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Abstract

Fusion, one of the most useful transformation tactics for deriving efficient
programs, is the process whereby separate pieces of programs are fused into
a single one, leading to an efficient program without intermediate data struc-
tures produced. In this paper, we report our on-going investigation on the de-
sign and implementation of an automatic transformation system HYLO which
performs fusion transformation in a more systematic and more general way
than any other systems. The distinguished point of our system is its calcula-
tional feature based on simple application of transformation laws rather than
traditional search-based transformations.
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1 INTRODUCTION

Program transformation has been advocated as the linchpin of a programming
paradigm in which the derivation of efficient programs from naive specifica-
tion of problems is a formal and mechanically supported process (Pettorossi
& Proietti 1993). It does not attempt to directly produce a program that is
correct, understandable and efficient. Instead, it starts with a program (spec-
ification) which is as clear and understandable as possible ignoring any ques-
tion of efficiency, and successively transforms it to more and more efficient
versions based on a set of transformation tactics.

Fusion Transformation (or Fusion for short), one of such most useful trans-
formation tactics for deriving efficient programs, is the process whereby sep-
arate pieces of programs are fused into a single one, typically transforming a
multi-pass program into a single pass and thus leading to an efficient program
without intermediate data structures. Recently, it has been gaining more and
more interest in the functional programming community (Wadler 1988, Chin

©IFIP 1996. Published by Chapman & Hall



2 A Calculational Fusion System HYLO

1992, Gill, Launchbury & Jones 1993, Takano & Meijer 1995, Hu, Iwasaki &
Takeichi 1996b).

The purpose of this paper is to report our on-going investigation on the
design and implementation of an automatic system HYLO which implements
fusion transformation in a more systematic and general way than any other
transformation systems. To explain our idea, consider the following example
program (Wadler 1988): computing the sum of the squares of the integers
from 1 to n.

ssf n = (sum ° map square ° upto) (1,n)

It is defined as a composition of three recursive functions: upto generates a
list of numbers from 1 to n, map square forms the second list by squaring
each number in the first list, and sum calculates the sum of the numbers in
the second list.

This program has the advantage of clarity and higher level of modularity. It
constructs the program ssf by gluing three components: “generate the num-
bers,” “square the numbers,” and “calculate the sum,” which are relatively
simple, easy to write, and potentially reusable. However, it relies on the use
of intermediate lists to communicate between these components: upto (1,n)
passes the list [1,2,---,n] to map square, which passes the list [1,4,-- -, n?]
to sum. Unfortunately, all these intermediate lists need to be produced, tra-
versed, and discarded (even by lazy evaluation), degrading execution time
and space dreadfully. To obtain an efficient program, it is our hope that three
component functions can be merged into a single one eliminating intermediate
data structures. This is exactly what fusion aims to do.

There are mainly two kinds of approaches to fusion transformation: search-
based fusion and calculational fusion. The traditional search-based fusion
(Wadler 1988, Chin 1992) turns the composition of recursive functions into a
simple function by fold-unfold transformations (Burstall & Darlington 1977).
For our example, it unfolds recursive definitions of functions upto, map square
and sum to some extent, manipulates the expression, and identifies suitable
places where subexpressions are to be folded into corresponding function ap-
plications. It is called “search-based” because it basically has to keep track of
all occurring function calls and introduce function definitions to be searched in
the folding step. The process of keeping track of function calls and controlling
the steps cleverly to avoid infinite unfolding introduces substantial cost and
complexity, which prevents fusion from being practically implemented (Gill
et al. 1993).

Our interest is in the calculational fusion (Sheard & Fegaras 1993, Gill
et al. 1993, Takano & Meijer 1995, Launchbury & Sheard 1995, Hu et al.
19966, Hu, Iwasaki & Takeichi 1996¢), which is rather new and has been
attracting more and more attention. Different from the search-based fusion
whose emphasis is on the transformation process, its emphasis is on the ex-
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ploration of recursive constructs in each component function so that fusion
can be performed directly by applying a simple transformation law: the Acid
Rain Theorem (Gill et al. 1993, Takano & Meijer 1995). Returning to our
example program ssf, let us explain briefly how to fuse the composition part,
sum ° map square ° upto, with this approach while leaving the detailed dis-
cussions for later.

1. Deriving Hylomorphisms from Recursive Definitions

First of all, we need to rewrite every component recursive function in terms
of a specific recursive form called hylomorphism (Section 2) represented by
a triplet ¢, n and ¢ grouped with special brackets as [¢,7,¢]. In fact, al-
most all recursive functions of interest can be captured by hylomorphisms
(Bird & de Moor 1994), and we have proposed an algorithm for deriving hy-
lomorphisms from recursive definitions of functions (Hu et al. 1996b). After
deriving hylomorphisms for sum, map square and upto, we have the fol-
lowing compositional expression in which each hylomorphism corresponds
to the component function:

[61,m,91] ° [f2, 2, 2] © [#3,m3,93].

2. Capturing Data Production and Consumption Schemes

For a composition of two hylomorphisms, there is a useful law called Acid
Rain Theorem (see Section 2) which says that a composition of two hy-
lomorphisms can be fused into a single one under certain conditions. The
theorem expects ¢ and v in [¢,7n,%] to be specified as 7in and o out re-
spectively. Here, in denotes data constructors and out data destructors.
Functions 7 and ¢ are polymorphic and used to capture the scheme of pro-
duction and consumption of data structures. For the application of the Acid
Rain Theorem, we have to derive 7; and ¢; for some ¢; and 1); respectively,
giving the following expression:

[f1,m,01 0ut] © [z in, ma, 02 out'] = [13n’, 13, 9)5]
3. Applying Acid Rain Theorem
After the preparation by Steps 1 and 2, we can apply the Acid Rain The-

orem for fusion. By fusing the latter composition of our example, the pro-
gram becomes:

[61,m1, 01 out] © [¢5, 5, ¥5].

Repeating Step 2 and 3 to the above composition could yield a single
hylomorphism

[64, mis 1l
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4. Inlining Resulting Hylomorphism
Finally, we can inline the resulting hylomorphism into our familiar recur-
sive definition as shown below, removing inefficiency due to hylomorphic
structure.

ssfn = ssf' (1,n)
where
ssf' (m,n) = case (m > n) of
True = 0
False — plus (square m, ssf’' (m +1,n))

It is obviously more efficient than the original because all intermediate lists
have been successfully eliminated.

The calculational approach has been argued to be more practical (Gill et al.
1993, Takano & Meijer 1995), but to the best of our knowledge, there are no
practical fusion systems based on this approach. The difficulties in the design
and implementation of a real fusion system lie in two aspects:

® Development of Constructive Algorithms for Implementing Transformation
Laws. Program calculation, i.e., calculation with programs, is a kind of
program transformation which proceeds by means of program manipula-
tion based on a rich collection of transformation laws. These laws, how-
ever, are basically developed as a guidance to calculate with programs by
hands (not by machine) and most of them are not constructive. Therefore,
to implement an automatic calculational fusion system, we must develop
constructive algorithms for implementing those non-constructive transfor-
mation laws (see Section 4.3).

