel2(c, a, 4, 2).

The system looks for a mapping that maxmizes the match-
ing value of this rule. Let this matching value be the max-
mun matching value (MMV) of the rule and this mapping
be the maxmun mapping of the rule. For each available
rule, the system selects one rule that has maxmun MMV.
Whether the selected rule is fired or not depends on how
percentage similar the relationships. MMV is normalized
by percentage. The normalized MMV is 100% means the
rule and the target have the same relationship exactly. If
the normalized MMV of the selected rule is higher than the
pre-defined threshold, the rule is fired.

t=mat(i)
t=gen(j)

a
c

b

A
C

B

1

3

2

4

5

6

7

8

9

Fig. 18. Matching and generating

After the rule is fired, objects corresponding to rule head
objects {2, 3, 4} are deleted and other objects correspond-
ing to rule body objects {7, 8, 9} are generated. Let’s de-
note the mapping gen corresponding to rule body objects
and generated objects as 8 = gen(B), 9 = gen(A) and
7 = gen(C).
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Arrangements of generated objects are computed by
maximizing the following expression:

G(H, B, mat, gen) =
∑
i∈H
j∈B
i 6=j

w(i, j)rel2(i, j,mat(i), gen(j))

+rel(B, gen)

This means the first term computes a value showing how
similar the relationships of head-body objects are to those
of deleted-generated objects. In this example, the first term
is

w(a,A)rel2(a,A, 2, 9)
+w(b,B)rel2(b,B, 3, 8)
+w(c, C)rel2(c, C, 4, 7).

The second term computes a value showing how similar
the relationships of body objects are to those of generated
objects. This is a reason of a swinging ball animation in
Fig.14, because there are opposite effects (a ball go upward
or downward) from the first and second terms.

To simplyfy computing, if all attributes of a head object
and a body are the same. The system doesn’t touch it
(delete and generate). An user interface support is exist
for this. When the user modifies a rule, a body object
motion is snapped according to head objects location and
angle.

VII. Consideration

Viscuit inherits features of rewriting language, so it has
the basic mechanisms of computing. A sequence of click
events has thread behaviour, as already mentioned. It also
has rule inheritance because object patterns can express
inclusion relationships. For example, each rule in Fig.9 in-
cludes a rule in Fig.10. If we use these rule sets simultane-
ously, the rules of Fig.10 are used when the steering-wheel
and stand overlap, and those of Fig.9 are used otherwise.

Fig. 19. Rewriting with several rules

Figure 19 shows rewritngs with several rules. In tra-
ditional rewriting, sometimes input areas of several rules

with variables overlap like in d. In such a case, prioritizing
the rules allows the system to control which rules should
be fired. In this way, a complement of input areas can be
expressed. On the other hand, in a fuzzy rewriting sys-
tem only fuzzy areas are expressed for each rule, so such a
complement is difficult to express.

To express a complicated relationship by fuzzy rewrit-
ing, several rules (pairs of point) are given, like in e. These
behave like a rule with variables (in Fig.4b). This pro-
cess is called Programming by Example (PBE). In a PBE
system, if there are insufficient examples to generate rules
(program), the system cannot proceed. However in a fuzzy
rewriting system, it is okay to do someting, but the result
becomes vague.

In Fig.10, although the steering-wheel direction is
matched fuzzily, generated car animation used only one
of three discrete ways: straight, curving at a set radius to
the right, or curving at a set radius to the left. On might
ask how we could have the steering-wheel control the car’s
turn in fine increments. One area for future research is
to consider how to merge rules when more than one has
high similarity. This would allow linear approximations
to be expressed, which would create smooth intermediate
behaviours. This is an example of Fig.19e.

The threshold of the fire ratio can be adjusted by the
user. The user repeatedly issues an event but no rule fires,
the system automatically lowers the threshold until some
rule will fire. On the other hand, if many rewritings occur
whose ratio is much higher than the current threshold, then
the threshold is automatically raised to avoid unwanted
rewriting. An event generated by the system doesn’t affect
the threshold adjustment.

VIII. Conclusion

We develop a new visual language, Viscuit, and its ex-
ecution mechanism, fuzzy rewriting. Viscuit can treat an
object as free positioning and rotating. A rewriting rule
is interpreted fuzzily, so a similar objects arrangement can
be rewrited as appropriate arrangement. By continuous
rewriting Viscuit can express an animation whose local be-
havior is controlled by rules.

Demonstrations and the beta release of Viscuit will be
found in http://www.viscuit.com .
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