
Bidirectional Interpretation of XQuery

Dongxi Liu, Zhenjiang Hu and Masato Takeichi
Department of Mathematical Informatics, University of Tokyo

{liu,hu,takeichi}@mist.i.u-tokyo.ac.jp

Abstract

XQuery is a powerful functional language to query XML data. This paper presents a bidirectional
interpretation of XQuery to address the problem of updating XML data through materialized
XQuery views. We first design an expressive bidirectional transformation language, and then
translate XQuery into this language. The programs of this bidirectional language can be executed
in two directions: in the forward direction, they generate materialized views from XML source
data; while in the backward direction, they update the source data by reflecting back the updates
on views. Hence, with such an interpretation, XQuery can not only query, but also update XML
source data through views by being executed forward or backward.

We prove that this language satisfy two well-behaved criteria, the stability property and
the extended round-tripping property. The stability property is already used by the existing
view updating methods, while the extended round-tripping property is proposed by us for the
expressive bidirectional language in this work. It is a challenging task to design suitable well-
behaved criteria for this expressive bidirectional language and prove that it satisfies these criteria.
We design a type system with regular expression types for this bidirectional language, and give
it a novel use to provide guiding information for transforming back the updated views with
insertions. We prove that this type system is sound with respect to the forward semantics of
this language, and the type of source data is preserved by the backward executions of well-typed
programs. We have implemented our approach and applied it to some XQuery use cases from a
W3C draft, which confirms the practicability of this approach.

Key words:

1. Introduction

XQuery [1] is a powerful functional language designed to query XML data. The role
of XQuery to XML is just like that of SQL to relational databases. However, XQuery
still lacks an important feature that SQL has. This feature is view update [2–4], that is,
updates on a view can be reflected back to the underlying relational database that makes

Preprint submitted to Elsevier 3 October 2007

up this view. In other words, XQuery can generate views from XML source data, but it
cannot propagate view updates back into the source data.

This paper presents a translational semantics for XQuery with a bidirectional trans-
formation language. In this bidirectional language, every program can be executed in two
directions: in the forward direction, it produces a materialized view from the source data;
while in the backward direction, it updates the source data by reflecting back the updates
on the view. By this way, every XQuery expression can be executed in two directions,
and the backward execution will put the updates on views back into the source data.

The underlying bidirectional language is inspired by the lens language proposed in [5],
which includes a collection of combinators, called lenses, for tree transformations. The
technique used by the lens language is to define both the forward and backward semantics
for each combinator, and the backward semantics is responsible for yielding the updated
source data. However, as stated in [5], it is not clear how expressive the combinators
defined in the lens language could be, or what limits the bidirectional languages defined
with this technique will have. For our work, the question becomes whether this tech-
nique can be used to define an expressive bidirectional language to interpret XQuery.
In this paper, we give a positive answer to this question by designing a bidirectional
language that is expressive enough to interpret XQuery. The bidirectional language we
designed provides a way of treating the variable binding mechanism in a bidirectional con-
text and defines a set of combinators suitable for constructing and deconstructing XML
data. These features are critical to interpret XQuery. For example, the variable binding
mechanism provides the basis for interpreting function calls, for and let expressions in
XQuery.

We design a type system with regular expression types for this bidirectional language.
Given a program of this language and the type of source data, the type system can check
whether this program is well-typed, and if yes, it generates the corresponding view type
and annotates this program with appropriate type information. The soundness property
of this type system is proved with respect to the forward semantics of this language, so
that a well-typed program does not get stuck in its forward execution and generates the
view with the correct view type. The backward executions of well-typed programs may
fail even if the updated views have correct view types since views may include conflicting
or improper updates, that cannot be detected statically by this type system. For the
successful backward executions of well-typed programs, we prove that they preserve the
types of their source data.

We consider three kinds of updates to XQuery views: modification, insertion and dele-
tion. The insertions on views are more tricky to transform backward than modifications
and deletions. This is because inserted values do not have counterparts in the original
source data. Hence, it is difficult to determine the structure of the updated source data
without the information derived from the original source data for where and how to
put back inserted values. In this work, we address this problem by exploiting the types
annotated on programs by the type system. These annotated types provide guiding in-
formation for putting inserted values back in a reasonable way.

The well-behavedness of view updating methods [2,3,6,5] is generally characterized
by two criteria, the stability property and the round-tripping property, which may be
called differently in different systems. The stability says the source data should not be
changed if it is updated by the view updating methods with unchanged views. The round-
tripping property says if the source data is updated with respect to an updated view,

2

then executing the same query on the updated source data should get the same view as
the updated view. The stability property is suitable and will be used as one criterion for
the well-behavedness of our bidirectional language. However, the second criterion is not
suitable for our language any more. For example, if a program of our language creates a
view containing several copies of one value from the source data (i.e., the dependency in
view [7]), then modifying one copy will violate this criterion even if the value in the source
data is correctly updated. This is because executing this program on the updated source
data will generate a different view where all copies of the value become the modified one.
In this work, the second well-behaved criterion for our bidirectional language is called
extended round-tripping property. In this criterion, we do not require the updated view
and the view generated from the updated source data be the exactly same. Instead, we
require all updates in the former view be kept in the latter view, and all unchanged values
in the former view be kept or changed reasonably in the latter view.

The main technical contributions in this paper are summarized as follows.
– We design a bidirectional language expressive enough to interpret XQuery, and prove

that it satisfies the stability property and the extended round-tripping property. We
present the translation rules from XQuery Core to the bidirectional language, and
prove the correctness of this translation.

– We design a type system with regular expression types for this language. We prove that
this type system is sound with respect to the forward semantics of this language, and
the backward executions of well-typed programs preserve the types of their source data.
After type-ckecing programs, this type system annotates the programs with types.
These annotated types provide guiding information for transforming backward views
with insertions. We illustrate the difficulties of processing insertions on views and
present our type-based solution.

– We have implemented our approach and applied it to some XQuery use cases from a
W3C draft [8]. The implementation and application examples on XQuery use cases are
available at [9].
The remainder of the paper is organized as follows. Section 2 gives an example to

illustrate our motivation. Section 3 defines the bidirectional language without consider-
ing insertions on views and Section 4 proves the properties of this language. Section 5
interprets XQuery with the bidirectional language. Section 6 presents the type system.
Section 7 discusses the insertion problems and revises the bidirectional semantics of the
language for supporting insertions according to the annotated types. Section 8 introduces
our implementation. Section 9 and 10 gives the related work and conclusions of the paper,
respectively.

2. A Motivating Example

We explain the motivation of this work by the XQuery expression in Figure 1, which
is an XQuery use case from the W3C draft [8]. Suppose the file “book.xml” contains the
source data in Figure 2. When executing the query in Figure 1, we get the view in Figure
2, which can be regarded as the table-of-contents of the source data.

On this view, users may expect to do some updates, such as modifying titles or at-
tributes, inserting or deleting sections. For example, we change the subsection title of
the first section on the view from “Audience” into “Prospective Readers”, and insert a

3

declare function local:toc($book-or-section)

{
for $section in $book-or-section/section return

<section>

{$section/@id, $section/title, local:toc($section)}
</section>

};
<toc>

{ for $s in doc("book.xml")/book return local:toc($s)}
</toc>

Fig. 1. The Motivating XQuery Expression

<book>

<title>Data on the Web</title>

<author>Serge</author>

<author>Peter</author>

<author>Dan Suciu</author>

<section id="intro" difficulty="easy">

<title>Introduction</title><p>Text ... </p>

<section>

<title>Audience</title><p>Text ... </p>

</section>

</section>

<section id="syntax" difficulty="medium">

<title>A Syntax For Data</title><p>Text ... </p>

</section>

</book>

1) The Source Data

<toc>

<section id="intro">

<title>Introduction</title>

<section><title>Audience</title></section>

</section>

<section id="syntax">

<title>A Syntax For Data</title>

</section>

</toc>

2) The View

Fig. 2. The XML Source Data

new section after the second section. Obviously, the updated view and the source data
currently contain inconsistent information. With bidirectional interpretation of XQuery,
this problem can be easily solved. We just need to execute backward the query in Figure
1 and then the updates on the view will be reflected back to the source file. That is, the
subsection title of the first section in the file “book.xml” becomes “Prospective Readers”
and the second section is followed by a newly inserted section. This example can be found
at [9].

4

S ,T ::= () | V

V ::= v, V

v ::= str(u,o) | <tag(w,o)>[S]

u ::= ori | non | mod | ins | del

w ::= ori | ins | del

o ::= s | c

Fig. 3. Syntax of Data

3. The Bidirectional Language

In this section, we define the bidirectional language for interpreting XQuery. The back-
ward semantics of the language in this section does not consider insertions on views (also
called target data). In Section 7, we will discuss the problems encountered when views
include insertions and revise the language semantics to support insertions.

3.1. The Representation of Data

Figure 3 gives the syntax of source data and target data, denoted by S or T , which is
either an empty sequence () or a sequence V of strings or XML elements. To save space,
the end tags of XML elements are omitted and their contents are enclosed by brackets.
For example, the element < author >Tom</author > is represented as <author>[Tom].
This form is borrowed from [10]. Two sequences S1 and S2 can be concatenated as a
bigger sequence, written as S1, S2, or sometimes S1, S2 for clarity. We have (), S = S and
S, () = S.

Strings or elements are annotated with a pair (u, o) or (w , o), in which u and w indicate
their updating states, and o denotes their origins. The origin annotation o is either s for
values originating from source data or c for values originating from code. For example,
if a program outputs a hard-coded string, then this string is said to have an origin from
code. The updating annotation u can be: ori, non, mod, ins or del, which indicate
respectively strings that are in their original state, not allowed to change, modified or
inserted ones, or strings to be deleted. An element can only be deleted or inserted, so
the updating annotation w is ori, ins or del.

In this work, after backward executions, the annotation del is propagated from values
on views back to their origins (called provenance in [11]) in the source data. These values
can then be removed by an independent procedure like the database trigger, which may
take into account some application-specific constraints on the source data to determine
what values should be really removed. For example, suppose a title element in the
source data in Section 2 is annotated with del. Then it is reasonable to remove the
whole section element containing this title if the schema of the source data asks a
section must include a title.

5

X ::= xid | xconst T | xvar Var | xchild | xsetcnt X

| X1; X2 | X1||X2 | xmap X | xif P X1 X2

| xlet Var X | xfunapp fname [X1, ..., Xn]

P ::= xeq X |xwithtag str | xiselement

G ::= · | G, fun fname(Var1, ...,Varn) = X

Fig. 4. Syntax

3.2. Syntax of the Language

The syntax of this language is defined in Figure 4, where Var and fname represent the
variable names and function names, respectively. Each language construct there repre-
sents a bidirectional transformation between source data and views. The transformations
xid and xconst are for identity and constant transformations, respectively. The trans-
formations xchild and xsetcnt are used to deconstruct or construct XML elements.
The conditional transformation is represented by xif. The transformation X1;X2 is to
execute X1 and X2 sequentially with the result of X1 as the input of X2, while the
transformation X1||X2 executes X1 and X2 independently with their results combined
together as the view. The transformation xmap applies its argument transformation X to
each item in its source data, corresponding to the map function in function programming.
The constructs xlet and xvar provide the mechanism for variable binding and variable
reference, just like the let and variable expressions in conventional functional languages.
The function applications are represented by xfunapp and functions are declared in G.
Other language constructs, such as those to deal with element attributes or name spaces,
are omitted in this paper.

3.3. Evaluation Contexts

This language has forward and backward semantics, so we need two evaluation con-
texts, one for forward semantics, and the other for backward semantics. The context
for forward semantics is denoted by C, which maps variables to values; the context for
backward semantics is denoted by E , which maps variables to pairs of values. If in the
context E a variable Var is bound to a pair (S, S′), then S is the original value of Var,
and S′ is the updated value of Var during backward executions.

An empty context is represented by a period ·. We can build new contexts by concate-
nating contexts and variable-binndings with the comma operator. For example, the new
context C1,Var 7→ S, C2 is the result of concatenating the context C1, the binding Var 7→
S, and the context C2. For clarity, this new context is also written as C1,Var 7→ S, C2.

For a context E , the notation E .1 denotes a context which maps every variable in E
to the first component of the pair bound to this variable by E . Formally, E .1 is defined
as : 1) if E = ·, then E .1 = ·; or 2) if E = E ′,Var 7→ (S, S′), then E .1 = E ′.1,Var 7→ S.
Similarly, the notation E .2 denotes a context which maps every variable in E to the second
component of the pair mapped by E for this variable. Dom(E) (or Dom(C)) means the
domain of E (or C).

6

The forward and backward semantics of each language construct is defined in the
following forms, respectively.
– The forward semantics: [[X]]C(S) = T , meaning that applying X to the source S gen-

erates the view T under the context C.
– The backward semantics: [[X]]E(S , T ′) = (S′, E ′), meaning that under the context E ,

applying X to the updated target data T ′ and the original source data S generates
the updated source data S′ and a new context E ′.
Note that the above two forms are for the successful forward and backward executions

of X. If its executions get stuck, X returns the special value fail.

3.4. Semantics of the Language

We will define the forward and backward semantics for each language construct in
Figure 4.

Identity transformation: This transformation keeps the (updated) source data and
the (updated) view identical in the both directions. It is just the identity lens in [5] except
for the evaluation contexts.

[[xid]]C(S) = S

[[xid]]E(S ,T) = (T, E)

Constant transformation: This transformation returns its argument Tc for any source
data in the forward execution. Tc must be (), str (ori or <tag(ori,c)>[()]. Together with
other constructs, more complex constant views can be generated. In the backward direc-
tion, since the target data Tc is not allowed to change, this transformation just returns the
original source data and evaluation context. When the special value fail is generated,
the being executed program also terminates with the value fail.

[[xconst Tc]]C(S) =

{
Tc, if Tc ∈ {(), str(ori,c), <tag(ori,c)>[()]}

fail, otherwise

[[xconst Tc]]E(S ,T) =

{
(S, E), if Tc = T

fail, otherwise

Variable reference: The forward execution of xvar hides the source data S and returns
the value of the variable Var as the view. In its backward execution, the source data is
not changed, and instead the value of the variable Var in E is updated. In the new context
E ′, the mg operator, defined in Figure 5, is used to merge the updates within S2 and T ′.

[[xvar Var]]C(S) =

{
T, if C = C1,Var 7→ T, C2 and Var /∈ Dom(C2)

fail, otherwise

[[xvar Var]]E (S , T ′) =

{
(S, E ′), if E = E1,Var 7→ (S1, S2), E2 and Var /∈ Dom(E2)

fail, otherwise

where E ′ = E1,Var 7→ (S1, mg(S2, T ′)), E2

For view updating of XQuery, it is possible that one source value has several replicas,
which may contain different updates. The merging operator mg returns a new value that
combines all updates within two replicas if there are no conflicting updates. For example,

7

mg((), ()) = ()

mg(str(u,o), str(u,o)) = str(u,o)

mg(str(ori,s), str(u,s)) = str(u,s), where u ∈ {non, del}

mg(str(ori,s), str ′
(mod,s)

) = str ′
(mod,s)

mg(str(u,s), str(ori,s)) = str(u,s), where u ∈ {non, del}

mg(str ′
(mod,s)

, str(ori,s)) = str ′
(mod,s)

mg(<tag(w,o)>[S1], <tag(w,o)>[S2]) = <tag(w,o)>[S′], where S′ = mg(S1, S2)

mg(<tag(ori,s)>[S1], <tag(del,s)>[S2]) = <tag(del,s)>[S′], where S′ = mg(S1, S2)

mg(<tag(del,s)>[S1], <tag(ori,s)>[S2]) = <tag(del,s)>[S′], where S′ = mg(S1, S2)

mg(v1, S1, v2, S2) = mg(v1, v2), mg(S1, S2)

mg(S1, S2) = fail, if no other case applies

Fig. 5. The mg Operator

merging elements <Title(mod,s)>[Xquery(ori,s)] and <title(ori,s)>[XQuery(mod,s)] will gener-
ate the element <Title(mod,s)>[XQuery(mod,s)], while merging <price(ori,s)>[30(mod,s)] and
<price(ori,s)>[25(mod,s)] will cause a conflict.

Element deconstruction: This transformation deconstructs an element and returns
its contents in the forward execution. If the source data is not an element, it will fail. In
the backward, it replaces the contents of the source element with the updated contents.

[[xchild]]C(S) =

{
S′, if S = <tag(w,o)>[S ′]

fail, otherwise

[[xchild]]E(S, T) =

{
(<tag(w,o)>[T], E), if S = <tag(w,o)>[S ′]

fail, otherwise

Element construction: The source data of this transformation is also required to be an
element. In its forward execution, the contents of the source element are transformed by
the argument transformation X, and then the generated result will be used as the new
contents of the source element. This procedure is reversed in the backward execution.
The backward execution of X generates the updated contents for the source element.