® Implementation Issues for Practical Use. In the design and implementation
of a practical fusion system, we have to take account of a lot of practical
issues. In particular, we should focus on specification language design, which
should not only be convenient to specify problems but also be general
and sufficiently powerful, and algorithm design, which should be as much
applicable as possible to of a considerable scale programs rather than just
some toy examples.

In this paper, we report our on-going investigation on the design and imple-
mentation of an automatic system HYLO which performs fusion transforma-
tion based on calculational method. Our main contributions are summarized
as follows. First, we made the first attempt to apply the idea of a calcula-
tional approach to the implementation of a transformation system, not just
being limited to theoretical interest, which is in sharp contrast to previous
search-based approaches. This work extends our previous work on developing
algorithms for implementation of transformation laws. Second, we develop a
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set of effective algorithms implementing the constructive fusion laws. Third,
our HYLO system is a general system which can be applied to a wide class
of programs; particularly, it is expected to be used in compilers of functional
languages such as Haskell.

The organization of this paper is as follows. After introducing some no-
tations and theoretical results on hylomorphisms in Section 2, we give an
overview of the HYLO system in Section 3. Implementation algorithms are
presented in Section 4 with transformation examples, and experimental re-
sults are given in Section 5. Section 6 gives remarks on the HYLO system and
related work.

2 PRELIMINARIES

Recursion plays an important role in function definitions but it does not im-
pose much structure on the form of the definition that may be expressed.
Recently, many studies (Meijer, Fokkinga & Paterson 1991, Sheard & Fe-
garas 1993) have shown that recursion should be structured with some spe-
cific forms. The hylomorphism is one such specific recursive form which can
describe almost all recursive functions of interest (Meijer et al. 1991, Bird
& de Moor 1994, Hu et al. 19960). Informally, by hylomorphism, a function
should be defined in the following recursive way:

f=d>m-Ff)-9.

We can read the right hand side in this way: generating some F-structure from
the input by v; applying f to all recursive components in the F-structure by
F' f; manipulating the F-structure into some G-structure by 7; and finaly
folding the G-structure by ¢ to give the result. Since f can be uniquely de-
termined whenever ¢, n, ¥, G and F' are determined, we usually denote f by
f= [[¢a77,¢]]G,F-

Hylomorphisms enjoy many useful calculational laws (see Section 2.3), facil-
itating program transformation. To be more precise, we shall review previous
works on program calculation (Meijer et al. 1991, Fokkinga 1992, Takano &
Meijer 1995).

2.1 Functors

Endofunctors can capture both data structure and control structure in a type
definition. In this paper, we assume that all data types are defined by end-
ofunctors which are only built up by the following four basic functors. Such
endofunctors are known as polynomial functors.
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® The identity functor I on type X and its operation on functions are defined
as follows.

IX=X, If=f

® The constant functor !4 on type X and its operation on functions are
defined as follows.

IAX=A 'Af=1id
where id stands for the identity function.

® The product X x Y of two types X and Y and its operation to functions
are defined as follows.

X xY = {(my) |lzeX,yeY}
(fxg) (z,y) = (fz,gy)

™ (a7b) = a

w2 (a,b) = b

(fega = (fa, ga)

® The separated sum X + Y of two types X and Y and its operation to
functions are defined as follows.

X+Y = {1} xX U {2} xY
(f+9) (Lz) = (1, f2)

(f+9) 2,y) = (2,99)

(fvg) Lz) = f=

(fvg 2,9) = gv.

Although the product and the separated sum are defined over two param-
eters, they can be naturally extended for n parameters. For example, the
separated sum over n parameters can be defined by ¥, X; = U, ({i} x X;)
and (33 fi) (,¢) = (j, fjx) for 1 <j <.

2.2 Data Types as Initial Fixed Points of Functors

A data type is a collection of data constructors specifying how each element of
the data type can be constructed in a finite way. The definition of a data type
can be captured by an endofunctor (Fokkinga 1992). Let’s look at a concrete
example. Consider the data type of cons lists with elements of type A, which
is usually defined by

List A= Nil | Cons (A, List A).

In our framework, we shall use the following polynomial functor to capture
the recursive structure of the data type:

Fr, =1 + 1Ax1I

A
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where 1 denotes the final object, corresponding to (). Strictly speaking, Nil
should be written as the 0-ary constructor Nil (). In this paper, the form of
t () will be simply denoted as t.

In fact, the definition of Fy,, can be automatically derived from the original
definition of List A (Sheard & Fegaras 1993). Besides, we define inp, , the
data constructor of List A, by

inFLA = Nil vCons.

It follows that List A = inp, , (Fr, (List A)). The inverse of ing, , is denoted
by outr, ,, the data destructor of List A e,

outp, , Nil = (1,()
outr, , (Cons(a,as)) = (2,(a,as)).

As another example, the data type of the binary trees declared by

Tree a = Leaf | Node (a,Tree a,Tree a),

is captured by the following endofunctor:

Fr =11 + laxIxI.

In general, functor F' determines a data type as its least fixed point, so we
denote pF' as the data type determined by F'.

2.3 Hylomorphisms

The hylomorphism, a general recursive form covering the well-known cata-
morphism and anamorphism as its special cases, is defined in triplet form
(Takano & Meijer 1995) as follows.

Definition 1 (Hylomorphism in triplet form)

Let F' and G be two functors. Given ¢ : GA — A, ¢ : B — F B and natural
transformation 7 : F' = G, the hylomorphism [¢,7n,¥]q,r : B — A is defined
as the least fixed point of the following equation.

f=0¢en-Ff-y 0

Hylomorphisms (Hylo for short) are powerful in description in that practi-
cally every recursion of interest (e.g., primitive recursions) can be specified by
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them (Hu et al. 19965). They are considered to be an ideal recursive form for
calculating efficient functional programs. Note that we sometimes omit the
subscripts G and F' when they are clear from the context.

Hylomorphisms are quite general in that many useful forms are their special
cases.

Definition 2 (Catamorphism (-], Anamorphism [-)])

(4D r
(W)e

[[¢, id, outp]]ﬂp
ling,id, Y] FF O

Hylomorphisms enjoy many useful transformation laws. One is called Hylo
Shift Law:

[[¢7777¢]]G,F = [[d) ° U;id: %/)]]F,F = [[¢7 Zdﬂ? ° d]]]GaG

showing the very useful property that a natural transformation can be shifted
around inside a hylomorphism. Another useful law is the Acid Rain Theorem
(Takano & Meijer 1995), showing how to fuse a composition of two hylomor-
phisms into a single one.

Theorem 1 (Acid Rain)

T:VA. (FA—- A >F A A

@ T routelar - [rine,m, Pl = [ - 1) 6lm s

c:VA. (A->FA) A FA
[[¢7771700UtF]]G,F' ° ﬂinF;ﬂ2,¢ﬂF,L = [[¢;771;0(772 ° @ZJ)]]G,F' O

(0)

3 OVERVIEW OF HYLO SYSTEM

Figure 1 shows a schematic overview of our HYLO transformation system.
This system is written in a functional language Gofer (Jones 1994), and can
easily be ported to other systems such as Haskell. The HYLO system receives
a program written in Gofer and returns an improved one as its result where
the production of intermediate data structures has been removed by means
of fusion transformation.

The front-end of the system does several standard preprocesses such as
parsing, renaming, type checking and de-sugaring before producing a program
in the core language that will be used hereafter in the transformation steps.

The core language is shown in Figure 2. It is similar to that used by the
GHC (Team 1996) system. The main difference between these two languages
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Cof er ‘
program Capturing Data

Pr oducti on/

Consunpti on
De- sugarin
g g Core
| anguage
Core
| anguage
(no hyl o) Appl ying Acid

Rai n Theorem

Deri vi ng
Hyl onor phi sm

Core
| anguage

Cor e

| anguage Yes

More fusion?

i

Restructuring
Hyl onor phi sm

I'nlining
Hyl onor phi sm

Core
| anguage Gof er
program

Figure 1 Overview of HYLO System

is that ours has an extra kind of expression for hylomorphism, which plays
an important role in fusion transformation. In order to simplify our presenta-
tion, we restrict ourselves to single-recursive data types and functions without
mutual recursions, since the standard tupling technique can transform mutual
recursive definitions to non-mutual ones. Furthermore, we do not allow nested
case expressions because they can easily be flattened.

The next step of our transformation process is to receive a program written
in the core language and derive hylomorphisms from all the recursive function
definitions. As we explained in Section 2.3, a hylomorphism is a representation
of a specific form of recursive structure and is manipulable by applying the
Acid Rain Theorem. In Section 4.1, we describe the algorithm for deriving
hylomorphisms in detail.

We then restructure hylomorphisms to obtain proper hylo-structures suit-
able for fusion. As the Hylo Shift Law shows, we are allowed to shift some
parts of the components of [¢,n,1] among each other. Our algorithm ex-
tracts computations from ¢ and ¢ and moves them to the 5 component. This
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Prog = Def; Prog | Def Program
Def = wv=t Definition (non-mutual)
t = v Variable
l Literal (Int,Float,Char,...)
(t1,..-5tn) Term tuple
Avs .t Lambda expression
let v = t; in g Let expression (non-recursive)
case tg of Case expression
S g SURRREY T 71
viretn Function application (saturated)
Cty:-tpn Constructor application (saturated)
to t1 Application (general)
[te,tn,ty] Hylo representation
(n,t) Expression with tag
vs = v | (v, -,vn) Argument bounded by A
P = v Variable
| (P15-++5Pn) Tuple
| Cpi--pn Constructor pattern

Figure 2 HYLO Core Language

process simplifies the ¢ and 1 components to make the next step of transfor-
mation easier. In Section 4.2, we fully explain the algorithm for restructuring
hylomorphisms.

What we should do next is to prepare for applying the Acid Rain Theorem
in order to proceed fusion transformation. We may consider that ¢ and o
express data production and consumption respectively. For our goal, ¢ and
1) should be converted to the specific forms of 7ing and coutr for the Acid
Rain Theorem to be applicable. The algorithms are presented in Section 4.3.

Now we are ready to apply the Acid Rain Theorem to the result, fusing
two hylomorphisms into a single one. This process terminates even if we ap-
ply the theorem repeatedly. If there are no fusible hylomorphisms left in the
program, we proceed to the next step for inlining. Otherwise, we go back to
the restructuring step. In Section 4.4, we describe how the fusion is put into
action.

Finally, the hylomorphism representation is inlined into our familiar recur-
sive definitions to get a Gofer program. This inlining process plays the role
of the back-end of the system. If we replace the front-end and back-end with
those of the practical compiler system, we have a compiler with hylo-fusion
optimization.

4 IMPLEMENTATION ALGORITHMS

In this section, we propose several important algorithms for the implemen-
tation of the HYLO system. Particularly we shall focus on the algorithms for
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deriving polymorphic functions for capturing data consumption and construc-
tion. The algorithms for deriving and restructuring hylomorphisms are some
extensions of those already discussed in (Hu et al. 1996b).

4.1 Deriving Hylomorphisms

We extend the algorithm in (Hu et al. 1996b) to derive hylomorphisms from re-
cursive definitions, enabling it to be applied to programs in the core language,
more general than the previous one with several new expression constructs.
Our algorithm, as summarized in Figure 3, basically follows the same thought
as in (Hu et al. 1996b). We shall omit any detailed description here, but give
an informal explanation for understanding the derivation process. The calcu-
lation below shows how we can turn the typical recursive definition of function
f in pattern matching style:

f = Avs. case tg of p1 = t1;- - ;pn = tn

into a hylomorphism.

f = {Definition of f}
Avs. case to of p1 = t1;- - ;pn =ty
= {Trick 1: Replacing t; with g; ¢;}
Avs. case to of p1 = g1 15+ ;Pn = Gn tn

= {Using separated sum}
(g1 v -+ v gn)° (M. caseto of p1 — (1, t1);---;pn = (n, t3))
= {Trick 2: Replacing g; with ¢; ° F; f}
(619 v gn) e (Fr+-- 4 Fa) )
(Mvs. case tg of pr = (1, t1);-- ;o0 = (n, £))
= {Auxiliary definitions ¢, F,and 9}

poF feorp

= {Definition of hylomorphism}
[, :d, Yl r.r
where F = F1 + .-+ F,

= M. case to of p1 — (1, t1);--+;pn — (0, t7)

Tricks 1 and 2 suggest that if we can find ¢;, F}, t} satisfying ¢t; = (¢;  F; f) t;
for each t;, a hylomorphism can be derived from the definition. This derivation
heavily depends on Algorithm D which processes on each term ¢; and returns
a triple: a set of free variables in #; but not in any recursive call to f, a set
of pairs of a fresh variable and an argument of f in ¢;, and a term from {;
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=My N, [P1 Y - G, id, YRR
where ({viy, ..., vi,, }{(v] ,ti), -+, (vf, 5t )L t) = DItl{} f (i=1,...,7n)
¢i:)‘(vil""’viki”Ugl""’v;l.)'t,i
t;’I(’Uil,...,’Uiki,til,...,tili)
1 = Avs,, -case to of p1 — (1,{); -+ ;pn — (n,t]})
F,="1,ifk;=1; =0
=T (vs,) X -+ xID(v;,,, ) X I1 X ---x Ij; (It =---=1I;; =I), otherwise

F=F+---+F,
I'(v) = return v’s type

Dlv] s; f = if v € global vars U s; then ({},{},v) else ({v},{},v)
Dl s f = ({}{HD
D[(t1,---stn)]st f = (51U -Usp,c1 U+ Ucn, (th,...,t,))
where (s;,¢;,t;) = D[t]s; f(i=1,...,n)
DMws-t]s; f = (s,¢, Avs.t')
where (s,¢,t') = D[t] (s; U Var(vs)) f
Dllet v = t1 in to] s; f = (so U s1,c0 U cr,let v =t in tg)
where (s1,¢1,t)) = P[t1] s f, (s0, 0, o) = Dlto] (s;U{v}) f]
Dlcase to of p1 — t1 = (s U+ Usn,coU---Ucp,casetyof p1 — th;++3pn — 1))
i 3bn = talsi f  where (si,¢,t;) = D[t ](siUVar(p:)) f (i=0,...,n),p0=()
Dlvti--tu]si f = ifv= fthen
ifn=m A t;=vs; (1 <Vi<m-—1)
then ({}, {(u,tm)},u)
else error (f should have saturated args and induct on last)
else (so U+ Usp,coU--Ucp,tg ty---th)
where (s, co,ty) = P[v] s; f
(siei,t}) =Dtls f, (i =1,...,n)
w is a fresh variable
D[Ct1-tu]sif = (51U Usp,c1 U+ Ucp,Ct) 1)
where (s;,¢;,t)) = D[t]si f (i=1,...,n)
D[[to t1]] sif = (50 Usi,co U C1,t6 tll))
where (s;,¢;,t;) = D[t;] s f (i = 1,2)