[[xsetcnt X]]C(S) =

{
<tag(w,o)>[[[X]]C(S′)], if S = <tag(w,o)>[S ′]

fail, otherwise

[[xsetcnt X]]E(S, T) =

(<tag(w′,o)>[S′′], E ′), if S = <tag(w,o)>[S ′], T = <tag(w′,o)>[T ′] and

(S′′, E ′) = [[X]]E (S′, T ′)

fail, otherwise

Sequential composition: This transformation takes two argument transformations X1
and X2 and applies them one by one. This definition is the same as that in [5] except that
the definition here takes into account the evaluation contexts. Note that the backward
execution of X2 needs to invoke the forward execution of X1 under the context E .1 to
generate the intermediate source data.

[[X1; X2]]C(S) = [[X2]]C([[X1]]C(S))

[[X1; X2]]E(S , T) = [[X1]]E′ (S, T ′), where (T ′, E ′) = [[X2]]E ([[X1]]E.1(S), T)

8

split((), []) = []

split(T, l:ls) = ():split(T, ls), where l = 0

split(T, l:ls) = T1:split(T2, ls), where l > 0, T = T1, T2, and len(T1) = l

iter(X, [], (), S′, E) = (S′, E)

iter(X, T:ls, v, S, S′, E) = iter(X, ls, S, S′, v′, E ′), where [[X]]E (v, T) = (v′, E ′)

Fig. 6. Two Operators: split and iter

Parallel composition: In the forward execution, this transformation executes its argu-
ment transformations X1 and X2 independently, and composes their views as the final
view. Correspondingly, in the backward execution, the updated final view needs to be
split into two parts for the updated views of X1 and X2, respectively. This is done with
the split operator, defined in Figure 6, which inputs the sequence T and an integer list
[l1, ..., ln], and divides T into a list of n subsequences Ti (1 ≤ i ≤ n), where len(Ti) = li.
The operator len returns the length of a sequence. For example, split(v1, v2, v3, [2, 0, 1])
generates three subsequences: [v1, v2, (), v3]. An empty lis is represented by [], and the
concatenation of an item x with a list xs is represented by x :xs.

[[X1||X2]]C(S) = [[X1]]C(S), [[X2]]C(S)

[[X1||X2]]E (S , T) = (mg(S′
1, S′

2), E ′)

where

[T1, T2] = split(T, [len([[X1]]E.1(S)), len([[X2]]E.1(S)])

(S′
2, E ′′) = [[X2]]E(S, T2)

(S′
1, E ′) = [[X1]]E′′ (S, T1)

Mapping transformation: This transformation applies its argument transformation
X to each string or element in the source data. If the source data is (), then the target
data is also ().In the backward execution, we first split the updated view T into a list
of subsequences, each of which is the updated view for a string or an element in the
original source data. And then, the iter operator, defined in Figure 6, is used to iterate
the backward execution of X on each source item and its updated view.

[[xmap X]]C(()) = ()

[[xmap X]]C(v1, ..., vn) = [[X]]C(v1), ..., [[X]]C(vn)

[[xmap X]]E ((), ()) = ((), E)

[[xmap X]]E (v1, ..., vn, T) = iter(X, ST, S, (), E)

where ST = split(T, [len([[X]]E.1(v1)), ..., len([[X]]E.1(vn))])

Conditional transformation: This transformation executes X1 if the predicate P
holds, otherwise it executes X2. In the backward direction, X1 or X2 is executed back-
ward to generate the updated source data S′ and the updated evaluation context E ′,
which are then used as arguments to execute backward P before finishing up this condi-
tional transformation. The backward execution of P is involved to make sure the existing
and future updates to S′ and E ′ do not affect the validity of P . That is, if P is true(ori,c)

(or false(ori,c)) under the context E and the source data S, then P should still have
the same value under E ′ and S′ even if E ′ and S′ may be updated further by the other

9

transformations. This condition is necessary for the well-behavedness of bidirectional
transformations, as discussed in the next section. The predicate P is defined in the next
subsection and more illustrations are given there by examples.

[[xif P X1 X2]]C(S) = [[X1]]C(S), if [[P]]C(S) = true(ori,c)

[[xif P X1 X2]]C(S) = [[X2]]C(S), if [[P]]C(S) = false(ori,c)

[[xif P X1 X2]]E (S , T)= [[P]]E′ (S, S′), if [[P]]E.1(S) = true(ori,c) and [[X1]]E (S, T) = (S′, E ′)

[[xif P X1 X2]]E (S , T)= [[P]]E′ (S, S′), if [[P]]E.1(S) = false(ori,c) and [[X2]]E (S, T) = (S′, E ′)

Variable binding: This construct provides the primitive variable binding mechanism
for this bidirectional language. It will be used to define other constructs that need bound
variables, such as function calls, and the let and for expressions in XQuery.

[[xlet Var X]]C(S) = [[X]]C′ (()), where C′ = C,Var 7→ S

[[xlet Var X]]E(S , T) = (S′, E ′)

where ((), E ′,Var 7→ (S, S′)) = [[X]]E′′ ((), T) and E ′′ = E,Var 7→ (S, S)

The forward semantics of this construct is the same as that of the let in conventional
functional programming languages. Its backward semantics is defined by executing back-
ward the transformation X under the context E ,Var 7→ (S, S), where the variable Var
is bound to a pair of the original source data S, since the value of this variable has not
been updated at this point. After the backward execution of X, the generated context
E ′,Var 7→ (S, S′) contains the updated source data S′ in its top binding.

Function call: Suppose the function fname is defined as

fun fname(Var1, ...,Varn) = X

Then, the semantics of applying the function fname to n arguments X1, ..., Xn is defined
below with the previous constructs.

xfunapp fname [X1, ..., Xn] = xconst (); X′
1

where

X′
1 = X1; xlet Var1 X′

2

X′
2 = X2; xlet Var2 X′

3

...

X′
n = Xn; xlet Varn X

In this definition, all argument transformations are first evaluated, and then their
results are bound to the corresponding variables. And then, the function body X is
executed. Note that in this definition, the source data for the function body is always
the empty sequence () due to the definition of xlet. That is, it cannot directly use and
update the source data of xfunapp. Hence, any data to be processed by the function
body should be passed as the arguments of the function call.

10

guard(S, str ′) =

str(non,s), if S = str(ori,s) and str = str ′

S, else if S ∈ {str(u,s), str(ori,c)}, u 6= ori and str = str ′

fail, otherwise

Fig. 7. The guard Operator

3.5. Predicates

Each predicate is also defined with both forward and backward semantics. The target
data produced by predicates is either true(ori,c) or false(ori,c), which is used only by xif
and cannot appear in views. Like transformations, predicates also take two arguments for
their backward executions, but the second argument is the updated source data generated
by the backward executions of branch transformations of xif, instead of the target data
true(ori,c) or false(ori,c).

Comparison: In the forward direction, this predicate returns true(ori,c) if the source
data and the view of its argument X contain the same string even with different anno-
tations, or false(ori,c) if they contain different strings. In the backward direction, the
updated source data returned is generated by the guard operator, defined in Figure 7,
which makes sure the updated source data has not changed by the branch transforma-
tions of xif and will not be changed by other transformations, either. In other words, in
the definition below if the updated source S′ has been modified to a different string, then
guard will fail; if S′ is str (ori,s), then it has the chance to be changed by other transfor-
mations, so the guard operator will change it to str (non,s). Thus, if other transformations
change one of its replicas into str ′(mod,s), then finally the mg operator will detect such
conflicting updates and fail. Similarly, the view of the argument X is also guarded, and
propagated back into the context E ′ by its backward execution.

[[xeq X]]C(S) =

true(ori,c), if S = str(u,o) and [[X]]C(()) = str(u′,o′)

false(ori,c), else if S = str(u,o), [[X]]C(()) = str′(u
′,o′) and str 6= str′

fail, otherwise

[[xeq X]]E (S, S′)=

{
(guard(S′, str), E ′), if S = str(u,o) and [[X]]E.1(()) = str′(u

′,o′)

fail, otherwise

where ((), E ′) = [[X]]E((), guard(str′(u
′,o′), str ′))

For example, suppose we have the source data: 10(ori,s), and the transformation:
xid||xif P xid xconst (), where P = xeq xconst 10(ori,c). After the forward trans-
formation, the view is 10(ori,s), 10(ori,s). If we change the view into 11(mod,s), 10(ori,s),
then the backward execution of xif will return the updated source data 10(non,s), while
the left-most xid return the updated source data 11(mod,s). Thus, the mg operator in the
parallel composition will fail to merge these two updated strings. On the other hand,
if we change the view into 10(ori,s), 11(mod,s), the guard operator in xeq will detect this
illegal modification. Similarly, we can define xlt and xgt for less-than and greater-than
comparisons.

11

Element selection: This predicate holds if the source data is an element with the
specified tag. In the backward direction, this predicate returns the updated source data
S′ and the updated context E ′ directly since the tags of elements are not allowed to
change and nothing is needed to guard.

[[xwithtag str]]C(S) =

true(ori,c), if S = <tag(w,o)>[S1] and tag = str

false(ori,c), else if S = <tag(w,o)>[S1] and tag 6= str

fail, otherwise

[[xwithtag str]]E(S, S′)=

{
(S′, E), if S = <tag(w,o)>[S1]

fail, otherwise

Content filter: This predicate holds if the source data is an element. Since an element
is not allowed to change into a text, and vice versa, this predicate returns the updated
source data S′ and the updated context E ′ directly in its backward execution.

[[xiselement]]C(S) =

true(ori,c), if S = <tag(w,o)>[S1]

false(ori,c), else if S = str(u,o)

fail, otherwise

[[xiselement]]E (S, S′)=

{
(S′, E), if S = <tag(w,o)>[S1] or S = str(u,o′)

fail, otherwise

3.6. Programming Examples

To help understand this language, we give a programming example, where this bidirec-
tional language is used to implement the recursive toc function in Figure 1. The program
is given in Figure 8, which is divided into several pieces for the convenience of reading.
The function body first gets the contents of the input element. Its contents consist of
the author, title, section and other elements. Next, only section elements are chosen,
and for each section element, the code XSec is used to construct the section element in
the view with the help of XTitle and XSubTitles, which correspond to the expression
$section/title and the recursive function call in the example query, respectively. The id
attribute is omitted in this implementation. It is similar to the code XTitle except that
the construct xchild should be replaced by xattribute in our implementation.

4. Well-Behaved Bidirectional Transformations

In this section, we will give two properties that well-behaved bidirectional transfor-
mations should have, and then prove that the transformations defined in the previous
section are well-behaved.

12

fun toc($book-or-section) =

xvar $book-or-section; //gets the book or section

xchild; //gets the contents of the book or section

xmap (xif (xwithtag ‘‘section’’) XSec (xconst ())) //processes each section with XSec

//and hides non-section elements

where

XSec = xlet $section (

xconst <section>[()]; //builds a section element with (ori,c) omitted

xsetcnt (XTitle||XSubTitles) //sets the title and subsection titles

)

XTitle = xvar $section; //gets a section element

xchild; //gets its content

xmap (xif (xwithtag ‘‘title’’) xid (xconst ())) //keeps only its title

XSubTitles = xfunapp toc [xvar $section] //builds toc of subsections

Fig. 8. The Motivating Example in Bidirectional Language

4.1. Stability Property

This property says if the view is not updated, then after backward transformation, the
source data is not changed, either. This property is called GETPUT property in [5,6], and
acceptable condition in [2]. The stability property of our bidirectional transformation
is described in Theorem 1, where the expand(C) operator builds a new context for back-
ward execution from the context C. It is defined as: 1) if C = ·, then expand(C) = ·; or
2) if C = C′,Var 7→ S, then expand(C) = expand(C′),Var 7→ (S, S).

Theorem 1. If [[X]]C(S) = T , then [[X]]E(S, T) = (S, E), where E = expand(C).

Proof. The proof proceeds by structural induction on X. All cases of X ′ can be proved
straightforwardly. The proof for some cases is shown below.
– Case X = xvar Var . If [[X]]C(S) = T , then C must have the form C1,Var 7→ T, C2,

where Var /∈ Dom(C2). Since E = expand(C), we know E = E1,Var 7→ (T, T), E2,
where E1 = expand(C1), E2 = expand(C2) and Var /∈ Dom(E2). Suppose [[X]]E(S, T) =
(S′, E ′). Then, according to the backward semantics of xvar, we have S = S′ and
E ′ = E1,Var 7→ (T, mg(T, T)), E2. By Lemma 2 below, T = mg(T, T), so E ′ = E .

– Case X = xsetcnt X ′. If [[X]]C(S) = T , then S must have the form <tag(w,o)>[S′], and
T has the form <tag(w,o)>[T ′], where T ′ = [[X ′]]C(S′). By the induction hypothesis on
X ′, we get [[X ′]]E(S′, T ′) = (S′, E), so [[X]]E(S, T) = (S, E), where E = expand(C).

– Case X = X1;X2. If [[X]]C(S) = T , then there must exist S′, such that [[X1]]C(S) = S′

and [[X2]]C(S′) = T . By the induction hypotheses on X2 and X1, respectively, the
proof for this case is done.

Lemma 2. If S = mg(S′, S′), then S = S′.

Proof. The proof proceeds by structural induction on the structure of S′. For each case
of S′, the proof is straightforward. Two cases are proved below as examples.
– Case S′ = str (u,o). If S = mg(S′, S′), then S = str (u,o), so S = S′.
– Case S′ = <tag(u,o)>[S ′′]. If S = mg(S′, S′), then S = <tag(u,o)>[S ′′′], where S′′′ =
mg(S′′, S′′). By the induction hypothesis on S′′, we get S′′′ = S′′, so S′ = S.

13

4.2. Extended Round-tripping Property

The second property is called extended round-tripping property. Before introducing this
property, we first discuss why the existing round-tripping property is not suitable for the
view updating problem of XQuery. This property is called PUTGET property in [5,6], and
consistent condition in [2].

4.2.1. Restrictions of Round-tripping Property
Suppose X is a bidirectional transformation. Then, in our setting, the round-tripping

property is represented as: if [[X]]E(S , T) = (S′, E ′) and [[X]]E′.2(S′) = T ′, then T = T ′.
However, this property is too restricted for our bidirectional language. This restriction
has been recognized in [7]. The intuitiveness behind this restriction is that if one value
in the source data S has several replicas in T , where only one replica of this value is
modified, then after updating the source data and producing the new view T ′ again, all
replicas of this value will be changed to the updated value. Hence, T 6= T ′. The following
example explains this restriction. Suppose we have the following source data.

<bib(ori,s)>[<book(ori,s)>[<title(ori,s)>[Database(ori,s)], <price(ori,s)>[20(ori,s)]],

<book(ori,s)>[<title(ori,s)>[Network(ori,s)], <price(ori,s)>[10(ori,s)]]]

And then, we want a view that consists of all books and a table-of-contents (toc) con-
taining their titles. The transformation BibView and the generated view are given below.

BibView = xchild; xlet $books (xconst <bibview(ori,c)>[()];

xsetcnt (MkToc||xvar $books))

MkToc = xconst <toc(ori,c)>[()]; xsetcnt(xvar $books; xmap (xchild; GetTitle))

GetTitle = xmap (xif (xwithtag title) xid xconst ())

<bibview(ori,c)>[<toc(ori,c)>[<title(ori,s)>[Database(ori,s)], <title(ori,s)>[Network(ori,s)]],

<book(ori,s)>[<title(ori,s)>[Database(ori,s)], <price(ori,s)>[20(ori,s)]],

<book(ori,s)>[<title(ori,s)>[Network(ori,s)], <price(ori,s)>[10(ori,s)]]]

In the bibview element above, each title element appears twice. Suppose we change
<title(ori,s)>[Database(ori,s)] in the toc element into <title(ori,s)>[Web Database(ori,s)].
Then, after updating the source data and running forward the code BibView again, we
get the following new updated view.

<bibview(ori,c)>[<toc(ori,c)>[<title(ori,s)>[Web Database(mod,s)], <title(ori,s)>[Network(ori,s)]],

<book(ori,s)>[<title(ori,s)>[Web Database(mod,s)], <price(ori,s)>[20(ori,s)]],

<book(ori,s)>[<title(ori,s)>[Network(ori,s)], <price(ori,s)>[10(ori,s)]]]

Thus, we can see the old updated view and the new updated view is not identical
and the existing round-trpping property fails to accommodate the above transformation
of our bidirectional language. In the new updated view, the change of title in the book
element is called an update side-effect.

4.2.2. Extended Round-Tripping Property
The extended round-tripping property is defined as: if [[X]]E(S , T) = (S′, E ′) and

[[X]]E′.2(S′) = T ′, then T v T ′. That is, we do not require the old updated view T

14

() v S

str(u,o) v str(u,o)

str(ori,s) v str(u,s), where u ∈ {non, del, mod}

str(ins,c) v str(ori,c)

<tag(w,o)>[S] v <tag(w,o)>[S ′], where S v S′

<tag(ori,s)>[S] v <tag(del,s)>[S ′], where S v S′

<tag(ins,c)>[S] v <tag(ori,c)>[S ′], where S v S′

v, S v v′, S′, where v v v′ and S v S′

v, S v v′, S′, where v 6v v′ and v, S v S′

Fig. 9. The Update-Keeping Relation

and the new updated view T ′ be identical. Instead, we relate T to T ′ with the update-
keeping relation v, which is defined in Figure 9. Informally, this criterion requires all
updates made to T are still kept on T ′, and T ′ includes more updates than T due to
update side-effects. In the following, we explain the rationale behind the update-keeping
relation by discussing each case in its definition.

– () v S. In this case, all values in the old updated view have been related to some parts
of the new updated view, and S contains only the values as the side-effects of updates.

– str (u,o) v str (u,o). In this case, the string str (u,o) is related to itself, that means this
string is not affected by the side-effects of updates.

– str (ori,s) v str (u,s),where u ∈ {non, del, mod}. In this case, the string str (ori,s) must
have other replicas, which have been updated.

– str (ins,c) v str (ori,c). In this case, both strings come from xconst since they are anno-
tated by c. The string str (ins,c) is inserted into the view as an update, but the xconst
can only generate the same string with ori annotation. So these two strings are related.

– <tag(w,o)>[S] v <tag(w,o)>[S ′],where S v S′. In this case, the element <tag(w,o)>[S]
is not affected by the side-effects of updates except for its contents. Its contents S is
related to the contents of its replicas by further check.

– <tag(ori,s)>[S] v <tag(del,s)>[S ′], where S v S′. In this case, the element <tag(ori,s)>[S]
has other replicas and some replicas are being deleted.

– <tag(ins,c)>[S] v <tag(ori,c)>[S ′],where S v S′. In this case, both elements come from
xconst, so they are related as the constant strings above. Their contents are related
by further check.

– v, S v v′, S′, where v v v′ and S v S′. In this case, v and v′ have been related, so we
ask the remaining parts S and S′ are related.

– v, S v v′, S′, where v 6v v′ and v, S v S′. In this case, v and v′ have not been related
yet, so we try to relate v, S to S′ by skipping v′.

For example, the old updated view and the new updated view in the previous section
(Section 4.2.1) are related by the update-keeping relation.

The update-keeping relation is reflexive by Lemma 3, so the round-tripping property
is covered by the extended round-tripping property. That is, if a view-updaing method
satisfies the round-tripping property, then it also satisfies the the extended round-tripping
property.

15

Lemma 3. If S1 = S2, then S1 v S2.

Proof. We perform structural induction on the structure of S1. Each case of S1 can
be proved straightforwardly according to the definition of the v relation. The proof is
sketched as below.
– Case S1 = <tag(w,o)>[S ′]. If S1 = S2, then S2 = <tag(w,o)>[S ′]. By the induction

hypothesis on S′, we have S′ v S′, and hence <tag(w,o)>[S ′] v <tag(w,o)>[S ′].
– Case S1 = v, S′. If S1 = S2, then S2 = v, S′. By the induction hypotheses on v and S′,

we get v v v and S v S′, and hence v, S′ v v, S′.

Lemma 4. If v1, S1 v S, then there must exit a subsequence v2, S2 of S, such that
v1 v v2 and S1 v S2.

Proof. The proof proceeds by structural induction on the derivation of v1, S1 v S. There
are two cases to derive v1, S1 v S. In each case, S must have the form v′, S′, otherwise
v1, S1 6v S, contradicting the assumption. We prove for each case that the claim holds.

In the first case, we have v1 v v′ and S1 v S′, so the claim holds by letting v2 = v′

and S2 = S′.
In the second case, we have v1 6v v′ and v1, S1 v S′. By the induction hypothesis on

the derivation of v1, S1 v S′, there must exist a subsequence of S′, say v′′, S′′, such that
v1 v v′′ and S1 v S′′, and hence the claim holds with v2 = v′′ and S2 = S′′.

Lemma 5. If S is a subsequence of S1 and S1 v S2, then S v S2.

Proof. If S = (), then the claim follows from () v S2 . For the case where S 6= (), we
prove by contradiction. Suppose S 6v S2. Then there must exist v in S, such that v 6v S2.
Since v is also in S1, we have S1 6v S2, contradicting the assumption of this lemma.

Lemma 6. If S v S1 and S1 is a subsequence of S2, then S v S2.

Proof. The lemma is proved similarly as Lemma 5.

The update-keeping relation is transitive by Lemma 7, which is used to prove the
bidirectional transformations defined in Section 3 satisfy the extended round-tripping
property.

Lemma 7. If S1 v S2 and S2 v S3, then S1 v S3.

Proof. The proof proceeds by structural induction on the last rule applied to derive
S1 v S2.
– Rule () v S. By this rule, S1 = () and S2 = S. The proof is trivial since for any S3,

we have () v S3.
– Rule str (u,s) v str (u,s), where u 6= ori. We have S1 = S2 for this rule. So if S2 v S3,

then S1 v S3. It is similar to prove the claim for the rule str (u,c) v str (u,c), where
u 6= ins.

16

– Rule str (ori,s) v str (u,s), where u ∈ {ori, non, mod, del}. If this rule applies, then S1 =
str (ori,s), and S2 has four possibilities: str (ori,s), str (non,s), str (del,s) and str ′(mod,s). For
each possibility of S2, by assuming that S2 v S3, we prove S1 v S3. If S2 = str (ori,s),
then S1 v S3 follows from S2 v S3 since S1 = S2. If S2 = str (non,s) and S2 v S3, then
by Lemma 4 there must be v3 in S3, such that str (non,s) v v3, which implies v3 must be
str (non,s). Hence, S1 v v3 and we get S1 v S3 by Lemma 6. The other two possibilities
are proved similarly. For the rule str (ins,c) v str (u,c), where u ∈ {ori, ins}, the proof
is also done similarly.

– Rule <tag(w,s)>[S ′1] v <tag(w,s)>[S ′2], where S′1 v S′2 and w 6= ori. For this rule, S1 =
<tag(w,s)>[S ′1] and S2 = <tag(w,s)>[S ′2]. If S2 v S3, then by Lemma 4 there must be v3

in S3, such that <tag(w,s)>[S ′2] v v3, which implies v3 must have the form <tag(w,s)>[S ′3]
and S′2 v S′3. By the induction hypothesis on S′1 v S′2, we get S′1 v S′3, so S1 v v3. By
Lemma 6, we get S1 v S3. It is similar to prove the rule <tag(w,c)>[S ′1] v <tag(w,c)>[S ′2],
where S′1 v S′2 and w 6= ins.

– Rule <tag(ori,s)>[S ′1] v <tag(w,s)>[S ′2], where S′1 v S′2 and w ∈ {ori, del}. For this
rule, S1 = <tag(w,s)>[S ′1] and S2 is either <tag(ori,s)>[S ′2] or <tag(del,s)>[S ′2]. Let S2 =
<tag(ori,s)>[S ′2]. If S2 v S3, then by Lemma 4 there must be v3 in S3, such that
<tag(ori,s)>[S ′2] v v3, which means v3 must be <tag(ori,s)>[S ′3] or <tag(del,s)>[S ′3], where
S′2 v S′3. By the induction hypothesis on S′1 v S′2, we get S′1 v S′3, so S1 v v3, and by
Lemma 6, S1 v S3. Simiarly, we can prove the claim for another possibility of S2, that
is S2 = <tag(del,s)>[S ′2]. The proof is also done similarly for the rule <tag(ins,c)>[S ′1] v
<tag(w,c)>[S ′2], where S′1 v S′2 and w ∈ {ori, ins}.

– Rule v1, S
′
1 v S2 (either of last two rules in the definition ofv relation). Let S1 = v1, S

′
1.

If S1 v S2, then by Lemma 4 there must be a subsequence of S2, say v2, S
′
2, such that

v1 v v2 and S′1 v S′2. Moreover, if S2 v S3, then by Lemma 5 we have v2, S
′
2 v S3. By

Lemma 4, there must be a subsequence v3, S
′
3 of S3 such that v2 v v3 and S′2 v S′3. By

the induction hypotheses on v1 and S′1, we get v1 v v3, S′1 v S′3, and hence by Lemma
6, we get S1 v S3.

Lemma 8. If S1 v S′1 and S2 v S′2, then S1, S2 v S′1, S
′
2.

Proof. We perform induction on the structure of S1.
If S1 = (), then S1, S2 = S2. Since S2 v S′2 and S′2 is a subsequence of S′1, S

′
2, by

Lemma 6, we have S2 v S′1, S
′
2, so the claim holds.

If S1 = v and S1 v S′1, then by Lemma 4, there must be v′ in S′1, such that v v v′.
Let S′1 have the form S′11, v

′, S′12, so S′1, S
′
2 = S′11, v

′, S′12, S
′
2. By Lemma 6, S2 v S′12, S

′
2,

so v, S2 v v′, S′12, S
′
2. By using Lemma 6 again, we get v, S2 v S′11, v

′, S′12, S
′
2, that is,

S1, S2 v S′1, S
′
2.

if S1 = v, S11 and S1 v S′1, then by Lemma 4 there must be a subsequence of S′1,
say v′, S′11, such that v v v′ and S11 v S′11. Let S′1 have the form S′10, v

′, S′11, S
′
12, so

S′1, S
′
2 = S′10, v

′, S′11, S
′
12, S

′
2. By Lemma 6, S2 v S′12, S

′
2. By the induction hypothesis

on S11, we get S11, S2 v S′11, S
′
12, S

′
2. Hence, using Lemma 6 again, we get v, S11, S2 v

S10, S
′
11, v

′, S′12, S
′
2, that is, S1, S2 v S′1, S

′
2.

The mg operator combines updates within two replicas of one value. An update side-
effect is caused, for instance, when a string with ori annotation is merged with a string

17

with mod annotation. The following lemma says all updates within replicas are kept in
the merging result.

Lemma 9. If S = mg(S1, S2), then S1 v S and S2 v S.

Proof. The proof proceeds by structural induction on the structure of S1. In the following,
we prove some cases as examples.
– Case S1 = (). If S = mg(S1, S2), then S2 must be (), and S is also (). Hence, S1 v S3.
– Case S1 = str (ori,s). If S = mg(S1, S2), then S2 can be str (ori,s), str (non,s), str ′(mod,s) or

str (del,s). For each possibility of S2, we prove the claim holds. If S2 = str (ori,s), then S

is also the same string as S1 and S2, so the claim holds. If S2 = str ′(mod,s) (or str (non,s),
str (del,s)), then S = S2, and hence the claim holds.

– Case S1 = <tag(ori,s)>[S ′1]. If S = mg(S1, S2), then S2 is either <tag(ori,s)>[S ′2] or
<tag(del,s)>[S ′2]. If S2 = <tag(ori,s)>[S ′2], then S = <tag(ori,s)>[S ′], where S′ = mg(S′1, S

′
2).

By the induction hypothesis on S′1, we have S′1 v S′ and S′2 v S′, and hence S1 v S
and S2 v S. Similarly, we can prove the claim for S2 = <tag(del,s)>[S ′2].

– Case S1 = v1, S
′
1. If S = mg(S1, S2), then S2 must have the form v2, S

′
2, and S = v′, S′,

where v′ = mg(v1, v2) and S′ = mg(S′1, S
′
2). By the induction hypotheses on v1 and S′1,

respectively, we get v1 v v′, v2 v v′, S′1 v S′ and S′2 v S′. Hence, v1, S
′
1 v v′, S′ and

v2, S
′
2 v v′, S′.

We need to extend the updating-keeping relation into the backward execution context
for proving that our bidirectional language satisfies the extended round-tripping property.

Definition 1. For two environments E and E ′, we say E v E ′, if 1) E = · and E ′ = ·; or
2) E = E1, V ar 7→ (S, S1) and E ′ = E ′1, V ar 7→ (S, S2), such that E1 v E ′1 and S1 v S2.

Lemma 10. If [[X]]E(S, T) = (S′, E ′), then E v E ′.

Proof. The proof proceeds by structural induction on X. For the cases where X is xid,
xconst or xchild, the backward execution of X does not change the environment E ,
that is, E = E ′, so by Lemma 3 the claim holds. Other cases are proved as below.
– Case X = xvar Var . Suppose E = E1, V ar 7→ (S1, S2), E2 and Var 6∈ Dom(E2). Then,

if [[X]]E(S, T) = (S′, E ′), we know E ′ = E1, V ar 7→ (S1, mg(S2, T)), E2. By Lemma 9, we
have S2 v mg(S2, T)), so the claim follows.

– Case X = xsetcnt X ′. If [[X]]E(S, T) = (<tag(w′,o)>[S′′], E ′), then we know S must
have the form <tag(w,o)>[S′], T the form <tag(w′,o)>[T ′], and [[X ′]]E(S′, T ′) = (S′′, E ′).
By the induction hypothesis on X ′, we get the claim E v E ′.

– Case X = X1;X2. If [[X]]E(S, T) = (S′, E ′), then there must exist S′′ and E ′′, such
that [[X2]]E([[X1]]E.1(S), T) = (S′′, E ′′) and [[X1]]E′′(S, S′′) = (S′, E ′). By the induction
hypotheses on X2 and X1, we have E v E ′′ and E ′′ v E ′. According to Lemma 7, we
get E v E ′.

– Case X = X1||X2. If [[X]]E(S, T) = (S′, E ′), then there must exist E ′′, T1 and T2, such
that T = T1, T2, [[X2]]E(S, T2) = (S′2, E ′′), [[X1]]E′′(S, T1) = (S′1, E ′) and S′ = mg(S′1, S

′
2).

By applying the induction hypotheses on X2 and X1, we get E v E ′.

18

– Case X = xmap X ′. If S and T are both (), then E = E ′, so the claim holds. Otherwise,
for all subsequences generated by the operator split, we iteratively apply the induction
hypothesis on X. That yields the claim.

– Case X = xif P X1 X2. We do a case analysis on P . If P is xiselement or
xwithtag tag ,then the claim is proved by applying the induction hypotheses on X1

and X2; if P = xeq X ′, the claim is proved by applying the induction hypotheses on
X ′ and then X1, or X ′ and then X2.

– Case X = xlet Var X ′. If [[xlet Var X ′]]E(S, T) = (S′, E ′), then [[X ′]]E′′((), T) =
((), E ′, V ar 7→ (S, S′)), where E ′′ = E , V ar 7→ (S, S). By the induction hypothesis on
X ′, we get E , V ar 7→ (S, S) v E ′, V ar 7→ (S, S′), so E v E ′.

– Case X = xfunapp fname [X1, ..., Xn]. The proof for the case X = X1;X2 applies
here, since this construct is implemented as a sequential composition transformation.

The following theorem says the bidirectional transformation language defined in Sec-
tion 3 satisfies the extended round-tripping property.

Theorem 11. If [[X]]E(S, T) = (S′, E ′) and [[X]]E′.2(S′) = T ′, then T v T ′.

Proof. The proof proceeds by structural induction on the structure of X.
– Case X = xid. We have [[X]]E(S, T) = (T, E), so [[X]]E.2(T) = T . The claim holds

trivially since T v T .
– Case X = xconst Tc. If [[X]]E(S, T) = (S, E), then T = Tc due to the successful

backward execution of xconst. Hence, T v [[X]]E.2(S), since [[X]]E.2(S) = Tc.
– Case X = xvar Var . Suppose E = E1, V ar 7→ (S1, S2), E2 and Var 6∈ Dom(E2). Then,

[[X]]E(S, T) = (S, E ′), where E ′ = E1, V ar 7→ (S1, mg(S2, T)), E2. Hence, [[X]]E′.2(S) =
T ′, where T ′ = mg(S2, T). Thus, the claim holds by Lemma 9.

– Case X = xchild. Suppose S = <tag(w,o)>[S1]. Then, [[X]]E(S, T) = (<tag(w,o)>[T], E).
Thus, [[X]]E.2(<tag(w,o)>[T]) = T , and the claim holds since T v T .

– Case X = xsetcnt X ′. Suppose S = <tag(w,o)>[S1]. If [[X]]E(S, T) = (S′, E ′), then T
must have the form <tag(w′,o)>[T1], and [[X ′]]E(S1, T1) = (S′1, E ′). So S′ = <tag(w′,o)>[S′1].
Let [[X ′]]E′.2(S′1) = T ′

1. By the induction hypothesis on X ′, T1 v T ′
1. If T ′ = [[X]]E′.2(S′),

that is, T ′ = <tag(w′,o)>[T ′
1], then T v T ′.

– Case X = X1;X2. Suppose [[X1;X2]]E(S, T) = (S′, E ′). Then, there must exist S′′

and E ′′, such that [[X2]]E([[X1]]E.1(S), T) = (S′′, E ′′) and [[X1]]E′′(S, S′′) = (S′, E ′). By
the induction hypothesis on X2, we have T v [[X2]]E′′.2(S′′). Let [[X1]]E′.2(S′) = S′′′.
By the induction hypothesis on X1, we have S′′ v S′′′. According to Lemma 10, we
have E ′′ v E ′, so if [[X2]]E′′.2(S′′) v [[X2]]E′.2(S′′′), then the claim holds for this case by
Lemma 7. We will prove [[X2]]E′′.2(S′′) v [[X2]]E′.2(S′′′) under the assumptions S′′ v S′′′

and E ′′ v E ′ by induction on the structure of X2. This result is also used by xmap and
parallel composition cases below.
? Case X2 = xid. [[X2]]E′′.2(S′′) = S′′ and [[X2]]E′.2(S′′′) = S′′′. The claim follows the

assumption S′′ v S′′′ .
? Case X2 = xconst Tc. We have [[X2]]E′′.2(S′′) = Tc and [[X2]]E′.2(S′′′) = Tc. The

claim holds by Lemma 3.
? Case X2 = xvar Var . Suppose [[X2]]E′′.2(S′′) = S1. Then, E ′′ must have the form
E ′′1 , V ar 7→ (S0, S1), E ′′2 and Var 6∈ Dom(E ′′2). Since E ′′ v E ′, E ′ has the form

19

E ′1, V ar 7→ (S0, S2), E ′2, where S1 v S2 and Var 6∈ Dom(E ′2). Hence, [[X2]]E′′.2(S′′) =
S2, and the claim follows.