Var(z) = set of variables in z

Figure 3 Deriving Hylomorphism

with recursive calls to f being replaced by the corresponding fresh variables.
It is worth noting that we require, without loss of generality, that function f
inducts over its last argument, while the other arguments remain unchanged
in every recursive call to f. Note also that Algorithm A4 is applied to programs
after the renaming process has been done, so all bound variables have been
assigned unique names.
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We demonstrate how this algorithm works on the example program ssf in
Section 1. ssf uses functions sum, map, and upto which are defined in pattern
matching way as:

sum = Azs. case xs of Nil — 0
Cons (a,as) — plus (a, sum as)
map = MAg. Axs.case xs of Nil — Nil

Cons (a,as) = Cons (g a, map g as)
upto = A(m,n). case (m > n) of True — Nil
False — Cons (m,upto (m + 1,n)).

We pick up sum from these definitions, and apply Algorithm A which in turn
calls Algorithm D. We have

Do) {} sum
Dlplus (a, sum as)] {} sum

{3 {10

({a}, {(v], sum as)}, plus (a,v1))

with

1_()’ I—A()OZO

L= (a,as), ¢2 = Aa,v)). plus (a,v]) = plus
and
¥ = Mws. case xs of Nil — (1,())

Cons (a,as) — (2, (a,as))
= outp

F = 11+!Intx]I.

So we have derived the following hylomorphism for sum:
sum = [0 v plus,id,outp]rF-
Similarly we can derive hylomorphisms for map and upto as follows.

map

Ag. |[¢, id, outF]]F,F

where ¢ = A(). Nil v A\(v,v"). Cons (g v,v")

upto = [ing,id,Y]rF

where ¥ = A\(m,n). case (m >
True = (1,())
False = (2,(m,(m + 1,n)))

n) of
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where
F = ']_—}-'ITLtXI(: FLInt)
inp = Nilv Cons
outr = MAzxs. case xs of Nil — (1,())

Cons (a,as) — (2,(a,as))

4.2 Restructuring Hylomorphisms

Generally, the behavior of a hylomorphism [¢,7,%]c,r could be understood
as follows: v generates a recursive structure, n transforms one structure into
another, and ¢ manipulates on the resulting recursive structure. It is possible
that the ¢ and v contains the computation which 7 can do. The aim of
restructuring is to extract as much computation as possible from ¢ and v
and move it to 7. This simplifies ¢ and ¢ and makes the derivation of the
data production and consumption schemes 7 and ¢ easier in the next stage.
A basic restructuring algorithm for the ¢ component is given in (Hu et al.
1996b) and an extended version of the algorithm is shown in Figure 4. The
restructuring algorithm for the ¢ component is shown in Figure 5, which was
omitted in (Hu et al. 1996b).

Algorithm Sy to restructure ¢ = ¢ v --- v ¢, applies an auxiliary al-
gorithm & to the bodies t; of lambda expressions ¢;. Algorithm & detects
maximal subterms in each ¢; without recursive variables and generates a new
term t; with these subterms substituted by new variables, and Sy makes it as
a body of a new lambda expression ¢;. In more detail, the algorithm & accepts
as input a term ¢; and a set of recursive variables and returns as result a pair:
a set of maximal subterms containing no recursive variables with correspond-
ing fresh variables, and a new term from ¢; with these subterms substituted
by corresponding fresh variables. The computations related to these subterms
are then moved to the 17 component.

As an example, we will restructure the following hylomorphism obtained in
the previous section.

map g = [Nil v X(a,v]). Cons(ga,v}),id, out]

In this case, ¢ = A(). Nil and ¢ = A(a,v;). Cons(ga,v;). Here v] is a
recursive variable and there is only one maximal non-recursive subterm as
underlined. Our algorithm will move g a out of ¢ as

¢2 = ¢I2 ° N
where ¢4 = A(ug,,v]). Cons(ua,,v})
Nga = /\(a'7 Ui) (g a, Ull)
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Solldr v -+ ¥ ¢y bla,r]l = [¢) v -+ v b5, (g, + -+ +19,) ° M ¥lar F
where
Gi++Gn=G
IN(vgy) X - x (v, ) x 1 X -+ X I;; = Gy
Avigs. - Vi, ’U;1 s ,v;li ).t = ¢; (assumevgl, A v;liare recursive variables)
iy, tin)y ooy Wi s tim ) 1 87) = EMLD{Y, -0, }
Ng; = )\(vil,...,viki,vgl,...,vgli).(til,...,timz,,vgl,...,vgli)

G, =T (ugy) X -
G=G++G),
¢;:)\(u¢1,...,uimi,v;1,.. v ).t

Assume that u is a fresh variable in the following:

E[v] sr
E[ sr
El(t1, .., tn)] sr

E[Mwv.t] sr

Ellet v = t1 in to] sr

Elcase tg of p1 — t1

5 iPn — tn] sr

Evtr-tn] sr

E[C t -+ ta] 5

Elto t1] sr

Elto, t1, t2lFy, i ]l 5r

El(n, )] sr

Vars, (t)

({0}, u)
= if Vi.Vars, (t;) then ({(u, (t1,...,tn))}, )
else (w1 U ---Uwnp, (t),...,t0))

X !F(uimi)xh X oo X Iy,

i

.y 7;11-

if Vars,.(v) then ({(u,v)},u) else ({},v)

where (w;, t]) = E[ti]sr (i =1,...,n),
if Vars, (t') then ({(u, Av.t)},u) else (w, Av.t')
where (w,t') = E[t] sr
if Vars, (to) A Vars, (t}) then ({(u,let v = t1 in to)}, u)
else (wo U w1, let v = ] in t()
where (w1,t]) = E[t1] sr, (wo,ty) = E[to] sr
if Vi.Vars, (t;) then ({(u,case to of p1 — t1;-+;pn = tn)},u

else (wo U - -+ U wp,case ty of p1 — t;-- 300 — t),)
where (w;, t}) = E[t;]s» (1 =0,...,n),
if Vi.Vars,.(t;) then ({(u,v t1 -+ tn)}, )
else (wo U+ Uwn,tyth 1)

where (wo,ty) = E[v] s, (wi,t;) = Eti]sr (1 =1,...
if Vi.Vars, (t;) then ({(u,C t1 - -t,)},u)

else (w1 U+ Uwy,Cty- th)
where (w;,t}) = E[ti] s, i =1,...,n),
if Vars,. (tg) A Vars, (t]) then ({(u,to0 t1)},u)

else (wo Uwi, ty t]))

where (wo,ty) = E[to] sr, (w1,t]) = E[t1] sr
if Vi.Va’r‘sr(t’i) then ({(u, [[to,t1,t2]]p0)pl)},u)

else (’wo Uwi Uwa, [ts,t’l,té]]po,pl))
where (w;, t}) = E[t;] s, (i =0,1,2),
if Vars, (t') then ({(u, (n,t))},u) else (w, (n,t"))
where (w,t') = E[t] s,

tis a variable A t & s,

Figure 4 Restructuring Hylomorphisms — ¢ part
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S¢[[[[¢,7I,1/1]]G,F]] = |[¢777 ° (711/;1 + e +n¢n)71/)l]]G,F’
where
Avs.caseto of p1 — (1,61);++;pn = (N, tn) = ¢
Fy+--+F,=F
IT(t,) X+« X !F(tiki) xI1 x---xIj; = F;