? Case X2 = xchild. Suppose S′′ = <tag(w,o)>[T ′′]. Then, since S′′ v S′′′, S′′ must be
<tag(w′,o′)>[T ′′′], where T ′′ v T ′′′. Since [[X2]]E′′.2(S′′) = T ′′ and [[X2]]E′.2(S′′′) = T ′′′,
the proof is done.

? Case X2 = xsetcnt X ′. Let S′′ = <tag(w′′,o′′)>[T ′′] and S′′′ = <tagw′,o′)>[T ′]. Since
S′′ v S′′′, we have T ′′ v T ′. Then, [[X2]]E′′.2(S′′) = <tag(w′′,o′′)>[[[X ′]]E′′.2(T ′′)] and
[[X2]]E′.2(S′′′) = <tag(w′,o′)>[[[X ′]]E′.2(T ′)]. By the induction hypothesis on X ′, we get
[[X ′]]E′′.2(T ′′) v [[X ′]]E′.2(T ′). Thus, the claim holds, that is <tag(w′′,o′′)>[[[X ′]]E′′.2(T ′′)]
v <tag(w′,o′)>[[[X ′]]E′.2(T ′)], where the relation between tag(w′′,o′′) and tag(w′,o′) is
derived from S′′ v S′′′.

? Case X2 = X ′
1;X

′
2. Our goal is to prove [[X ′

1;X
′
2]]E′′.2(S

′′) v [[X ′
1;X

′
2]]E′.2(S

′′′). This
proof is performed by applying the induction hypothesis on X ′

1, and then on X ′
2.

? Case X2 = X ′
1||X ′

2. Let [[X ′
1]]E′′.2(S

′′) = T ′′
1 and [[X ′

1]]E′.2(S
′′′) = T ′

1. By the induction
hypothesis on X ′

1, we have T ′′
1 v T ′

1. Let [[X ′
2]]E′′.2(S

′′) = T ′′
2 and [[X ′

2]]E′.2(S
′′′) = T ′

2.
By the induction hypothesis on X2, we have T ′′

2 v T ′
2. So by Lemma 8, we have

T ′′
1 , T ′′

2 v T ′
1, T

′
2.

? Case X2 = xmap X ′. If S′′ = (), then [[X2]]E′′.2(S′′) = (), which implies the claim; if
S′′ = v′′, S′′1 , then by Lemma 4, there must be a subsequence of S′′′, say v′, S′1, such
that v′′ v v′ and S′′1 v S′1. Let S′′′ has the form S′0, v

′, S′1, S
′
2. By the induction hy-

pothesis on X ′, we have [[X ′]]E′′.2(v′′) v [[X ′]]E′.2(v′) and [[X ′]]E′′.2(S′′1) v [[X ′]]E′.2(S′1).
Hence, by Lemma 8, [[X ′]]E′′.2(v′′), [[X ′]]E′′.2(S′′1) v [[X ′]]E′.2(v′), [[X ′]]E′.2(S′1). Let
[[X2]]E′.2(S′′′) = [[X ′]]E′.2(S′0), [[X

′]]E′.2(v′), [[X ′]]E′.2(S′1), [[X
′]]E′.2(S′2) and [[X2]]E′′.2(S′′)

= [[X ′]]E′′.2(v′′), [[X ′]]E′′.2(S′′1). Finally, by Lemma 6, [[X2]]E′′.2(S′′) v [[X2]]E′.2(S′′′).
? Case X2 = xif P X ′

1 X ′
2. For this case, the main point is to prove that [[X2]]E′′.2(S′′)

and [[X2]]E′.2(S′′′) choose the same branch to execute as [[X2]]E.2([[X1]]E.1(S), T). And
thus, the claim can be proved by the induction hypotheses on X ′

1 and X ′
2. To prove

this goal, we need to perform a case analysis on P . In the following, only the proof
for xeq X ′ is shown. Note that we are performing two proofs both by structural
induction, with case analysis of X and X2, respectively, and the corresponding in-
duction hypothesis is referred to as main induction hypothesis or auxiliary induction
hypothesis.

Suppose [[X2]]E.2([[X1]]E.1(S), T) chooses the branch X ′
1. Then, [[P]]E.1([[X1]]E.1(S))

returns true(ori,c), that is [[X1]]E.1(S) = str (u,o) and [[X ′]]E.1(()) = str(u′,o′). Re-
call that [[X2]]E.2(str (u,o), T) = (S′′, E ′′), and during this backward execution, X ′

1 is
executed backward and then its result is guarded by xeq. Let [[X ′

1]]E(str (u,o), T) =
(S′′1 , E ′′1)). Then, S′′ = guard(S′′1 , str), that is, if not fail, S′′ must be str (u′′,s) (u′′ 6=
ori) or str (ori,c). Since S′′ v S′′′ and S′′′ is used as the argument of xeq, S′′′ must
be S′′. On the other hand, E ′′ is from [[X ′]]E′′1 ((), guard(str(u′,o′), str)) = ((), E ′′). By
the main induction hypothesis on X ′, we have guard(str(u′,o′), str) v [[X ′]]E′′.2(()).
Since guard(str(u′,o′), str) is either str (u′′,s) (u′′ 6= ori) or str (ori,c) and [[X ′]]E′′.2(())
is used as the argument of xeq, [[X ′]]E′′.2(()) must equal to guard(str(u′,o′), str). Since
E ′′ v E ′, by the auxiliary induction hypothesis on X ′, [[X ′]]E′′.2(()) v [[X ′]]E′.2(()),
that is [[X ′]]E′.2(()) must equal to [[X ′]]E′′.2(()) since [[X ′]]E′.2(()) is used as the argu-
ment of xeq. Hence, both [[P]]E′′.2(S′′) and [[P]]E′.2(S′′′) return true(ori,c). Similarly, if
[[X2]]E.2([[X1]]E.1(S), T) chooses X ′

2, we can prove [[P]]E′′.2(S′′) and [[P]]E′.2(S′′′) return

20

false(ori,c).
? Case X2 = xlet Var X ′. Let E1 = E ′′, V ar 7→ (S′′, S′′) and E2 = E ′, V ar 7→

(S′′′, S′′′). Since S′′ v S′′′ and E ′′ v E ′, we have E1 v E2. By the induction hypothesis
on X ′, we get [[X ′]]E1.2(()) v [[X ′]]E2.2(()), that yields the claim.

? Case X2 = xfunapp fname [X ′
1, ..., X

′
n]. This construct is defined as a sequential com-

position of transformation constructs, so the proof for the sequential composition
construct applies.

– Case X = X1||X2. Suppose [[X1||X2]]E(S, T) = (S′, E ′). Then, there must exist T1, T2

and E ′′, such that T = T1, T2, [[X2]]E(S, T2) = (S′2, E ′′) and [[X1]]E′′(S, T1) = (S′1, E ′),
where E ′′ v E ′ from Lemma 10. Thus, S′ = mg(S′1, S

′
2), and by Lemma 9, S′1 v S′ and

S′2 v S′. By the induction hypothesis on X1, we have T1 v [[X1]]E′.2(S′1), and by the
induction hypothesis on X2, we have T2 v [[X2]]E′′.2(S′2). The current goal is to prove
[[X1]]E′.2(S′1) v [[X1]]E′.2(S′) and [[X2]]E′′.2(S′2) v [[X2]]E′.2(S′). If this goal is proved,
then by Lemma 7 and Lemma 8, we can prove the claim T v [[X1||X2]]E′.2(S′). The
proof for the goal has been done at the case where X = X1;X2.

– Case X = xmap X ′. We do a case analysis on the structure of S. If S = (), then T = ()
and [[X]]E(S, T) = ((), E), so T v [[X]]E.2(()).

If S = v1, ..., vn, then T must have the form T1, ..., Tn, where Ti is the updated
view of vi (1 ≤ i ≤ n). Suppose [[xmap X ′]]E(S, T) = (S′, E ′). Then the iter operator
implements [[X ′]]Ei−1(vi, Ti) = (v′i, Ei), where E0 = E , En = E ′ and S′ = v′1, ..., v

′
n. By

Lemma 10, Ei−1 @ Ei. Let [[X ′]]Ei.2(v
′
i) = T ′

i . By the induction hypothesis on X ′, we
get Ti v T ′

i . The remaining work is to prove [[X ′]]Ei.2(v
′
i) v [[X ′]]En.2(v′i). If this proof

can be done, then Ti v [[X ′]]En.2(v′i), so T1, ..., Tn v [[X ′]]En.2(v′1), ..., [[X
′]]En.2(v′n), that

is, T v [[X]]E′.2(S′). Proving [[X ′]]Ei.2(v
′
i) v [[X ′]]En.2(v′i) under the assumption that

calEi v calEn has been done at the case where X = X1;X2.
– Case X = xif P X1 X2. We perform a case analysis on P . In the following, only

the case where P = xeq X ′ is given, and other cases of P are proved similarly. Let
[[X]]E(S, T) = (S′, E ′). The point for this case is to prove [[X]]E′.2(S′) chooses the same
branch X1 or X2 as [[X]]E(S, T). If this proof is done, then the claim follows from the
induction hypotheses on X1 and X2.

Suppose [[X]]E(S, T) chooses X1. Then, S = str (u,o) and [[X ′]]E.1(()) = str(u′,o′). Let
[[X1]]E(S, T) = (S′1, E ′1). Then, S′ = guard(S′1, str), that is, if not fail, S′ must be
str (u′′,s) (u′′ 6= ori) or str (ori,c), and E ′ comes from [[X ′]]E′1((), guard(str

(u′,o′), str)) =
((), E ′). By the induction hypothesis on X ′, guard([[X ′]]E′1.1(()), str) v [[X ′]]E′.2(()).
Note that [[X ′]]E′1.1(()) = [[X ′]]E.1(()). Since guard([[X ′]]E′1.1(()), str) is either str (u′′,s)

(u′′ 6= ori) or str (ori,c), [[X ′]]E′.2(()) must be str (u′′,s) (u′′ 6= ori) or str (ori,c). Hence,
S′ and [[X ′]]E′.2(()) still contain the same string str. Similarly, we can prove the case
where [[X]]E(S, T) chooses the branch X2.

– Case X = xlet Var X ′. If [[xlet Var X ′]]E(S, T) = (S′, E ′), then [[X ′]]E,V ar 7→(S,S)((), T) =
((), E ′′), where E ′′ = E ′, V ar 7→ (S, S′). By the induction hypothesis on X ′, we have
T v [[X ′]]E′.2,V ar 7→S′(()). Hence, the claim T v [[xlet Var X ′]]E′.2(S′) follows.

– Case X = xfunapp fname [X ′
1, ..., X

′
n]. The claim holds for this case following the

proof for the case where X = X1;X2.

21

Var ::= NCName

Expr ::= String | () | Expr ,Expr | $Var

| for $Var in Expr return Expr

| let $Var := Expr return Expr

| if (Cmp) then Expr else Expr

| Axis NodeTest

| element NCName {Expr}

| NCName (Expr1, ...,Exprn)

Cmp ::= Expr < Expr | Expr = Expr | Expr > Expr

Axis ::= child :: | descendant :: | self ::

NodeTest ::= NCName | ∗ | text() | node()

FunDec ::= function NCName(ArgList){Expr}

ArgList ::= $Var1, ..., $Varn

Fig. 10. Syntax of the XQuery Core

5. Translation of XQuery Core into Bidirectional Language

The expressions of XQuery can be normalized to the equivalent expressions in XQuery
Core, for instance, by the Galax XQuery engine [12]. The syntax of XQuery core is more
compact. Hence, like the work [13], we implement bidirectional XQuery based on the
XQuery Core syntax.

5.1. Syntax of XQuery Core

The syntax of the XQuery Core presented in this paper is given in Figure 10. In this
syntax, the XPath axes, child, descendant and self, implicitly use the reserved variable
$fs :dot to refer to their context nodes. This syntax does not include the reverse axes
of XPath, such as the parent axis. This axis returns the parent of the current context
node. Actually, it is difficult to implement reverse axes using the technique in the previous
section since from the source element we have no information about its parent node or its
ancestor node. But this is not a limitation to our approach. The technique in [14] provides
a way to rewrite path expressions with reverse axes into equivalent reverse-axis-free ones.

XQuery includes a lot of built-in functions, such as fn:sum and fn:data. In order to
support full XQuery, we need to define the bidirectional versions of these functions in
the underlying bidirectional language. The tricky thing is that these implementations
must satisfy the well-behaved conditions for bidirectional transformations. For example,
the backward semantics of fn:sum must make sure the length of its argument, which is
a sequence, and all items in its argument cannot be changed, otherwise the extended
round-tripping property will be violated. Implementing these built-in functions is our
future work.

22

[[String]]I = xconst String(ori,c)

[[()]]I = xconst ()

[[Expr1,Expr2]]I = [[Expr1]]I ||[[Expr2]]I

[[$Var]]I = xvar $Var

[[for $Var in Expr1 return Expr2]]I = [[Expr1]]I ; xmap (xlet $Var [[Expr2]]I)

[[let $Var := Expr1 return Expr2]]I = [[Expr1]]I ; xlet $Var [[Expr2]]I

[[if (Cmp) then Expr1 else Expr2]]I = xif [[Cmp]]I [[Expr1]]I [[Expr2]]I

[[Expr1 < Expr2]]I = xlt [[Expr1]]I [[Expr2]]I

[[Expr1 = Expr2]]I = xeq [[Expr1]]I [[Expr2]]I

[[Expr1 > Expr2]]I = xgt [[Expr1]]I [[Expr2]]I

[[Axis NodeTest]]I = [[Axis]]I ; [[NodeTest]]I

[[child ::]]I = xvar $fs :dot; xchild

[[descendant ::]]I = xfunapp xdes [xvar $dot]

[[self ::]]I = xvar $fs :dot

[[NCName]]I = xmap (xif xiselement xid (xconst ()));

xmap ((xif (xwithtag NCName) xid (xconst ())))

[[∗]]I = xmap (xif xiselement xid (xconst ()))

[[text()]]I = xmap (xif xiselement (xconst ()) xid)

[[node()]]I = xid

[[element NCName {Expr}]]I = xconst <NCName(ori,c)>[()]; xsetcnt [[Expr]]I

[[NCName (Expr1, ...,Exprn)]]I = xfunapp NCName [[[Expr1]]I , ..., [[Exprn]]I]

Fig. 11. Translation of XQuery Core Expression

5.2. The Translation

Figure 11 gives the rules for translating XQuery Core into the bidirectional language.
With such an interpretation, XQuery Core expressions can be executed in two directions:
generating the view in the forward direction and putting view updates back in the back-
ward direction. The translation is not difficult due to the expressiveness of the underlying
bidirectional language. Some rules are illustrated below.

In the rule of for expression, the subexpression Expr1 is first translated, and then
composed with an xmap, which takes the transformation xlet $Var [[Expr2]]I as its
argument. That is, the variable $Var is bound to each value in the sequence returned by
[[Expr1]]I , and then used within the scope [[Expr2]]I .

In the XQuery Core, the expression Axis NodeTest means that Axis first produces a
list of nodes from its context node, and then from this list NodeTest selects the nodes by
its conditions. In the translation of this expression, we need to explicitly get the context
node of an axis by referring to the value of the reserved variable $fs :dot, and then
compose the translation results of Axis and NodeTest.

The child axis of XPath is primitively defined by xchild in the bidirectional lan-
guage,while the descendant axis is not. Instead, this axis is implemented by the function

23

xdes below, which returns all descendant nodes of the input node $node.
fun xdes($node) = xvar $node; xif xiselement (xchild; xid||xmap DeepNodes) (xconst ())

where DeepNodes = xlet $cnode (xfunapp xdes [xvar $cnode])

If the input node is a text node, then it does not have any descendant, so the function
xdes returns (); if the input node is an element node, then the result includes its content
nodes and their descendants.

The functions in XQuery are translated into functions in the bidirectional language.
For example, the following XQuery function:

function NCName($Var1, ..., $Varn){Expr}

is translated into the following function in the bidirectional language:

fun NCName($Var1, ..., $Varn) = [[Expr]]I

The translation defined in Figure 11 satisfies the following property, which says that
the translation preserves the semantics of XQuery Core. The values in the underlying
bidirectional language are annotated with updating and origin annotations. To be con-
sistent with XQuery values, these annotations are ignored in the following theorem.