(tilf"'ftiki7tti17"'5ttizi) =1

{viy,--- 3 Vi, }=FV[(tsy,--- Ly, )] global_vars
Ny; = /\(vil,...,vimi,vgl,...,vgli).(til,...,tiki,vgl,...,v;l_)
t:_':(Uhv---avimiattip---attizi) '
Fl =10(vi;) X =+ X I0(vi,,,, ) X It X+ - - X I
F’:F{+"'+F7’z
P = Xws.case to of p1 — (1, t]); ;00 — (n, )
FV[v]sg = ifv € s4 then {} else {v}
FV[isg = {}
FV[(t1,...,ta)]sg = s1U - Usy
where s; = FV[t;]sg (i=1,...,n)
FV[Mv.t]sg = FV[t] (sg U {v})
FV[let v =ty intg]sg = soU sy
where 51 = FV[t1] sg, st = FV[to] (sg U{v})
FV[case to of p1 — t1 =sgU---Usp

joospn — tn]sg  where s; = FV[t;] (sg U Pat(ps)) (i =0,...,n), po=()

FV[vty---ta] sg
FV[C t1---tn] sg
FV[to t1] s¢
FVI[[to, t1, t2]ry, 1, ] 59

FV[(n,t)] 54

SoU---Usp

where sg = FV[v]sg, s; = FV[t;]sg i=1,...,n)

s1U---Usp

where s; = FV[ti]sg (i=1,...,n)

so U s1

where so = FV[to] sg, s1 = FV[t1] sg
soUs1 Uss

where so = FV[to] sg, s1 = FV[t1]sg, s2 = FV[t2] sg
FV[t] s¢

Figure 5 Restructuring Hylomorphisms — % part

and finally give the following structural hylomorphism:

map g = [Nil v M(ug,,v}). Cons(us,,v}),id + A(a,v}).(ga,v}), out]

This transformation simplifies ¢ of (map g) into Nil v A(uz,,v;). Cons(uz,,v])

(i-e., in) making it easier to apply the Acid Rain Theorem.
Dually, Algorithm Sy, restructures ¢ in a typical general form:

1 = Avs. case to of p1 = (1,t1);-- 500 — (0, 15).

It extracts free variables from t;,,---,;, ,

constituents of ¢;’s, which are not
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related to recursive parts (corresponding to the identity functor T). New terms
t; work only as suppliers of free variables, and actual computation is performed
by the generated 7y, . Shifting 1, to the n component removes many compu-
tations from ).

4.3 Capturing Schemes of Data Production and
Consumption

In order to apply the Acid Rain Theorem for fusion, it is expected that ¢ and
1 in a given hylomorphism [¢,7n,¢]q,r : A — B are described as 7ing, and
o out g, respectively. Here, 7 and ¢ are polymorphic functions and F4 and Fg
are functors defining types A and B respectively. Our laws for deriving such
7 and o are as follows, whose proof can be found in (Hu et al. 1996b).

Theorem 2 (Deriving Polymorphic Functions)
Under the above conditions, 7 and ¢ are defined by the following two laws.

Va. (o) c¢9=¢"G(a)m VB. ¥ [Blr = F[B)r, ° ¢
7=\ ¢ ’ o=A3.7¢ O

This theorem, though being general, does not show clearly how to find
¢' or ¢/ in a constructive way (i.e., by an algorithm). Therefore, to imple-
ment an automatic calculational fusion system, we must develop constructive
algorithms for implementing those non-constructive transformation laws. In
this section, we shall propose such basic algorithms; discussing in detail the
derivation of 7 and making brief remarks on the dual derivation of .

(a) Algorithm for Deriving 7

When a composition of two hylomorphisms [, _,outr]_r ° [#,-, JF/,_ is to
be fused by the Acid Rain Theorem, Theorem 1 (a), ¢ must be described
by a polymorphic function 7, a function abstracting over data constructors,
satisfying T7ing = ¢. By typing, we know that ¢ should be F'uF — uF,
meaning that ¢ receives a F'-structure data whose recursive components are
of type uF', and then assembles some data of type uF'. Our idea of deriving
T from ¢ is thus to detect the data constructors of uF and abstract them.

To be precise, let C,- - -, C,, be the data constructors of uF', namely ingp =
Ci v -~ v Cp, and let ¢,---,c, be lambda variables used in abstract-
ing Cy,---,C,. We shall derive 7 by lambda abstraction of Cy,---,C)y in
¢ and then rewrite ¢ by 7 applied to ing, ie, ¢ = Ting, where 7 =
Aer v -+- v ¢p). ¢' meeting Theorem 2.

For the sake of simple presentation, we shall assume without loss of gen-
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erality that ¢ for which we are going to derive 7 is in the following specific
form:

¢r19 o v g (F{+ -+ Fp)uF — pF,
and each ¢; : F/uF — pF is a lambda abstraction:
Gi = AViys 3 Vi, V3575 0, ) b (1)

in which Fj =!T'(v;,) x - -+ x!T(vy,,,, ) x It X - - - X I, i.e., identity functors after
constant functors. Here, the lambda variables corresponding to the identity
functor I are usually called recursive variables and are explicitly attached
with a prime ('). Clearly, if we can derive 7; for each ¢;, it soon follows the 7
for ¢ will be 7 = A¢s. (71 ¢s v -+ v 73 ¢s). Therefore, our attention turns
to the derivation of 7; from ¢; defined by Equation (1). As we know that
not every ¢ guarantees existence of 7, some restriction on ¢ becomes neces-
sary. We have two requirements for choosing proper restriction: one is that
it should be automatically checkable whether a given ¢ meets the restriction;
another is that it should not seriously limit the descriptive power. We borrow
a similar idea of Canonical Terms in (Sheard & Fegaras 1993) and impose
this restriction on ¢; in which the term ¢; has one of the following forms:

1. a variable: v, bounded in the lambda abstraction;

2. a constructor application: C ¢} --- t., where C is a data constructor
and each ¢} is a term;

3. a hylo application: [¢} v --- v ¢L,,n,out] v', where ¢} is in our restric-
tive form and v’ is a recursive variable;

4. a function application: f t1 --- t,, where f is a global function and each
term t; has no reference to any recursive variable.