Theorem 12. Let C be a context that maps variables to values. If an XQuery Core
expression Expr is evaluated to a value under C, then the expression [[[[Expr]]I]]C(()) is
also evaluated to the same value.
Proof. This theorem is proved by induction on the structure of the XQuery Core expres-
sion Expr .
– Case Expr = String. The expression String is translated into xconst String(ori,c), and

[[xconst String(ori,c)]]C(()) = String(ori,c). Hence, the claim follows directly.
– Case Expr = (). This case is proved similarly as the above one.
– Case Expr = Expr1,Expr2. This expression is translated into [[Expr1]]I ||[[Expr2]]I , and

[[[[Expr1]]I ||[[Expr2]]I]]C(()) = [[[[Expr1]]I]]C(()), [[[[Expr2]]I]]C(()). By the induction hy-
pothesis on Expr1, we know Expr1 and [[[[Expr1]]I]]C(()) have the same value, and simi-
larly Expr2 and [[[[Expr2]]I]]C(()) also have the same value. So [[[[Expr1]]I ||[[Expr2]]I]]C(())
and Expr have the same value.

– Case Expr = $Var . The claim holds since both $Var and xvar $Var returns the value
of the variable $Var in the context C.

– Case Expr = for $Var in Expr1 return Expr2. This expression is translated into
[[Expr1]]I ; xmap (xlet $Var [[Expr2]]I). By the induction hypothesis on Expr1, we know
Expr1 and [[[[Expr1]]I]]C(()) have the same value, say S. If S is an empty sequence, then
both Expr and its translated expression returns an empty sequence. Otherwise, suppose
S = v1, ..., vn. Then, each vi (1 ≤ i ≤ n) will cause Expr2 to execute one time under
the context C, $Var 7→ vi, or xlet $Var [[Expr2]]I to execute one time under the context
C with the source data vi. Both executions will return the same value according to the
forward semantics of xlet and the induction hypothesis on Expr2.

– Case Expr = let $Var := Expr1 return Expr2 . This case is proved similarly as the
for expression.

– Case Expr = if (Cmp) then Expr1 else Expr2. This expression is translated into
xif [[Cmp]]I [[Expr1]]I [[Expr2]]I . We do a case analysis on Cmp. Suppose Cmp is

24

τ ::=a | () | stringo | <tago>[τ] | τ ∗ | τ, τ | τ |τ | µa.τ | dτe

Fig. 12. Syntax of Types

Expr ′1 = Expr ′2, which is translated into xeq [[Expr ′1]]I [[Expr ′2]]I . By the induction hy-
potheses on Expr ′1 and Expr ′2, we know Expr ′1 = Expr ′2 and [[xeq [[Expr ′1]]I [[Expr ′2]]I]]C(())
have the same value. Hence, the if expression and its translated expression choose the
same branch to execute. Then, by the the induction hypotheses on Expr1 and Expr2,
respectively, we know on each branch the if expression and its translated expres-
sion have the same execution result. It is proved similarly for the cases where Cmp is
Expr ′1 < Expr ′2 and Cmp is Expr ′1 > Expr ′2.

– Case Expr = Axis NodeTest . We prove the claim by assuming that Axis is child
and NodeTest is NCName, and other combinations of Axis and NodeTest are proved
similarly. The expression xchild ::NCName first gets the content of the current con-
text item, and then returns all elements with the tag NCName from the content.
Suppose the current context item is bound to the variable $fs :dot. The expres-
sion xchild ::NCName is translated into xvar $fs :dot; xchild;X1;X2, where X1 =
xmap (xif xiselement xid (xconst ())) and X2 = xmap ((xif P xid (xconst ())))
with P = xwithtag NCName. In the translated expression, xvar $fs :dot; xchild
first returns the content of the current context item, and then X1 filters out those con-
tent other than elements, and X2 is to keep only elements with the tag NCName. So
the translated expression returns the same value as the expression xchild ::NCName.

– Case Expr = element NCName {Expr ′}. The expression Expr is translated into the
expression xconst <NCName(ori,c)>[]; xsetcnt [[Expr ′]]I . By the induction hypothesis
on Expr ′, we can see the element expression and its translated expression construct
the same element.

– Case Expr = NCName (Expr1, ...,Exprn). The translated expression is also a function
application xfunapp NCName [[[Expr1]]I , ..., [[Exprn]]I]. By the induction hypotheses
on Expr i (1 ≤ i ≤ n), the argument expression Expr i has the same value, say Si, as its
translated expression. On the other hand, suppose the function NCName is defined as
function NCName($Var1, ..., $Varn){Expr ′}. By the induction hypothesis on Expr ′,
the expression Expr ′ has the same value as its translated expression under the context
C, $Var1 7→ S1, ..., $Varn 7→ Sn. That is, both function applications have the same
value under the context C.

6. The Type System

In this section, we will design a type system for the bidirectional transformation lan-
guage and prove that this type system is sound with respect to the forward semantics of
this language. On the other hand, we also prove that the types of updated source data
are preserved after backward executions of well-typed programs. The type system anno-
tates well-typed programs with types. In the next section, we will see annotated types
provide guiding information for the language to process updated views with insertions in
its backward semantics.

25

() ∈ ()

str(u,o) ∈ stringo

<tag(u,o)>[S] ∈ <tago>[τ], if S ∈ τ

S ∈ τ∗, if S ∈ ()|τ, τ∗

S1, S2 ∈ τ1, τ2, if S1 ∈ τ1 and S2 ∈ τ2

S ∈ τ1|τ2, if S ∈ τ1 or S ∈ τ2

S ∈ µa.τ, if S ∈ τ [µa.τ/a]

S ∈ dτe, if S ∈ τ

Fig. 13. Syntax of Types

6.1. Syntax of Types

The syntax of types is given in Figure 12, which is almost the regular expression types
in [15] except for the boxed type dτe and the origin annotation o on the string type
and element type. This origin annotation is still either s or c. The boxed type will be
introduced later when we discuss the typing rule for xmap. The notation S ∈ τ means S
has the type τ , defined in Figure 13. The recursive type µa.τ is regarded as equivalent
to its unfolded form τ [µa.τ/a], where all occurrences of the free type variable a in τ are
replaced with µa.τ . For brevity, recursive types and type variables will not be considered
in this paper. The boxed type does not affect the relation between values and types, so
it is also ignored where possible.

6.2. Typing Rules

The typing rules for the bidirectional transformation language are defined in Figure
14. The judgment has the form Γ ` X : τ ↔ τ ′ ⇒ X ′, meaning that under the typing
context Γ, if the source data has the type τ , then the transformation X will generate a
view with the type τ ′ after forward executions, and on the other hand, if the updated
view has the type τ ′, then X will generate an updated source data with the type τ after
backward executions. The typing context Γ maps variables to types, or maps function
names together with the types of their arguments to types. The transformation X ′ is the
result of annotating X with types.

In the typing rule for xconst S, the operation mkty(S) makes a type, say τ ′, from S:
if S = (), then τ ′ = (); if S = str (ori,c), then τ ′ = stringc; if S = <tag(ori,c)>[()], then
τ ′ = <tagc>[()]. Hence, S ∈ mkty(S).

There are seven constructs annotated with types: xvar, xchild, the parallel composi-
tion transformation, xmap, xif and xfunapp. The first six constructs need type informa-
tion to process updated views with insertions. The last construct xfunapp uses annotated
information to dynamically annotate the function body to be called. A function can be
applied at different points with arguments of different types, so its body needs to be
annotated according to argument types at each function calling point. Some typing rules
are explained below.

The typing rule of xmap depend on the typing procedure defined in Figure 15. The

26

Γ ` xid : τ ↔ τ ⇒ xid

Γ ` xconst S : τ ↔ mkty(S) ⇒ xconst S

Γ = Γ1,Var 7→ τ ′, Γ2 Var 6∈ Dom(Γ2)

Γ ` xvar Var : τ ↔ τ ′ ⇒ xvarτ ′ Var

τ = <tago1
1 >[τ1]|...|<tagon

n >[τn]

Γ ` xchild : τ ↔ τ1|...|τn ⇒ xchildτ

τ = <tago1
1 >[τ ′]|...|<tagon

n >[τ ′] Γ ` X : τ ′ ↔ τ ′′ ⇒ X′

Γ ` xsetcnt X : τ ↔ <tago1
1 >[τ ′′]|...|<tagon

n >[τ ′′] ⇒ xsetcnt X′

Γ ` X1 : τ ↔ τ1 ⇒ X′
1 Γ ` X2 : τ1 ↔ τ2 ⇒ X′

2

Γ ` X1; X2 : τ ↔ τ2 ⇒ X′
1; X′

2

Γ ` X1 : τ ↔ τ1 ⇒ X′
1 Γ ` X2 : τ ↔ τ2 ⇒ X′

2 τ ′ = dτ1e, dτ2e

Γ ` X1||X2 : τ ↔ τ ′ ⇒ X′
1||

τ ′
τ X′

2

Γ `m xmap X : τ ↔ τ ′ ⇒ τ ′′ Γ ` X : τ ′′ ↔ τ ′′′ ⇒ X′

Γ ` xmap X : τ ↔ τ ′ ⇒ xmapτ ′
τ X′

Γ ` P : τ ↔ τP ⇒ P ′ Γ ` X1 : T(τ, P) ↔ τ1 ⇒ X′
1

Γ ` X2 : F(τ, P) ↔ τ2 ⇒ X′
2

Γ ` xif P X1 X2 : τ ↔ τ1|τ2 ⇒ xif
τ2
τ1 P X′

1 X′
2

τ = stringo1 |...|stringon Γ ` X : () ↔ stringo′1 |...|stringo′n ⇒ X′

Γ ` xeq X : τ ↔ truec|falsec ⇒ xeq X′

τ = <tago1
1 >[τ1]|...|<tagn>[τ

on
n]

Γ ` xwithtag str : τ ↔ truec|falsec ⇒ xwithtag str

τ = <tago1
1 >[τ1]|...|<tagn>[τ

on
n]|stringo′1 |...|stringo′m

Γ ` xiselement : τ ↔ truec|falsec ⇒ xiselement

Γ,Var 7→ τ ` X : () ↔ τ ′ ⇒ X′

Γ ` xlet Var X : τ ↔ τ ′ ⇒ xlet Var X′

fun fname(V ar1, ..., V arn) = X ∈ G

Γ ` Xi : () ↔ τi ⇒ X′
i (1 ≤ i ≤ n) fname(τ1, ..., τn) 6∈ Dom(Γ)

[Var1 7→ τ1, ...,Varn 7→ τn, fname(τ1, ..., τn) 7→ a] ` X : () ↔ τ ′ ⇒ X′ a is fresh

Γ ` xfunapp fname [X1, ..., Xn] : τ ↔ µa.τ ′ ⇒ xfunapp[τ1,...,τn] fname [X′
1, ..., X′

n]

fun fname(V ar1, ..., V arn) = X ∈ G Γ ` Xi : () ↔ τi ⇒ X′
i (1 ≤ i ≤ n)

Γ = Γ1, fname(τ1, ..., τn) 7→ a, Γ2 fname(τ1, ..., τn) 6∈ Dom(Γ2)

Γ ` xfunapp fname [X1, ..., Xn] : τ ↔ a ⇒ xfunapp[τ1,...,τn] fname [X′
1, ..., X′

n]

Fig. 14. Typing Rules

27

Γ `m xmap X : () ↔ () ⇒ ()

τ ∈ {stringo, <tago′>[τ ′]} Γ ` X : τ ↔ τ ′′ ⇒ X′

Γ `m xmap X : τ ↔ dτ ′′e ⇒ τ

Γ `m xmap X : τ ↔ τ1 ⇒ τ ′1

Γ `m xmap X : τ∗ ↔ τ1∗ ⇒ τ ′1

Γ `m xmap X : τ1 ↔ τ ′1 ⇒ τ ′′1 Γ `m xmap X : τ2 ↔ τ ′2 ⇒ τ ′′2

Γ `m xmap X : τ1, τ2 ↔ τ ′1, τ ′2 ⇒ τ ′′1 |τ
′′
2

Γ `m xmap X : τ1 ↔ τ ′1 ⇒ τ ′′1 Γ `m xmap X : τ2 ↔ τ ′2 ⇒ τ ′′2

Γ `m xmap X : τ1|τ2 ↔ τ ′1|τ
′
2 ⇒ τ ′′1 |τ

′′
2

Fig. 15. Typing Rules for xmap

transformation xmap applies its argument transformation X to each single value in the
source data. Correspondingly, the procedure in Figure 15 identifies each string and
element type in the source-data type of xmap, and then uses this string or element type
as the source-data type to check X, resulting in a boxed type. That is, all values matched
with this boxed types have the same string or element as their source data. The view
type of xmap is its source-data type with each string or element type replaced with its
corresponding boxed type. The rules in Figure 15 also collect all top-level string and
element types in the source-data type of xmap and represent them by a choice type. This
choice type will then be used to check X again, so that X is annotated with the type
information from all possible string and element types.

The boxed type can help update the source data in a more reasonable way for up-
dated views with insertions. For example, suppose we have the transformation xmap
xchild. If the source-data type is <bag>[<apple>[string]∗], then the view type of xmap
is d<apple>[string]∗e; if the source-data type is <bag>[<apple>[string]]∗, then its view
type is d<apple>[string]e∗. The different position of box can tell us whether the apple
elements in a view come from the same bag element or from different bag elements. If we
insert a new apple element on the view already containing some apple elements, then in
the first case, the new apple element should be used together with other existing apple
elements by xchild to update the source data, resulting in a new bag element contain-
ing all apple elements; while in the second case, the inserted apple element should be
processed independently by xchild, and a new bag element for this new apple element
is generated in the updated source data. In both cases, the updated source data has the
valid type due to the information from the boxed type.

In the typing rule for the transformation X1||X2, the view types of X1 and X2 are
boxed first, and then composed together as the view type of X1||X2. So the boxed types
in this typing rule can be used to determine whether values are computed by X1 or X2.
The revised split operator in the next section depends on boxed types to split views for
the backward executions of xmap X and X1||X2.

The typing rule of xif checks its two branches under the source-data type computed
by T(τ, P) and F(τ, P), respectively, which are defined in Figure 16. These operators
generate more precise source-data types for each branch. The following example shows

28

T(τ, xeq X′) = τ

F(τ, xeq X′) = τ

T(<tago>[τ], xwithtag str) =

{
<tago>[τ], if str = tag

(), otherwise

T(<tago>[τ]|τ ′, xwithtag str) =

{
<tago>[τ]|T(τ ′, xwithtag str), if str = tag

T(τ ′, xwithtag str), otherwise

F(<tago>[τ], xwithtag str) =

{
<tago>[τ], if str 6= tag

(), otherwise

F(<tago>[τ]|τ ′, xwithtag str) =

{
<tago>[τ]|F(τ ′, xwithtag str), if str 6= tag

F(τ ′, xwithtag str), otherwise

T(stringo, xiselement) = ()

T(<tago>[τ], xiselement) = <tago>[τ]

T(stringo|τ ′, xiselement) = T(τ ′, xiselement)

T(<tago>[τ]|τ ′, xiselement) = <tago>[τ]|T(τ ′, xiselement)

F(stringo, xiselement) = stringo

F(<tago>[τ], xiselement) = ()

F(stringo|τ ′, xiselement) = stringo|F(τ ′, xiselement)

F(<tago>[τ]|τ ′, xiselement) = F(τ ′, xiselement)

Fig. 16. The operator T and F

this feature is useful. In this example, suppose we have the code xif (xwithtag “book”)
xchild (xconst ()) and the source-data type <book>[string]|string. If the source-data
type of xif is directly applied to check its branches, the true branch will cause a type
error since xchild can only accept elements as source data. Actually, if the true branch
is chosen at runtime, we know the xwithtag predicate must hold, so the source data of
this branch must be an element. Here are some brief explanation of these two operators:
the operator T(τ, xwithtag str) selects in τ the element types with the tag str, and the
operator F(τ, xwithtag str) does the reverse selection; the operator T(τ, xiselement)
selects the element types in τ , while the operator F(τ, xiselement) selects the string
types; both operators T(τ, xeq) and F(τ, xeq) return the source-data type without further
selection since the source-data type of xeq contains only string types.

There are two typing rules for function calls. If a function together with the types of
its arguments is not in the domain of Γ, then the first rule is used, otherwise the second is
taken. In the first rule, the function body X is checked under the typing context, where
the variable Var i is mapped to the type τi, and the function name funname together
with these argument types is mapped to a fresh type variable a. The view type τ ′ of
the function body X probably contains the free type variable a because of recursive
function calls. Therefore the view type of xfunapp in the first typing rule is a recursive
type µ a.τ ′. In the second rule, the function body will not be checked since its resulting
type is already available. Note that the type-annotated function body in the first rule is

29

not used in the typing result. This does not mean that we do not need type annotations
in the function body. Instead, this is because we want to avoid the trouble of managing
different versions of the same function with different type annotations. Our solution is
to annotate function calls with the types of their arguments, and then use these types to
dynamically type-check and annotate function bodies when meeting with function calls
at runtime.

6.3. Type Soundness

We will prove the type system in this section is sound with respect to the forward se-
mantics of the bidirectional language. The forward semantics of the bidirectional language
depends on the evaluation context C. In the following definition, we define the well-typed
evaluation context C with respect to a typing context Γ, represented by C ∈ Γ, which is
needed by the type-soundness property.

Definition 2. Given the evaluation context C and the typing context Γ, we say C ∈ Γ,
if 1) C = · and Γ = ·; or 2) C = C′, V ar 7→ S and Γ = Γ′, V ar 7→ τ , such that C′ ∈ Γ′ and
S ∈ τ .

The soundness property of this type system is stated and proved below. As usual,
well-typed programs do not get stuck in their forward executions, and generate views
with the view types derived by the type system.

Theorem 13. Given a transformation X, a context C and a source value S, if Γ ` X :
τ ↔ τ ′ ⇒ X ′, C ∈ Γ and S ∈ τ , then [[X ′]]C(S) = T and T ∈ τ ′.

Proof. This proof is performed by structural induction on X. X and X ′ differ only in
type annotations, which do not affect the forward execution result. For simplicity, we
take the simplified typing judgment Γ ` X : τ ↔ τ ′, and prove [[X]]C(S) = T and T ∈ τ ′.
– Case X = xid. By the typing rule for xid, we have τ ′ = τ . So [[X]]C(S) = S and S ∈ τ .
– Case X = xconst Tc. By the typing rule for xconst, τ ′ = mkty(Tc). Hence, [[X]]C(S) =

Tc and Tc ∈ τ ′.
– Case X = xvar Var . If Γ ` X : τ ↔ τ ′, then we know Γ = Γ1,Var 7→ τ ′,Γ2, where

Var 6∈ Dom(Γ2). Since C ∈ Γ, we have C = C1,Var 7→ T,Γ2, where Var 6∈ Dom(Γ2)
and T ∈ τ ′. Hence, [[X]]C(S) = T .

– Case X = xchild. If Γ ` X : τ ↔ τ ′, then τ has the form <tago1
1 >[τ1]|...|<tagon

n >[τn]
and τ ′ is in the form τ1|...|τn. By assumption, S ∈ τ . Then, S must be an element, and
there exists i (1 ≤ i ≤ n), such that S ∈ <tagoi

i >[τi]. Let S be <tag(w,oi)
i >[S′]. Hence,

we get [[X]]C(S) = S′ and S′ ∈ τi.
– Case X = xsetcnt X ′′. If Γ ` X : τ ↔ τ ′, then τ = <tago1

1 >[τs]|...|<tagon
n >[τs] and

τ ′ = <tago′1
1 >[τ ′′]|...|<tago′n

n >[τ ′′]. Since S ∈ τ , it must have the form <tag(w,oi)
i >[S′] for

some i (1 ≤ i ≤ n), and S′ ∈ τs. By the induction hypothesis on X ′′, we know if
Γ ` X ′′ : τs ↔ τ ′′, S′ ∈ τs and C ∈ Γ, then [[X ′′]]C(S′) = T ′′ and T ′′ ∈ τ ′′. Hence,
[[X]]C(S) = <tag(w,oi)

i >[T ′′] and <tagoi
i >[T ′′] ∈ τ ′.

– Case X = X1;X2. If Γ ` X : τ ↔ τ ′, then we have Γ ` X1 : τ ↔ τ1 and Γ ` X2 : τ1 ↔
τ ′. Suppose S ∈ τ and C ∈ Γ. Then, the proof is carried out by proving [[X1]]C(S) =

30

S′1 and S′1 ∈ τ1 with the induction hypothesis on X1, and then proving [[X2]]C(S ′1) =
T and T ∈ τ ′ with the induction hypothesis on X2.

– Case X = X1||X2. The case is proved similarly as the case where X = X1;X2.
– Case X = xmap X ′′. Suppose Γ ` X : τ ↔ τ ′. Then, by the typing rule for xmap, we

know Γ `m xmap X : τ ↔ τ ′. In the following, we prove [[X]]C(S) ∈ τ ′ by induction on
the source type τ .

If τ = (), then τ ′ = () and S must be (). Hence, [[X]]C(S) = (), and [[X]]C(S) ∈ ().
If τ ∈ {stringo, <tago′>[τ1]}, then the judgment Γ ` X ′′ : τ ↔ τ ′ can be derived.

By the induction hypothesis on X ′′, we get [[X ′′]]C(S) ∈ τ ′, and since S is a string or
an element, we know [[X]]C(S) = [[X ′′]]C(S), so [[X]]C(S) ∈ τ ′ and [[X]]C(S) ∈ dτ ′e.

If τ = τ ′′∗, then τ ′ = τ ′′′∗, where τ ′′′ comes from the judgment Γ `m xmap X : τ ′′ ↔
τ ′′′. If S = (), then the claim holds as proved in the case where τ = (). Otherwise, we
assume S is not an empty sequence and has the form S1,...,Sn. Since S ∈ τ ′′∗, Si ∈ τ ′′.
For each i (1 ≤ i ≤ n), by the induction hypothesis on τ ′′, we get [[X]]C(Si) = Ti and
Ti ∈ τ ′′′. Hence, T1, ..., Tn ∈ τ ′′′∗.

If τ = τ1, τ2, then we have τ ′ = τ ′1, τ
′
2, where τ ′1 and τ ′2 are obtained from the

judgments Γ `m xmap X : τ1 ↔ τ ′1 and Γ `m xmap X : τ2 ↔ τ ′2. Since S ∈ τ1, τ2,
it must have the form S1, S2, such that S1 ∈ τ1 and S2 ∈ τ2. Let T1 = [[X]]C(S1)
and T2 = [[X]]C(S2). By the induction hypotheses on τ1 and τ2, respectively, we get
T1, T2 ∈ τ ′1, τ

′
2. Similarly, we can prove the claim for τ = τ1|τ2.

– X = xif P X1 X2. This case is proved with a case analysis on P . We show the proof
for P = xwithtag tag . For this case, if Γ ` X : τ ↔ τ ′, then τ must have the form
<tago1

1 >[τ1]|...|<tagon
n >[τn]. If S ∈ τ , [[P]]C(S) must return correctly. And thus [[X]]C(S)

will be [[X1]]C(S) or [[X2]]C(S). The proof is done by the induction hypotheses on X1

and X2.
– X = xlet Var X ′. Suppose Γ ` X : τ ↔ τ ′. Then, Γ,Var 7→ τ ` X ′ : () ↔ τ ′. By the

induction hypothesis on X ′, we get [[X ′]]C′(()) ∈ τ ′, where C′ = C,Var 7→ S. The proof
is done since [[X ′]]C′(()) = [[X]]C(S).

– X = xfunapp fname [X1, ..., Xn]. The case is proved similarly as the xlet case.

6.4. Backward Type Preservation

The backward semantics of the bidirectional language depends on the evaluation con-
text E . The following definition defines the well-typed evaluation context E with respect
to a typing context Γ.

Definition 3. For the evaluation context E and the typing context Γ, we say E ∈ Γ, if
1) E = · and Γ = ·; or 2) E = E ′, V ar 7→ (S, S′) and Γ = Γ′,Var 7→ τ , such that E ′ ∈ Γ′,
S ∈ τ and S′ ∈ τ .

During backward transformations, the updated source data may contain values gen-
erated by the mg operator, which combines updates made to different replicas of same
values. The following lemma says this operator does not change the type of data being
merged.

Lemma 14. Suppose S1 ∈ τ and S2 ∈ τ . If S = mg(S1, S2), then S ∈ τ .

31

Proof. The proof proceeds by structural induction on the structure of S1. Some cases
are proved as examples.
– Case S1 = (). If S = mg(S1, S2), then S2 must be (), and S is also (). Hence, S ∈ τ

since S1 ∈ τ .
– Case S1 = str (ori,s). If S = mg(S1, S2), then S2 can be str (ori,s), str (non,s), str ′(mod,s) or

str (del,s). For each possibility of S2, we prove the claim holds. If S2 = str (ori,s), then S

is also the same string as S1, so S ∈ τ . On the other hand, if S2 = str ′(mod,s) (str (non,s)

or str (del,s)), then S = S2, and hence S ∈ τ since S2 ∈ τ .
– Case S1 = <tag(ori,s)>[S ′1]. If S = mg(S1, S2), then S2 is <tag(ori,s)>[S ′2], <tag

(non,s)>[S ′2]
or <tag(del,s)>[S ′2]. Since S1 ∈ τ and S2 ∈ τ , we know τ must have the form <tago>[τ ′],
such that S′1 ∈ τ ′ and S′2 ∈ τ ′. We do case analysis on each possibility of S2. If S2

= <tag(ori,s)>[S ′2], then S = <tag(ori,s)>[S ′], where S′ = mg(S′1, S
′
2). By the induction

hypothesis on S′1, we have S′ ∈ τ ′. Hence, <tag(ori,s)>[S ′] ∈ τ . For the possibility of S2

= <tag(non,s)>[S ′2] (or <tag(del,s)>[S ′2]), we have S = <tag(non,s)>[S ′] (or <tag(del,s)>[S ′]),
where S′ = mg(S′1, S

′
2). Similarly, by the induction hypothesis on S′1, we get S′ ∈ τ ′,

and hence S ∈ τ .
– Case S1 = v1, V1. If S = mg(S1, S2), then S2 must have the form v2, V2, and S = v′, V ′,

where v′ = mg(v1, v2) and V ′ = mg(V1, V2). Since S1 ∈ τ and S2 ∈ τ , we know there
must be three forms for τ : τ = τ1, τ2, where vi ∈ τ1 and Vi ∈ τ2 (i ∈ {1, 2}); τ = τ ′∗,
where vi ∈ τ ′ and Vi ∈ τ ′∗; τ = τ1|τ2, where vi, Vi ∈ τ1 or vi, Vi ∈ τ2. For the first form
of τ , we can prove v′, V ′ ∈ τ1, τ2 by the induction hypotheses on v1 and V1. Similarly,
v′, V ′ ∈ τ ′∗ can be proved. The third form is proved by the induction hypotheses on
τ1 and τ2.

The property of backward type preservation is stated in Theorem 15. That is, the type
of the source data is respected after it is updated by backward executions of well-typed
programs. This is a specific feature for the type system designed in this work. The type
system cannot guarantee that well-typed programs do not fail because conflicting and
improper updates cannot be checked statically by this type system.

Theorem 15. Let E ∈ Γ and S ∈ τ . If Γ ` X : τ ↔ τ ′ ⇒ X ′, T ∈ τ ′ and [[X ′]]E(S , T)
= (S′, E ′), then S′ ∈ τ and E ′ ∈ Γ.

Proof. The proof proceeds by induction on X. In this section, we prove this theorem
with the assumption that updates to T are only modifications or deletions. When T
include insertions, the backward semantics of some language constructs, such as xmap
and xchild, will be revised, and we will discuss this theorem for insertion in the next
section. If T does not include insertions, the type annotations on X ′ will not affect its
backward execution. Hence, in the following proof, we take the simplified typing judgment
Γ ` X : τ ↔ τ ′, and prove the claim about [[X]]E(S , T) = (S′, E ′).
– Case X = xid. By the typing rule for xid, we have τ ′ = τ . So [[X]]E(S , T) = (T, E),

and the claim holds by assumptions.
– Case X = xconst Tc. The backward execution of xconst does not change the source

data S and the environment E , so the claim holds.
– Case X = xvar Var . Suppose Γ ` X : τ ↔ τ ′. Then, Γ = Γ1,Var 7→ τ ′,Γ2, where

Var 6∈ Dom(Γ). Since E ∈ Γ, we know E = E1,Var 7→ (S1, S2), E2, where Var 6∈
Dom(E2), and S1 ∈ τ ′ and S2 ∈ τ ′. If [[X]]E(S , T) = (S′, E ′), then S′ = S and E ′ =

32

E1,Var 7→ (S1, mg(S2, T)), E2. By Lemma 14, mg(S2, T) ∈ τ ′ since S2 ∈ τ ′ and T ∈ τ ′,
so E ′ ∈ Γ.

– Case X = xchild. Suppose Γ ` X : τ ↔ τ ′. Then, τ = <tago1
1 >[τ1]|...|<tagon

n >[τn] and
τ ′ = τ1|...|τn. By assumption, S ∈ τ . Then, S must be an element, and there exists
i (1 ≤ i ≤ n), such that S ∈ <tagoi

i >[τi]. Let S be <tag(w,oi)
i >[Ts], where Ts ∈ τi. If

[[X]]E(S , T) = (S′, E ′), then E ′ = E and S′ = <tag(w,oi)
i >[T]. Now we need to prove

that <tag(w,oi)
i >[T] ∈ <tagoi

i >[τi]. We know that T is the updated Ts, that is, it is
obtained by modifying strings in Ts or deleting strings or elements in Ts by changing
annotations. Hence, T has the same type τi as Ts, and <tag(w,oi)

i >[T] ∈ <tag(w,oi)
i >[τoi

i].
– Case X = xsetcnt X ′. Suppose Γ ` X : τ ↔ τ ′. Then, τ = <tago1

1 >[τs]|...|<tagon
n >[τs]

and τ ′ = <tago1
1 >[τ ′′]|...|<tagon

n >[τ ′′], where τ ′′ is from Γ ` X ′ : τs ↔ τ ′′. Since S ∈ τ ,
it must have the form <tag(w,oi)

i >[Ss] for some i (1 ≤ i ≤ n) and Ss ∈ τs. T must
have the form <tag(w′,oi)

i >[T ′]. If [[X]]E(S , T) = (S′, E ′), then S′ = <tag(w′,oi)
i >[S′s] and

[[X ′]]E(Ss, T
′) = (S′s, E ′). By the induction hypothesis on X ′, we get E ′ ∈ Γ and S′s ∈ τs,

so S′ ∈ <tagoi
i >[τs].

– Case X = X1;X2. If Γ ` X : τ ↔ τ ′, then we have Γ ` X1 : τ ↔ τ1 and Γ ` X2 : τ1 ↔
τ ′. If [[X]]E(S , T) = (S′, E ′), then there must S′′ and E ′′, such that [[X2]]E([[X1]]E.1(S), T)
= (S′′, E ′′) and [[X1]]E′′(S , S′′) = (S′, E ′). By Theorem 13, [[X1]]E.1(S) ∈ τ1, so by the
induction hypothesis on X2, we get S′′ ∈ τ1 and E ′′ ∈ Γ. Thus, the proof is done by
the induction hypothesis on X1.

– Case X = X1||X2. This case is proved similarly as the case where X = X1;X2.
– Case X = xmap X ′′. This case is proved by induction on the source type τ . Suppose

Γ ` X : τ ↔ τ ′. Then, Γ `m xmap X : τ ↔ τ ′.
If τ = (), then τ ′ = (), S = () and T = (). Thus, [[X]]E((), ()) = ((), E). Hence, the

claim follows directly.
If τ ∈ {stringo, <tago′>[τ1]}, then Γ ` X ′′ : τ ↔ τ ′. Let [[X ′′]]E(S , T) = (S′, E ′). By

the induction hypothesis on X ′′, we get S′ ∈ tau and E ′ ∈ Γ. Since S is a string or an
element, we know [[X]]E(S , T) = [[X ′′]]E(S , T), so the claim holds.

If τ = τ ′′∗, then τ ′ = τ ′′′∗, where τ ′′′ comes from Γ `m xmap X : τ ′′ ↔ τ ′′′. Since
S ∈ τ ′′∗, it is either empty or have the form S1, S2, where S1 ∈ τ ′′ and S1 ∈ τ ′′∗. If
S = (), then the claim holds as proved when τ = (). Otherwise, suppose the target
data for S1 and S2 are respective T1 and T2, where T1 ∈ τ ′′′, T2 ∈ τ ′′′∗ and T = T1, T2.
Then, [[X]]E(S1, T1) = (S′1, E ′1). By the induction hypothesis on τ ′′, we have S′1 ∈ τ ′′

and E ′1 ∈ Γ, and then for [[X]]E′1(S2, T2) = (S′2, E ′), by the induction hypothesis on τ ′′∗,
we get E ′ ∈ Γ and S′2 ∈ τ ′′∗, and also S′1, S

′
2 ∈ τ ′′∗.

If τ = τ1, τ2, then we have τ ′ = τ ′1, τ
′
2, where τ ′1 and τ ′2 are obtained from Γ `m

xmap X : τ1 ↔ τ ′1 and Γ `m xmap X : τ2 ↔ τ ′2. Since S ∈ τ1, τ2, it must have the
form S1, S2, such that S1 ∈ τ1 and S2 ∈ τ2. Suppose the target data for S1 and S2

are respective T1 and T2, where T1 ∈ τ ′1, T2 ∈ τ ′2 and T = T1, T2. Then, [[X]]E(S1, T1)
= (S′1, E ′1). By the induction hypothesis on τ ′′, we have S′1 ∈ tau′′ and E ′1 ∈ Γ, and
then for [[X]]E′1(S2, T2) = (S′2, E ′), by the induction hypothesis on τ2, we get E ′ ∈ Γ
and S′2 ∈ τ2, and also S′1, S

′
2 ∈ τ1, τ2. The case for τ = τ1|τ2 is proved similarly.