It is worth noting that our ¢;, though looking rather restrictive, is the “core”
to which a more general ¢; can be transformed. First, the restructuring algo-
rithm in Section 4.2 is a great help, because we simplifies ¢ a lot by moving
out many computations not relating to the construction of the resultant data
of type pF'. In fact, after restructuring, our restrictive term should not in-
clude the last form (a function application) because the terms of this form
will be extracted and moved to the n component. Second, some constructs
like let, case and application of non-recursive functions need not to be consid-
ered because they are removable by preprocessing; local declarations can be
lifted to be global, case structures can be embedded in hylomorphisms, and
application of non-recursive functions can be removed by unfolding. Third,
not surprising but convincing, all potentially normalization programs, which
have reasonable descriptive power, can be automatically turned into this form
(Sheard & Fegaras 1993).
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Assume: F=Fy +---+ Fp,inp=C1 Vv -+ v Cy and c1, -+, ¢p, are fresh variables.

¢ F'uF — pF
¢ = Tinp where T = F[¢]

where

Flpr v -+ v ¢l = Acs. (Flp1l es v - -+ v Fly] cs)
.7-'|[/\(vi1,~~~,vimi,v§1,~~-,v§l').t¢]

=Aer Voo V) A(Vigs s Vi, ,11;-1 o ,v;-li ).F[ti]
F'[v]l = (e1 v --- Yeu)r v (* v is not a recursive variable *)
F'[] = (* v is a recursive variable *)

FICs ty -+ ] = ci(Fy F' (th,-+,t,))
F'I[¢ s n, outplpr 7 v'] = [FIP'] (1 ¥ -+ Y cn),n,0utp]e p v’
f’[ftgl tfn’] = ([Cl LV anD (f t’l t:q’)

Figure 6 Deriving 7

With the help of these restrictions, our algorithm becomes simpler and the
proof of the correctness of the algorithm becomes easier. Now we propose our
algorithm F' to derive 7; from ¢;:

¢; = Ting, where 7, = Xey v -+ v ¢p). A(viy, -, 04, ugl,---,v;,i).}"[ti]

This lambda abstraction substitutes appropriate occurrences of each construc-
tor of uF in t; by its corresponding lambda variable. The algorithm F' is given
in Figure 6, performing one of the following processes corresponding to the
kind of ;. Notice that all expressions which F' are applied to must have the
type of uF'.

1. When ¢; is a variable, do nothing if it is a recursive variable. Otherwise,
as it may be bound to an expression that includes uF' constructors, we
must proceed by applying the catamorphism (¢; v --- v ¢,)F to the
expression to replace each constructor of uF' by the lambda variable ¢;.

2. When t; is a constructor application C; t] ---t,., C; has to be substi-
tuted by the corresponding lambda variable ¢;. And the algorithm F’ is
recursively applied to its arguments.

3. When ¢; is a hylo application [¢',n,outp]p p, our main algorithm F
(not F') is applied recursively to ¢'.

4. When ¢; is a function application f t; --- t,, we apply (c1 v -+ v ¢,)).
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(b) Correctness of Algorithm F

When abstracting constructors in ¢, one might wonder why not just simply
substitute in ¢ all occurrences of the constructors of puF with corresponding
lambda variables. In fact, special care should be taken here. First, there are
two kinds of constructors of uF' in ¢, one is to be substituted and the other
is not. To see the difference between them, let us consider an example

¢ = X(). Nil v A(v,v"). Cons (Cons (v, Nil),v").
We can derive a correct 7 for ¢ as
7= Xer v e2). (M. e1 v A(v,v'). 2 (Cons (v, Nil),v")).

This tells us that we must not substitute the constructors inside an element
of the list (as underlined). In the rule for constructor application in Figure 6,
this fact is taken into consideration in applying F' recursively only to suitable
arguments directed by functor F;. The second point to note is that we have to
consider the construction of non-recursive arguments of ¢ which are actually
used for producing the final result. In this case we have to substitute them in
this phase by applying a catamorphism.

Theorem 3 (Correctness of Algorithm F) For the algorithm in Figure
6, we have that

(i) ¢=7Fld] inp
(i) F[4]: VA.(FA — A) — (F'A — A)

Proof Sketch. The proof of (i) is straightforward. We can obtain ¢ from
Fl4] inF by recovering cy,- -, ¢, with Cy,---,Cy respectively and using the
fact that (C1 v --- v Cp)F is the identity function over type pF'.

As to (ii), it will be true according to Theorem 2 if we can prove that, for
any ¢ : F'(uF) — pF, we have

Va. () ¢ = (F[¢] a) * F' (e
This can be done by induction over the structure of ¢. O

To make the point clear, we demonstrate an example concerning the ab-
straction of production of a tree instead of a list. Consider the function foo
which takes a list and generates a balanced tree:

foo = Azs. case xs of
Nil — Leaf
Cons (a,as) = Node (double a,squareNodes (foo as), foo as)
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where squareN odes is a hylomorphism:

[MN).Leaf v
A(v, v, v5). Node(v, v, v5),id + (v, v1,v5).(square v, v}, v}), outp, |y Py

and Frp is the functor defining the tree type in Section 2.2. By applying the
algorithm for hylomorphism derivation, we have

foo =[@,id,outr,  |F, , Fr,
where ¢ = A(). Leaf v A(v,v"). Node (double v, squareNodes v',v")

which can be restructured into

foo=[¢,id + A(v,v').(double v,v'),outr, |F, , Fy,
where ¢ = A(). Leaf v A(v,v"). Node (v, squareNodes v',v").

Now applying Algorithm F to derive 7 for ¢ : Ff,(uFr) — pFr in the above
hylo gives our result.

foo = [rinp,,id+ A(v,v').(double v,v'),0utr, |, Fy,
where 7 = Ay v ¢2). (A(). 1 v
)‘(U7UI)' C2 (Ua |I)‘()cl v )\(U,’Ui,’Ué).CQ (’Uavia’ué)a
id + A(v,v],v5).(square v, vy, v5), out gy | pp o V', V"))

(c) Algorithm for Deriving o

Another case of applying the Acid Rain Theorem is to fuse the composition

of two hylomorphisms like [, ., ¥]_r ° [inF, -, -]F,_, where o must be deribed

from v such that coutp = 1. Deriving o is the dual process of deriving 7, but

from technical point of view, there are some important points worth noting.
Our algorithm is shown in Figure 7, deriving ¢ from ¢ : uF' — F'uF in the

following restrictive form e:

1 = Avs. case vs of p1 = 15+ ;Pp = tn

in which the expression after the keyword case has been simplified to a vari-
able. The key point of our algorithm is to transform the “implicit” decom-
position of input by pattern matching into an “explicit” one by using outp
which decomposes pF' into FuF. To this end, we define dy,...,d,, which
decomposes (unfolds) data of type uF' successively by outp as follows.