– Case X = xif P X1 X2. This case is proved by case analysis of P . We only show
the proof for P = xwithtag tag . For this case, [[X]]E(S, T) will be [[X1]]E(S, T) or
[[X2]]E(S, T). The proof is done by the induction hypotheses on X1 and X2.

33

– X = xlet Var X ′. Suppose Γ ` X : τ ↔ τ ′. Then, Γ,Var 7→ τ ` X ′ : () ↔ τ ′. Let
E1 = E ,Var 7→ (S, S). Since E ∈ Γ, we have E1 ∈ Γ,Var 7→ τ . If [[X]]E(S, T) = (S′, E ′),
then [[X ′]]E1((), T) = ((), E2), where E2 = E ′,Var 7→ (S, S′). The proof is done by the
induction hypothesis on X ′.

– X = xfunapp fname [X1, ..., Xn]. The case is proved similarly as the xlet case.

7. Revised Bidirectional Semantics for Insertions

In this section, we will explain how to transform back the updated views that include
insertions. For this purpose, we need to revise the forward or backward semantics of some
transformations. In particular, from the revised backward semantics, we will see the types
annotated on transformations provide guiding information for backward executions.

All examples in this section use the following source data. It includes a list of books
and each book contains a title and a sequence of authors. This source data is called
BookList.

<book(ori,s)>[<title(ori,s)>[a(ori,s)], <author(ori,s)>[b(ori,s)]],

<book(ori,s)>[<title(ori,s)>[c(ori,s)], <author(ori,s)>[d(ori,s)], <author(ori,s)>[e(ori,s)]]

7.1. Missing Source Data

The bidirectional transformations defined before need the original source data to guide
their backward executions. For example, the transformation xchild needs the original
source element to determine what tag the updated source element could have in its back-
ward semantics. However, if the updated views include insertions, it is possible that some
inserted values do not have the original source data. Thus, the backward transformation
of these inserted values will cause problems according to the existing bidirectional se-
mantics. The following example explains how it happens that the source data is missing
for inserted values on views.

Suppose we have the transformation xmap xid, where type annotations on xmap are
ignored for brevity (also in examples later), and apply it to the source data BookList.
Then we obtain a view identical to the source data. The following updated view is the
result of inserting a new book on the view.

<book(ori,s)>[<title(ori,s)>[a(ori,s)], <author(ori,s)>[b(ori,s)]],

<book(ori,s)>[<title(ori,s)>[c(ori,s)], <author(ori,s)>[d(ori,s)], <author(ori,s)>[e(ori,s)]]

<book(ins,s)>[<title(ins,s)>[f(ins,s)], <author(ins,s)>[g(ins,s)]]

Now we transform backward the updated view, that is, transform backward each book
in the view and its corresponding book in BookList by xid. Obviously, the first book
and the second book in the updated view have the first book and the second book in
BookList, respectively, as their source data. The third book in the updated view misses
its source data.

When xmap X is executed backward, if its view includes inserted values, then it is
possible that the backward execution of X on the inserted values does not have cor-
responding source data. This is the only case where missing source data can happen,

34

as shown by the revised backward semantics of xmap later. The missing source data is
denoted by Ω and its length is 0.

7.2. Revising Forward Semantics

Although missing source data happens at the backward execution of X in xmap X, we
need to revise the forward semantics of the language since the backward execution of X
may invoke forward executions of its constituent transformations with Ω as the source
data. For example, suppose we apply the transformation

xmap (xchild; xconst <book(ori,c)>[()])

to the source data BookList. Then, we get the view <book(ori,c)>[()], <book(ori,c)>[()]. For
the updated view, <book(ori,c)>[()], <book(ori,c)>[()], <book(ins,c)>[()], when performing back-
ward transformation, we need to execute xchild; xconst <book(ori,c)>[()] with the source
data Ω and the view <book(ins,c)>[()]. Thus, by the backward semantics of the sequential
composition transformation, xchild needs to be executed forward with the source data
Ω.

There are four transformations and one predicate that have revised forward semantics,
defined in Figure 17. For these transformations, if their source data is Ω, then they
return Ω as views, otherwise their forward semantics is the same as before. In addition,
for the xif transformation, if its predicate P returns Ω, then its view is also Ω. For the
predicate xeq X, if its argument X returns Ω, then it returns Ω. Since if xif has Ω as
its source data, it will not invoke its predicates, so xeq needs not to consider the case
where its source data is Ω, and for the same reason the forward semantics of xwithtag
and xiselement need not revision.

7.3. Revised Backward Semantics

The difficulty of revising backward semantics is caused by the missing source data.
Without information provided by the source data some backward executions do not
know how to proceed. At this case, we will use the types annotated on transformations
to guide the backward executions.

7.3.1. Constant Transformation
If the source data is missing, the constant transformation will fail since we cannot

construct the updated source data even if we have the source-data type of xconst. In
addition, the updated view may be an inserted value, so we use T v Tc rather than
T = Tc to check the validity of T .

[[xconst Tc]]E (S ,T) =

{
(S, E), if S 6= Ω and T v Tc

fail, otherwise

The example in Section 7.2 uses xconst, and its backward execution will fail since the
xconst in that example takes Ω as its source data. Here is another example of xconst
with with an inserted element as its view, and this time it has a successful its backward
execution. The code for this example is given below.

35

[[xchild]]C(S) =

S′, if S = <tag(w,o)>[S ′]

Ω, else if S = Ω

fail, otherwise

[[xsetcnt X]]C(S) =

<tag(w,o)>[[[X]]C(S′)], if S = <tag(w,o)>[S ′]

Ω, else if S = Ω

fail, otherwise

[[xmap X]]C(()) = ()

[[xmap X]]C(Ω) = Ω

[[xmap X]]C(v1, ..., vn) = [[X]]C(v1), ..., [[X]]C(vn)

[[xif P X1 X2]]C(S) = [[X1]]C(S), if [[P]]C(S) = true(ori,c)

[[xif P X1 X2]]C(S) = [[X2]]C(S), if [[P]]C(S) = false(ori,c)

[[xif P X1 X2]]C(S) = Ω, if S = Ω or [[P]]C(S) = Ω

[[xeq X]]C(S) =

true(ori,c), if S = str(u,o) and [[X]]C(()) = str(u′,o′)

false(ori,c), else if S = str(u,o), [[X]]C(()) = str′(u
′,o′) and str 6= str′

Ω, else if [[X]]C(()) = Ω

fail, otherwise

Fig. 17. Revised Forward Semantics

xmap (xlet $b (<pack(ori,c)>[()]; xsetcnt (xvar $b)))

Applying the above code to the source data BookList, we get a view that includes
two pack elements, each of which contains inside a book from the source data. Now if
we insert a new pack element containing a new book element into the view as the last
element, then the backward execution of the xconst above will succeed since its source
data is () and the inserted book element will appear as the last element in the updated
source data.

7.3.2. Element Deconstruction
If the transformations xchild does not have source data, it will not know what tag

the updated source should have. Recall the definition of its backward semantics, xchild
needs the tag of the original element to determine the tag of the updated element. This
problem is solved by the annotated type on xchild, which is the type of the source data.
The source-data type of xchild must have the form <tago1

1 >[τ1]|...|<tagon
n >[τn]. If the

view T has the type τi, then this view is supposed to come from a source element with
the type <tagoi

i >[τi], so we use tag(ins,oi)
i as the tag of the updated source data.

[[xchildτ]]E(S, T) =

(<tag(w,o)>[T], E), if S = <tag(w,o)>[S ′] and <tag(w,o)>[T] ∈ τ

(<tag
(ins,oi)
i >[T], E), else if S = Ω, τ = <tago1

1 >[τ1]|...|<tagon
n >[τn] and T ∈ τi

fail, otherwise

36

It should mention that if the source data of xchild is not missing, we have a check
to make sure the updated source data still has the annotated source-data type. This
check is necessary for the revised backward semantics of xchild to satisfy backward
type preservation property, and the reason is given below.

Suppose the source-data type of xchild is <tago1
1 >[τ1]|...|<tagon

n >[τn]. Then, its view
type for this source-data type is τ1|...|τ2 according to the typing rule of xchild. Let the
source data S have the type <tagoi

i >[τi], so the original view of xchild has the type τi.
However, after updated with insertions, even if the updated view T has the view type
τ1|...|τ2, T not necessarily has the type τi. Hence, the updated source data may not have
the type <tagoi

i >[τi], or even not the type <tago1
1 >[τ1]|...|<tagon

n >[τn].

7.3.3. Variable Reference
The xvar Var transformation returns the original source data in its backward seman-

tics, so if the source data is missing, its backward executions will fail. In addition, the
variable Var in the evaluation context E may be bound to a pair of Ωs by the most recent
enclosed xlet. At this case, the context E is updated by setting the updated value of
Var to the updated view T ′. Otherwise, the context E is updated by setting the updated
value of Var as the result of merging T ′ and the current updated value of Var in E . Note
that in the revised backward semantics a new mg operator, defined in Figure 18, is used
to merge values. This new operator is directed by the type annotated on xvar, which
characterizes the structure of the expected merging result, and it can merge two values
that may not have identical structures due to insertions. This new mg operator is also
used in the revised backward semantics of parallel composition transformation.

[[xvarτ Var]]E (S , T ′) =

(S, E ′), if S 6= Ω, E = E1,Var 7→ (S1, S2), E2, S2 6= Ω and Var /∈ Dom(E2)

(S, E ′′), else if S 6= Ω, E = E1,Var 7→ (Ω, Ω), E2 and Var /∈ Dom(E2)

fail, otherwise

where E ′ = E1,Var 7→ (S1, mg(S2, T ′, τ)), E2 and E ′′ = E1,Var 7→ (Ω, T ′), E2

The definition of new mg operator depends on two operators allins and typeel.
The operation allins(S) returns true if all top-level strings or elements in S have the
updating annotation ins. The operation typeel(S1, τ1, S2, τ2), defined in Figure 19, splits
S1 into two subsequences, say S11 and S12, such that S11 ∈ τ1 and S12, S2 ∈ τ2.

Here is an example for explaining the new mg operator. Suppose Title and Author
denote the types of the title element and the author element in the source data BookList,
respectively. Let S1 and S2 be respectively the following data

S1 : <title(ori,s)>[t(mod,s)], <author(ins,s)>[h(ins,s)], <author(ori,s)>[b(ori,s)]

S2 : <title(ori,s)>[a(ori,s)], <author(ins,s)>[g(ins,s)], <author(ori,s)>[b(ori,s)], <author(ins,s)>[k(ins,s)]

Then, the operation mg(S1, S2, Title, Author∗) returns the following data, that merges
insertions in S1 and S2.

<title(ori,s)>[t(mod,s)], <author(ins,s)>[h(ins,s)], <author(ins,s)>[g(ins,s)],

<author(ori,s)>[b(ori,s)], <author(ins,s)>[k(ins,s)]

37

mg((), (), ()) = ()

mg(str(u,o), str(u,o), string) = str(u,o)

mg(str(ori,s), str(u,s), string) = str(u,s), where u ∈ {non, del}

mg(str(ori,s), str ′
(mod,s)

, string) = str ′
(mod,s)

mg(str(u,s), str(ori,s), string) = str(u,s), where u ∈ {non, del}

mg(str ′
(mod,s)

, str(ori,s), string) = str ′
(mod,s)

mg(<tag(w,o)>[S1], <tag(w,o)>[S2], <tag>[τ]) = <tag(w,o)>[S′], where S′ = mg(S1, S2, τ)

mg(<tag(ori,s)>[S1], <tag(del,s)>[S2], <tag>[τ]) = <tag(del,s)>[S′], where S′ = mg(S1, S2, τ)

mg(<tag(del,s)>[S1], <tag(ori,s)>[S2], <tag>[τ]) = <tag(del,s)>[S′], where S′ = mg(S1, S2, τ)

mg(S1, S2, τ∗) = S11, S21, mg(S12, S22, τ∗)

where typeel(S1, τ, (), τ∗) = (S11, S12), typeel(S2, τ, (), τ∗) = (S21, S22),

allins(S11) = true, and allins(S21) = true

mg(S1, S2, τ∗) = S11, mg(S12, S2, τ∗)

where typeel(S1, τ, (), τ∗) = (S11, S12), typeel(S2, τ, (), τ∗) = (S21, S22),

allins(S11) = true, and allins(S21) = false

mg(S1, S2, τ∗) = S21, mg(S1, S22, τ∗)

where typeel(S1, τ, (), τ∗) = (S11, S12), typeel(S2, τ, (), τ∗) = (S21, S22),

allins(S11) = false, and allins(S21) = true

mg(S1, S2, τ∗) = mg(S11, S21), mg(S12, S22, τ∗)

where typeel(S1, τ, (), τ∗) = (S11, S12), typeel(S2, τ, (), τ∗) = (S21, S22),

allins(S11) = false, and allins(S21) = false

mg(S1, S2, τ1, τ2) = mg(S11, S21, τ1), mg(S12, S22, τ2)

where typeel(S1, τ1, (), τ2) = (S11, S12), typeel(S2, τ1, (), τ2) = (S21, S22)

mg(S1, S2, τ1|τ2) = mg(S1, S2, τ1), where S1 ∈ τ1 and S2 ∈ τ1

mg(S1, S2, τ1|τ2) = mg(S1, S2, τ2), where S1 ∈ τ2 and S2 ∈ τ2

mg(S1, S2, τ) = fail, if no other case applies

Fig. 18. The New mg Operator

typeel((), τ1, S2, τ2) = fail, if () 6∈ τ1 or S2 6∈ τ2

typeel(S1, τ1, S2, τ2) = (S1, S2), if S1 ∈ τ1 and S2 ∈ τ2

typeel(S1, τ1, S2, τ2) = typeel(S′
1, τ1, v, S2, τ2), if S1 6∈ τ1 and S1 = S′

1, v

Fig. 19. The typeel Operator

The following two lemmas about the new mg operator are needed to show the re-
vised backward semantics of xvar satisfies the extended round-tripping property and the
backward type preservation property.

38

Lemma 16. If S = mg(S1, S2, τ), then S1 v S and S2 v S.

Proof. The proof proceeds by structural induction on the type τ .In the following, we
prove the case where τ = τ ′∗. Other cases can be proved similarly.
– Case τ = τ ′∗. Suppose typeel(S1, τ

′, (), τ ′∗) = (S11, S12) and typeel(S2, τ
′, (), τ ′∗) =

(S21, S22). There are four possibilities to generate merging results for mg(S1, S2, τ
′∗). If

the merging result S is S11, S21, mg(S12, S22, τ
′∗), then by induction hypothesis, we get

S12 v mg(S12, S22, τ
′∗) and S22 v mg(S12, S22, τ

′∗). We now prove S1 v S. By Lemma
5, we have S12 v S21, mg(S12, S22, τ

′∗), and then by Lemma 8, we get S11, S12 v
S11, S21, mg(S12, S22, τ

′∗), that is, S1 v S. By applying Lemma 8 and then Lemma 5,
S2 v S can be proved. Similarly, we can prove the other three possibilities.

Lemma 17. Suppose S1 ∈ τ and S2 ∈ τ . If S = mg(S1, S2, τ), then S ∈ τ .

Proof. The proof proceeds by structural induction on the type τ .
– Case τ = (). The merging result for this case is (), so the claim holds trivially.
– Case τ = str . The merging result is still the same string str, so the claim follows. The

cases where τ = string are also proved similarly.
– Case τ = <tag>[τ ′]. For this case, we have S1 = <tag(u,o)>[S′1] and S2 = <tag(u,o)>[S′2].

Let S′ = mg(S′1, S
′
2, τ

′). By the induction hypothesis on τ ′, we get S′ ∈ τ ′. Hence,
<tag(u,o)>[S′] ∈ <tag>[τ ′].

– Case τ = τ ′∗. Suppose typeel(S1, τ
′, (), τ ′∗) = (S11, S12) and typeel(S2, τ

′, (), τ ′∗) =
(S21, S22). By the definition of typeel, we know S11 ∈ τ ′, S12 ∈ τ ′∗, S21 ∈ τ ′ and
S22 ∈ τ ′∗. There are four possibilities to generate merging results for mg(S1, S2, τ

′∗). If
the merging result S is S11, S21, mg(S12, S22, τ

′∗), then by induction hypothesis, we get
mg(S12, S22, τ

′∗) ∈ τ ′∗, so S ∈ τ ′∗. Similarly, we can prove the other three possibilities.
– Case τ = τ1, τ2. Suppose typeel(S1, τ1, (), τ2) = (S11, S12) and typeel(S2, τ1, (), τ2) =

(S21, S22). By the definition of typeel, we know S11 ∈ τ1, S12 ∈ τ2, S21 ∈ τ1 and S22 ∈
τ2. By the induction hypotheses on τ1 and τ2, respectively, we get mg(S11, S21, τ1) ∈ τ1

and mg(S12, S22, τ2) ∈ τ2. Hence, the claim follows directly.
– Case τ = τ1|τ2. The merging result for this case is either mg(S1, S2, τ1) or mg(S1, S2, τ2).

the claim holds following the induction hypotheses on τ1 and τ2.