dy
do

oulp vy
F outp d;

dm = F™!outp dpm_1
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v : pF — F'uF
¥ = ooutp, where o = AB.G[¢]

where
G[Avs.case vs of p1 = t15-- ;P00 — tn] =
Avg.let d1 = B to

do = F Bd;

dm = Fm-l B dm-1
in
case (d1,...,dp) of

Py =t

Pl = tn
where (vi,q;) =G'[pi] (i=1,...,n)
[qi17---7qi11.] =4q;

m = maz{|ql;- .-, lgn|}
p/i = (Qilv e aQizi 9=y ey —) (m'tuple)
G'lvl = (v, )

G'ICjp1--pal = (- @)
where (vi,q;) = G'[pi] (i=1,...,n)
g=(, (v1,---,vn)) : map (Az.(j, 2)) (2ipn 1" " qn)
g'l(ps,---,n)l = (- @)
where (vi,q;) =G'[pi] (i=1,...,n)
q=2ipp g1 qn
/* This zip, is different from the standard in regard to */
/* supplying wildcard _ at the tail for shorter lists */

Figure 7 Deriving o

Here F™ is defined inductively by F™ = F™~! - F'. Now, we can substitute
(di,...,dw): FuF X F2uF x --- x F™uF for vs : uF in 1, and accordingly,
as shown in Figure 7, we apply the algorithm G’ to turn the case patterns
of p1,...,p, corresponding to the original v, into pi,...,p], corresponding to
(di,-..,dp)- Finally, we lambda abstract all outg’s in all d;’s and obtain the
result o.

We omit the explanation and proof of the correctness of the algorithms for
deriving ¢ from . Instead, we give an example. A function calculating the
maximum of a nonempty list of integers is defined and transformed into a
hylomorphism as:

maximum = Axs. case xs of Nil — error
Cons (a,Nil) > a
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Cons (a,as) = max(a, maximum as)
= [¢,id,¢]F F
where ¢ = error v id v max
¥ = Azs. case zs of Nil — (1,())
Cons (a, Nil) = (2, (a))
Cons (a,as) = (3, (a,as))
F'=11 4+ Int + Int x I.

We apply Algorithm G’ to the pattern part of the case expression in :

g'va] = (- [(,0)
G'[Cons (a, Nil)] = (5, q)
where (a, []) = G'[a] (- [(1,0)]) = ¢'[Vil]
q=(2, (a,-)) :map (Az. (2,2)) (zip [ [(1,))])
=12, (a,-)),(2,(-,(1,0))]
G'[Cons (a, as)] = (5 q)
where (a, []) = G'[a] (as, []) = G'[as]
q= (27 (aaas)) : []
= (2, (a,as))]

The longest list produced by G’ is for the second alternative and its length
is two. So we apply outr twice to generate the case expression for switching
alternatives. The ¢ function with a let expression which binds decomposed zs
to d; and ds is given by

o = AB.G[\xs. case zs of Nil = (1,())
Cons (a, Nil) = (2,(a))
Cons (a,as) — (3,(a,as))]
= M3. Azs.letdy =B xs
— F' Bd; in
case (du,dy) of ((1,()),-) = (1,0)
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B
/ X
FB F'B

(a) ¢ and 1 in general case

B uF uF’
cout g Ting 017 \Yw oout g ing
FB F'B FuF F'uF FuF' F'ur’
(b) Fusion Impossible (¢) B=puF (d) B = uF'

Figure 8 Relation between two hylomorphisms

4.4 Applying Acid Rain Theorem

In this section, we describe how to apply the Acid Rain Theorem for fusion.
Theorem 1 indicates that it must have special forms [, _, 7ing]  [outr, , ]
or [, -,ing] ° [ooutr,_,-] to apply this theorem. Now we are confronted
with some technical problems. For example, how to find a potential fusible
composition in a program? And how to check automatically if the composition
can really be fused by the Acid Rain Theorem?

We define our potential fusible compositions as follows, where there really
exist intermediate data structures (rather than the data supported directly
by machines such as data of types float and Int).

Definition 3 (Potential Fusible Composition) A term is called a poten-
tial fusible composition if (i) it is either in the form of ¢; ° 2 or in the form
of (t1 (t2 t)); and (ii) the domain of ¢; is a data structure defined by an
endofunctor. O

We start with the main function to which we apply fusion transformation.
We then select a potential fusible composition in the definition body, say
t ° to, and try to fuse it with the Acid Rain Theorem by obtaining suitable
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hylomorphisms for both ¢; and t5. Now consider a fusion of two hylomorphism
h1 ° hg!

hi:B—C hy:A— B
hi = |I—a - l/)]]_,F hy = |[¢a - —]]F’,_

Figure 8 (a) shows the relation between ¢ and ¢, and the data types delivered
by them. To apply the theorem, the following procedure is taken. The terms
in parentheses indicate the dual condition to be checked at the same time.

1. Check whether B is uF (uF'). Obviously, if B is neither uF nor puF’
as shown in Figure 8 (b), we cannot obtain the form to which the Acid
Rain Theorem is applicable.

2. Check whether v (¢) is outp (ing), in case B is uF' (uF"). Generally,
it is impossible to tell whether two functions are equal or not. But we
can judge whether ¢ is ing by applying ¢ and ing to all (finite) cases
of data type uF' and comparing the result values.

3. Check whether ¢ (1) in one hylomorphism can be transformed to Ting (couts),

if ¥ (@) in another is outr (ing ). By using the algorithms in Figures 6
and 7, we arrive at the state as shown in Figures 8 (c) and (d).

It is the compositions passing these tests that the Acid Rain Theorem can be
applied to.

Returning to our running example ssf, we can fuse the derived hylomor-
phisms successfully. Changing function applications to function composition
and noting that

[61,m1,0utr]F,F ° [ing,n2, Yol rr = [¢1,m ° 02, Y2lrF
lead from the original function ssf to the following.

ssf = sum ° map square ° upto
[0v (+),id,outr]pF ° [ing,id + A(v,v"). (square v,v"),outpr]F F °
[inF,id, 1/}]]F,F
= [0v (4),id+ A(v,0"). (square v,v"),outp]rF ° [inF,id, Y] rr
[09 (+),id + A(v,v"). (square v,v"), ¥]F.F
A(m,n). case (m > n) of True — 0
False — square m + ssf (m +1,n)
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4.5 Fusing inside Hylomorphisms

So far we have shown how to fuse between two hylomorphisms. We have not,
however, mentioned fusion inside hylomorphisms. At a first glance, it seems
that this fusion is very simple; performing fusion transformation for each
component in a hylomorphism. But this simple strategy cannot effectively
remove intermediate data structures among three components. As a simple
example, consider the following hylomorphism (derived from concat > map f):

[AO-O) v Mu,v).u+v, id v Aa,b).(f a,b), out]

in which each component cannot be fused any more. But if we shift the # part
to the ¢ part as:

[AO-O v Auw,v).fu+v, id, out]

then the data structures produced by f become eliminatable as they are con-
sumed by (++ v).

Our idea is to perform fusion for a hylomorphism, say [¢,n,?], in the
following way:

1
2

3
4

Fuse each component of the hylomorphism [¢ 7, id, ¢];

Restructure the hylomorphism obtained in Step 1 and get [¢', 7, ¥'];
Fuse each component of the hylomorphism [¢',id,n" ° ¥'];
Restructure the hylomorphsims obtained in Step 3.