7.3.4. Conditional Transformation
If the source data of xif is not missing and its predicate has normal values (true(ori,c)

or false(ori,c)), then the revised backward semantics is the same as that before revision,
that is, the branch X1 or X2 is chosen to run backward according to the value of the
predicate. On the other hand, if the source data of xif is Ω or its predicate returns Ω,
then xif loses the information of how to advance its backward executions. At this case,
the types annotated on xif provide such information. If the updated view has the view
type of the branch X1, then it is supposed to be generated by X1, so X1 will be chosen; if
the updated view has the view type of X2, then X2 is chosen. After backward executions
of X1 or X2, the updated source data and the updated evaluation context must make
sure the predicate of xif has the corresponding value. That is, if X1 is chosen, then the
predicate must have the value true(ori,c) under the updated evaluation context with the

39

lenpeel(S1, S2, l) = fail, if orilen(S1) < l

lenpeel(S1, S2, l) = (S1, S2), if orilen(S1) = l

lenpeel(S1, S2, l) = lenpeel(S′
1, v, S2, l), if orilen(S1) > l and S1 = S′

1, v

Fig. 20. The lenpeel Operator

updated source data, and similarly if X2 is chosen. This requirement is necessary for the
revised backward semantics satisfying the extended round-tripping property.

[[xifτ2
τ1 P X1 X2]]E(S , T)= [[P]]E′ (S, S′), if S 6= Ω, [[P]]E.1(S) = true(ori,c) and [[X1]]E (S, T) = (S′, E ′)

[[xifτ2
τ1 P X1 X2]]E(S , T)= [[P]]E′ (S, S′), if S 6= Ω, [[P]]E.1(S) = false(ori,c) and [[X2]]E (S, T) = (S′, E ′)

[[xifτ2
τ1 P X1 X2]]E(S , T)= [[P]]E′ (S, S′), if S = Ω or [[P]]E.1(S) = Ω, T ∈ τ1, [[X1]]E(S, T) = (S′, E ′)

and [[P]]E′.2(S′) = true(ori,c)

[[xifτ2
τ1 P X1 X2]]E(S , T)= [[P]]E′ (S, S′), if S = Ω or [[P]]E.1(S) = Ω, T ∈ τ2, [[X2]]E(S, T) = (S′, E ′)

and [[P]]E′.2(S′) = false(ori,c)

7.3.5. Mapping Transformation
The revision of xmap mainly focuses on the split operator. The operator split is

used by xmap (also by the parallel composition transformation) to divide their views
into subsequences, and then each subsequence is transformed backward to update the
corresponding string or element in the source data. When a view does not include inserted
values, it can be divided precisely according to the expected length for each subsequence
computed from the original source data. However, if the view includes inserted values,
the length information is not enough to determine how to split the view.

The following example shows that an elegant splitting mechanism is needed for xmap
if its views include insertions. For example, for the source data BookList, the code
xmap xchild produces a view consisting of a sequence of titles and authors of each book.
Then, consider the following updated view.

<title(ori,s)>[a(ori,s)], <author(ori,s)>[b(ori,s)], <author(ins,s)>[f(ins,s)], <title(ins,s)>[g(ins,s)],

<author(ins,s)>[h(ins,s)], <title(ori,s)>[c(ori,s)], <author(ori,s)>[d(ori,s)],

<author(ins,s)>[i(ins,s)], <author(ori,s)>[e(ori,s)]

where three authors and one title elements are inserted. In the backward execution of
xmap xchild, this view is first divided into subsequences and then each of them is used
as the updated view of xchild for generating an updated or new book element. For this
example, it is reasonable to split the updated view into three subsequences: the first three
elements, the next two, and the last four. Thus, in the updated source data, the first book
element is inserted with a new author, the second book element is a newly inserted one
with the inserted title and author, and the third book element has an inserted author.

The revised split operator is given in Figure 21. It has three arguments: the updated
view to be split, a list of integers for the expected length of each subsequence, and
the view type of xmap. This operator returns a list, each item in which is a pair of a
subsequence and a flag m or e indicating whether the source data of this subsequence is

40

split((), [], ()) = []

split(T, [l], dτe) = [(T, e)], where orilen(T) = l

split(T, [], dτe) = [(T, m)], where allins(T) = true

split(T, ls, τ∗) = split(T, ls, ()|τ, τ∗)

split(T, ls, τ1|τ2) = split(T, ls, τ1), where T ∈ τ1

split(T, ls, τ1|τ2) = split(T, ls, τ2), where T ∈ τ2

split(T, l:ls, dτ1e, τ2) = (T11, e):split(T12, ls, τ2)

where lenpeel(T, (), l) = (T1, T2), typeel(T1, τ1, T2, τ2) = (T11, T12)

and orilen(T11) = l

split(T, l:ls, dτ1e, τ2) = (T11, m):split(T12, l:ls, τ2)

where lenpeel(T, (), l) = (T1, T2), typeel(T1, τ1, T2, τ2) = (T11, T12),

allins(T) = true, and orilen(T11) 6= l

split(T, [], dτ1e, τ2) = (T1, m):split(T2, [], τ2)

where allins(T) = true, and typeel(T, τ1, (), τ2) = (T1, T2)

split(T, ls, τ) = fail, if no other case applies

Fig. 21. The split Operator

iter(X, [], S, S′, E) = (S′, E)

iter(X, (T, m) : ls, S, S′, E) = iter(X, ls, S, S′, v′, E ′), where [[X]]E(Ω, T) = (v′, E ′)

iter(X, (T, e) : ls, v, S, S′, E) = iter(X, ls, S, S′, v′, E ′), where [[X]]E(v, T) = (v′, E ′)

Fig. 22. The iter Operator

missing or existing, respectively. The definition of split depends on the operators orilen
and lenpeel. The operation orilen(S) returns from S the number of top-level strings or
elements, which do not have the ins annotation, and the operation lenpeel(S1, S2, l),
defined in Figure 20, divides S1 into two parts, say S11 and S12, such that orilen(S11)
= l, and returns S11 and S12, S2 in a pair.

Let Title and Author be the types for title and author elements in the source data
BookList, and T represent the above view. Then, the source data BookList has the
type <books>[Title, Author∗]∗, and T has the type dTitle, Author∗e∗. The first book
element in BookList generates two elements in T , and the second generates three, so we
can use the operation split(T, [2, 3], dTitle, Author∗e∗) to split the above view T . The
result is three subsequences as expected, with the first and third subsequences flagged
by e and the second flagged by m.

The revised backward semantics of xmap X is given below, where the new iter operator
is defined in Figure 22. For a subsequence, if its source data is missing, then in the iter
operator, the backward execution of X takes Ω as the source data. The updated source
data of xmap is checked against the annotated source-data type to make sure it is well-
typed. The example below shows that this check is necessary for the revised backward
semantics of xmap to satisfy the backward type preservation property.

41

[[xmapτ ′
τ X]]E(S, T) = (S′, E ′), if S = () or S = Ω

where ST = split(T, [], τ ′), (S′, E ′) = iter(X, ST, S, (), E), and S′ ∈ τ

[[xmapτ ′
τ X]]E(S, T) = (S′, E ′), if S = v1, ..., vn

where ST = split(T, [len([[X]]E.1(v1)), ..., len([[X]]E.1(vn))], τ ′)

(S′, E ′) = iter(X, ST, S, (), E), and S′ ∈ τ

In this example, suppose the source data has the type Title, Author∗, where Title and
Author are the types for title and author elements, respectively. Then, applying the code
xmap (xif (xwithtag title) xid xconst ()) to a well-typed source data, we get a view consisting
of title elements with the view type dTitlee∗. If we insert a new title element into the
view, the updated view still has the correct type, but after the backward execution of
the example code, the updated source data is not well-typed since the new title element
does not have the corresponding author element. Hence, in this example, the backward
execution fails according to the revised backward semantics of xmap.

7.3.6. Parallel composition
With the annotated types and the new operators mg and split, the revision of the

parallel composition transformation is straightforward.

[[X1||τ
′

τ X2]]E (S , T) = (mg(S′
1, S′

2, τ), E ′)

where

[T1, T2] = split(T, [len([[X1]]E.1(S)), len([[X2]]E.1(S)], τ ′)

(S′
2, E ′′) = [[X2]]E(S, T2)

(S′
1, E ′) = [[X1]]E′′ (S, T1)

7.3.7. Function call
When a function call, xfunapp[τ1,...,τn] fname [X1, ..., Xn], is executed backward, it

needs to annotate the body of the function fname with respect to the types of its argu-
ments, that is, τ1, ..., τn, respectively. Suppose the function fname is defined as

fun fname(Var1, ...,Varn) = X

Then, its body X is annotated by type-checking X with the following judgment.

[Var1 7→ τ1, ...,Varn 7→ τn, fname(τ1, ..., τn) 7→ a] ` X : () ↔ τ ′ ⇒ X′

where a is fresh.

8. Implementation

The approach proposed in this work has been implemented in Java with JDOM. Our
system is available at [9], where several XQuery Core examples are provided. Most of
these examples are obtained by normalizing XQuery use cases from the W3C draft [8]
with the Galax XQuery engine [12].

Our implementation supports more XQuery Core syntax than we presented in this
paper. For example, the order expression in XQuery, the existential predicate, the at-
tribute axis, XML name spaces and the constructors for constructing and destructing

42

sequences (or lists) are supported in our implementation. More interestingly, our imple-
mentation can simulate higher-order functions in functional languages by changing the
argument fname in xfunapp from a string to a transformation, and therefore a function
argument can also be used as a function name. This feature is useful when we use this
bidirectional language to interpret HaXML [16], which contains some higher-order XML
transformation combinators.

In this implementation, only inserted or deleted elements need to be marked with ins
or del, and other flags are derived by the system automatically. For example, by typing
the updated view against the view type, we can obtain the origin annotations of strings
or elements from their types, and by comparing the updated view with the original view,
we can know whether a string is modified or not. This prototype implementation is not
used to benchmark the performance of our approach since the implementation itself can
be improved and the code generated from XQuery Core has much space to optimize.
Our approach does not allow any change to the values generated by xconst or aggregate
functions, such as sum and count. We reviewed the first forty-one XQuery use cases in [8].
Only six of them generate views completely consisting of values from xconst or aggregate
functions and hence not allowing any update. For other use cases, our approach is found
useful by enabling view update of XQuery.

9. Related Work

The related work can be described from two aspects. The first is related to the bidi-
rectional language design, and the second is about XML view update.

The languages in [5–7] are most closely related. These languages cannot be used directly
to interpret XQuery for the following reasons. First, they do not have the variable binding
mechanism, and consequently the output of a transformation can only be used by its
successive transformations or the transformation combinators containing it. However,
in XQuery, an output from an expression may be bound to a variable, and then used
many times by different subexpressions. Second, these languages do not provide a general
setting to interpret functions in XQuery. A function in XQuery can have any number
of arguments, each of which may be used as the updatable source data. However, these
languages support only functions with one argument as the updatable source data. Third,
the constructs in these languages are designed for their particular purposes and are not
suitable for processing XML. For example, XPath axes are difficult to interpret in these
languages. In addition, the languages in [5–7] do not have a type system or do not take
regular expression types in their type systems.

The injective language in [17] and the reversible language in [18] can also be executed
in bidirectional ways. These languages express only injective functions, so their programs
can be inverted. Our bidirectional language can express functions not necessarily injec-
tive, with the cost that the backward execution may fail due to, for instance, conflicting
updates. The work [19] proposes a method that given a function, it can automatically
derives the backward function, so bidirectional transformation can be implemented with-
out defining the backward semantics for each language construct. However, the language
in [19] is simple in that a bound variable can only be used one time and a function
call can appear only in data constructors. Due to these restrictions, it is difficult to use
this method to interpret XQuery. All these languages do not support regular expression

43

types, either.
The work [20,21] studies how to update the relational database through XML views,

rather than update XML data like our work. This work uses query trees to capture
common operations in most XML query languages. However, query trees cannot sup-
port recursive functions in XQuery, as shown by our motivating example. The work [22]
studies the conditions under which the updates to XML views can be translated into
the underlying databases. In our approach, we use dynamic check to determine whether
an updated view leads to valid updated source data. For example, the transformations
xchild and xmap in our bidirectional language perform dynamic type checks to make
sure the updated source is well-typed.

The work in [23] also uses programming language technique to solve the view updating
problem. But the view definition language in [23] is not bidirecitonal, so when defining
a view, users have to write the code for putting back possible updates into the source
XML data.

10. Conclusion

In this paper, we have proposed an approach to address the view updating problem of
XQuery. In this approach, we first designed an expressive bidirectional XML transforma-
tion language, and then used it to interpret XQuery. The backward executions of XQuery
expressions reflect back the updates to views into the XML source data making up the
views. Although we are motivated by interpreting XQuery, we believe that our work pro-
vides a potential technique to define general-purpose bidirectional functional languages
since the bidirectional semantics of functions and some constructors for algebraic data
types can be defined in this technique.

We proposed the extended round-tripping property as one criterion for well-behaved
bidirectional transformations. This criterion is more suitable for the expressive view-
definition languages, like XQuery. We have proved that the bidirectional language pro-
posed in this paper satisfies this property.

The structure of XML data is generally described with regular expression types. We
designed a type system with regular expression types for our bidirectional language. We
have proved that this type system is sound with respect to the forward semantics of this
language and the types of source data are preserved by backward executions of well-typed
programs.

The insertions on views are difficult to transform backward. We illustrated why they
are difficult and proposed a type-based solution to this problem. The annotated types on
transformations provide guiding information for backward executions to update source
data more reasonably.

One interesting future work is to analyze bidirectional programs and determine what
are valid updates on views, such that valid updates do not lead to failure during backward
executions.

References

[1] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan Robie, and Jerome
Simeon. XQuery 1.0: An XML Query Language, 2005. http://www.w3.org/TR/xquery/.

44

[2] F. Bancilhon and N. Spyratos. Updating semantics of relational views. ACM Transactions on

Database Systems, 6(4):557–575, 1981.
[3] U. Dayal and P. A. Bernstein. On the correct translation of update operations on relational views.

ACM TODS, 7(3):381–416, 1982.

[4] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent views. ACM
Transactions on Database Systems, 13(4):486–524, 1988.

[5] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan

Schmitt. Combinators for bi-directional tree transformations: a linguistic approach to the view
update problem. In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 233–246. ACM Press, 2005.

[6] Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C. Pierce. Relational lenses: A language for
updateable views. In Proceedings of the 25th ACM symposium on Principles of Database Systems,

2006.

[7] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor for developing
structured documents based on bidirectional transformations. In Proceedings of the 2004 ACM

SIGPLAN symposium on Partial evaluation and semantics-based program manipulation, 2004.
[8] Don Chamberlin, Peter Fankhauser, Daniela Florescu, Massimo Marchiori, and Jonathan Robie.

XML Query Use Cases, 2006. http://www.w3.org/TR/xquery-use-cases/.

[9] Bidirectional XQuery. http://www.ipl.t.u-tokyo.ac.jp/˜liu/BiXQuery.html.
[10] Veronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: an XML-centric general-purpose

language. In Proceedings of the ACM International Conference on Functional Programming, 2003.

[11] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. On propagation of deletions and
annotations through views. In PODS ’02: Proceedings of the twenty-first ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages 150–158, New York, NY, USA, 2002.

ACM Press.
[12] Galax: An Implementation of Query. http://www.galaxquery.org/.

[13] A. Marian and J. Simeon. Projecting XML documents. In Proceedings of VLDB 2003, 2003.

[14] Dan Olteanu, Holger Meuss, Tim Furche, and Francois Bry. XPath: Looking forward. In Proceedings
of the EDBT Workshop on XML Data Management (XMLDM), volume 2490 of LNCS, pages 109–

127. Springer, 2002.

[15] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing language. ACM
Transactions on Internet Technology, 3(2):117–148, 2003.

[16] Malcolm Wallace and Colin Runciman. Haskell and XML: generic combinators or type-based
translation? In Proceedings of the fourth ACM SIGPLAN international conference on Functional

programming, 1999.

[17] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic approach to bi-directional
updating. In APLAS, volume 3302, pages 2–20, 2004.

[18] Tetsuo Yokoyama and Robert Glück. A reversible programming language and its invertible self-

interpreter. In PEPM ’07: Proceedings of the 2007 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, pages 144–153. ACM Press, 2007.

[19] Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano, Makoto Hamana, and Masato Takeichi.

Bidirectionalization transformation based on automatic derivation of view complement functions.
In Proceedings of the ACM International Conference on Functional Programming, 2007.

[20] Vanessa P. Braganholo, Susan B. Davidson, and Carlos A. Heuser. PATAXO: A framework to allow

updates through xml views. ACM Trans. Database Syst., 31(3):839–886, 2006.
[21] Vanessa Braganholo, Susan Davidson, and Carlos Heuser. From XML view updates to relational

view updates: old solutions to a new problem. In Proceedings of VLDB 2004, 2004.
[22] Ling Wang and Elke A. Rundensteiner. On the updatability of XML views published over relational

data. In International Conference on Conceptual Modeling, 2004.
[23] H. Kozankiewicz, J. Leszczylowski, and K. Subieta. Updatable XML views. In ADBIS, pages

381–399, 2003.

45