(
(
(
(

— N —

4.6 Inlining Hylomorphisms

Inlining hylomorphisms is the inverse process of hylomorphism derivation.
All the hylomorphisms left in a program are transformed back to recursive
definitions.

5 PERFORMANCE EVALUATION

All algorithms reported in this paper have been implemented. To evaluate the
effectiveness of the HYLO system and get an idea of how much improvement
could be gained by our approach, we have investigated the performance of
three programs, namely ssf, unlines, and queens, both before and after our
fusion transformation. ssf is our running example. unlines, a program from
the Gofer prelude, accepts a list of strings and returns a new string by con-
catenating all strings separated by the CR character. queens is the well-known
queens program, placing n queens on an n X n chess board.
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Table 1 Experimental results using Gofer (} applies to a text with 100 words)

Program Reduction Steps Heap Cells

before fusion after fusion ratio before fusion after fusion ratio
ssf(1000) 11,015 6,005 0.54 17,030 10,019  0.59
unlinest 4,151 1,759 042 8,079 4,393 0.54
queens(10) 33,776,593 26,419,252  0.89 65,428,706 50,839,988 0.78

Table 2 Experimental results of queens using GHC

Total Time (secs) Heap Cells (mbytes)
before fusion after fusion before fusion after fusion
by cheap fusion 9.41 5.13 61.27 15.55
by hylo fusion 9.41 4.10 61.27 9.38

We proceed our experiments using Gofer interpreter (Version 2.30a) and
Glasgow Haskell compiler (GHC for short, Version 0.29). First, these programs
were evaluated using Gofer. The experimental results are given in Table 1,
showing improvement both in time (reduction steps) and in space (heap-
cells). For example, it indicates that our HYLO system can save about half of
both reduction steps and heap cells for ssf and unlines. To be more concrete,
we give both the initial and transformed programs for the queens problem in
Figure 9. Its non-triviality shows the power of our HYLO system.

Second, we compiled both the original and transformed queens programs, in
order to compare our fusion with the cheap fusion (Gill et al. 1993) which has
been already implemented in GHC. We enable and disable the cheap defor-
estion in GHC by two compile options -0 and -fno-foldr-build respectively.
Table 2 gives the experimental results indicating that our fusion gets better
results than the cheap fusion; about 20% faster with 60% heap cells. Tt is also
interesting to see that the improvement using GHC is exciting (comparing
with that using Gofer); reducing time from 9.41 sec to 4.10 sec and heap cells
from 61.27 mbytes to 9.38 mbytes.

6 DISCUSSION AND CONCLUDING REMARKS

Programming with the use of generic control structures which capture pat-
terns of recursions in a uniform way is very significant in program transforma-
tion and optimization (Gill et al. 1993, Meijer et al. 1991, Sheard & Fegaras
1993, Launchbury & Sheard 1995, Takano & Meijer 1995). Our work is closely
related to these studies. In particular, our work was greatly motivated by the
work in (Sheard & Fegaras 1993) and (Takano & Meijer 1995). Sheard and
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nqueen = 10

queens_initial = (print . sum . concat . queens) nqueen
where
queens 0 = [[]]
queens m = [ p ++ [n] | p <- queens (m-1),
n <- [1..nqueen], safe p n ]

safe p n = all not [ check m n (i,j) | (i,j) <- zip [1..] p]
where m = length p + 1
check m n (i,j) = j==n || i+j==m+n || i-j==m-n

queens_transformed = print (
let
x681 [] =0
x681 ((:) x342 x343)
= let
x680 [] = x681 x343
x680 ((:) x351 x352) = (+) x3561 (x680 x352)
in x680 x342
in x681
(let
x687 x354
= case ((==) x354 0) of
True -> (:) [1 [1
False ->
let
x686 [1 = []
x686 ((:) x375 x376)
= let
x685 x528
= case ((<=) x528 nqueen) of
True ->
case (let
x404 = (+) 1 (length x375)
in let
x682 ((:) x446 x447,(:) x448 x449)
= (&&) (not ((I]) ((==) x448 x528)
) ((==) ((+) x446 x448)
((+) x404 x528))
((==) ((-) x446 x448)
((-) x404 x528)))))
(x682 (x447,x449))
x682 x450 = True
in x682 (let
x683 x458
= (:) x458 (x683 ((+) 1 x458))
in x683 1,x375)) of
True => (:) (let
x684 []
x684 ((:

(:) x528 []
x508 x509)
(:) x508 (x684 x509)
in x684 x375) (x685 ((+) 1 x528))
False -> x685 ((+) 1 x528)
False -> x686 x376
in x685 1

in x686 (x687 ((-) x354 1))

in x687 nqueen))

o~

Figure 9 Initial and Transformed queens Programs
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Fegaras implemented a fusion algorithm called the normalization algorithm
which can work on the language containing folds, a special case of hylomor-
phisms, as basic recursive form. Because of the restriction of descriptive power
of folds, the power of the fusion system is rather limited. On the other hand,
Takano and Meijer adopted hylomorphisms as the basic recursive forms rather
than folds. Their work was motivated by Gill, Launchbury and Peyton Jones’s
one-step fusion algorithm (Gill et al. 1993) relying on functions being written
in a highly-stylized build-cata forms (i.e., folds with data constructors being
parameterized), and implemented another one-step fusion algorithm based on
the Acid Rain Theorem. However, it is impractical to force programmers to
define their recursive definitions only in terms of the specific hylomorphisms so
that the Acid Rain Theorem could be applied directly (Launchbury & Sheard
1995).

This work extends our previous work (Hu et al. 1996b) in which the auto-
matic algorithms for the derivation of structural hylomorphisms are proposed.
The main extensions are as follows. First, we add new language constructs to
the original core language for practical reasons, and modify the original algo-
rithms for deriving and restructuring hylomorphisms. Second, we develop our
new algorithms for the derivation of polymorphic functions 7 and ¢ imple-
menting the transformation laws given in (Hu et al. 1996b). Third, also the
most important, we are implementing HYLO, stepping towards a practically-
useful fusion system.

Functional programs that HYLO manipulates can be accepted by the Haskell
(core) language. The merit is that the verification of the improvement of func-
tional programs after transformation can be done easily by running them on
Haskell system. It is hoped that the HYLO system will be embedded in the
practical Haskell system.

All transformation algorithms introduced in this paper have been imple-
mented. It is completely mechanical and does not rely on heuristics about
how or when transformation is taken. Although we have to wait for the de-
tailed experimental results to say that this system is effective for practical
programs, we are absolutely convinced that our calculational approach to fu-
sion transformation makes a good progress in code optimization of functional
programs.

Besides evaluating general performance of HYLO, we are currently working
on the extension of our algorithms to deal with recursions traversing over
multiple data structures (Hu et al. 1996¢), mutual recursions etc. in order to
enable more fusion. In the near future, we are going to extend HYLO to be a
general automatic program calculation system, which can optimize functional
programs not only by fusion but also by tupling (Hu, Iwasaki, Takeichi &
Takano 1997), and accumulating (Hu, Iwasaki & Takeichi 1996a), as well as
other optimization tactics.
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