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Abstract
XQuery is a powerful functional language to query XML data.
This paper gives a bidirectional interpretation of XQuery to address
the problem of updating XML data through materialized XQuery
views. We first design an expressive bidirectional transformation
language, and then translate XQuery expressions into the code of
this language. As a result, an XQuery expression can execute in
two directions: in the forward direction, it generates a materialized
view from the source XML data; while in the backward direction,
it updates the source data by putting back the updates on the view.
we have implemented our approach and applied it to some XQuery
use cases from a W3C draft, which confirms the practicability of
this approach.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Languages, Transformations

Keywords Bidirectional programming, XQuery, XML, view up-
date problem

1. Introduction
XQuery [4] is a powerful functional language designed to query
XML data. The role of XQuery to XML is just like that of SQL to
relational database tables. However, XQuery still lacks an impor-
tant feature that SQL has. This feature is view update [3, 9, 11],
that is, updates on a view can be reflected back to the underlying
relational database that makes up this view. In other words, XQuery
can generate views from the source XML data, but it cannot prop-
agate view updates back into the source data.

This paper presents a translational semantics for XQuery with
a bidirectional transformation language. In this bidirectional lan-
guage, every program can execute in two directions: in the forward
direction, it produces a materialized view from the source data;
while in the backward direction, it updates the source data by re-
flecting back the updates on the view. By this way, every XQuery
expression can also execute in two directions, and the backward
execution will put the updates on views back into the source data.

The underlying language is inspired by the bidirectional lan-
guage proposed in [10, 5], which includes a collection of combina-
tors, called lenses, for tree transformations. The technique used by
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this language is to define both the forward and backward semantics
for each combinator, and the backward semantics is responsible for
yielding the updated source data. However, as stated in [10], it is
not clear what the limits of bidirectional programming with this
technique are, or how expressive the combinators defined in this
language could be. For our work, the question becomes whether
this technique can be used to define an expressive bidirectional lan-
guage to interpret XQuery. In this paper, we give a positive answer
to this question by designing a bidirectional language that is ex-
pressive enough to interpret XQuery. The bidirectional language
we designed provides a way of treating the variable binding mech-
anism in a bidirectional context and defines a set of combinators
suitable for constructing and destructing XML data. These features
are critical to interpret XQuery. For example, the variable binding
mechanism provides the basis for interpreting function calls, for
and let expressions in XQuery.

We also design a type system for this bidirectional language.
Given a program of this language and the type of source data, the
type system can check whether this program is type-correct, and if
yes, it also generates the corresponding view type. The soundness
property of this type system characterizes both the forward and
backward behaviors of well-typed programs. For a type-correct
program, its forward execution does not get stuck and will generate
the view with the correct type. However, its backward execution
probably terminates with a special value fail and fail to update
the source data even if the updated view conforms to the view
type. This happens when updates on the view contain conflicts or
improper insertions. The successful backward execution guarantees
the updated source data is valid against the given source type.

For XQuery views, we consider three kinds of updates: modi-
fications to text contents, insertions or deletions of elements. The
insertions on views are more tricky to deal with than modifications
and deletions. This is because inserted values do not have counter-
parts in the original source data. Hence, it is difficult to determine
the structure of the updated source data without the information de-
rived from the original source data for where and how to put back
inserted values. This problem is illustrated more by examples in
Section 6. We solve this problem by annotating the language con-
structs with types, which provide guidance information for putting
inserted data back in a reasonable way. We, however, do not need
users to annotate programs manually. This is done by the type sys-
tem.

The property of view updating is generally stated by the condi-
tion that after the source data is updated according to an updated
view, executing the same query on the updated source data should
get the same view as the updated view again [3, 9, 5, 10]. How-
ever, this condition is not suitable for the view updating problem
of XQuery, which is a quite general functional language. For ex-
ample, if an XQuery expression creates a view containing several
copies of one value from the source data (i.e., the dependency in
view [13]), then modifying one copy will violate the above condi-
tion even if the value in the source data is correctly updated. This



declare function local:toc($book-or-section)
{

for $section in $book-or-section/section
return

<section>
{$section/@id, $section/title,
local:toc($section)}

</section>
};
<toc>

{ for $s in doc("book.xml")/book
return local:toc($s)}

</toc>

Figure 1. An XQuery Expression

is because executing this XQuery expression on the updated source
data will generate a different view where all copies of the value be-
come the modified one. In this work, the property of view updating
is studied by relating the updates on views with those in the source
data. The well-behaved bidirectional programs are required to put
all view updates back into the related values in the source data if
their backward executions are successful.

The main technical contributions in this paper are summarized
as follows.

• We design a bidirectional language, which is expressive enough
to interpret XQuery. This language also has a sound type system
to check the type correctness of bidirectional programs.

• We define the translational semantics of XQuery by giving the
translation rules from XQuery Core to the target bidirectional
language.

• We illustrate the difficulties of processing insertions on views
and propose a type-directed solution.

• The view updating semantics is defined by relating the updates
between the source data and view, which is more suitable for
the view updating problem of XQuery.

• Our approach has been implemented. The implementation and
some examples on XQuery use cases are available at [1].

The remainder of the paper is organized as follows. Section
2 gives an example to illustrate our motivation. Section 3 defines
the bidirectional language. Section 4 interprets XQuery. Section 5
presents the type system. Section 6 discusses the insertion problems
and proposes our solution. Section 7 introduces our implmentation.
Section 8 gives the related work and Section 9 concludes the paper.

2. An Example
Our motivation can be explained by the XQuery expression in
Figure 1, which is an XQuery use case from the W3C draft [8].
Suppose the file “book.xml” contains the following data:

<book>
<title>Data on the Web</title>
<author>Serge</author><author>Peter</author>
<author>Dan Suciu</author>
<section id="intro" difficulty="easy">

<title>Introduction</title><p>Text ... </p>
<section>

<title>Audience</title><p>Text ... </p>
</section>

</section>
<section id="syntaxnew" difficulty="medium">

<title>A Syntax For Data</title><p>Text ... </p>
</section>

</book>

value ::= v | S
v ::= stru | <tagu>[S ]
S ::= () | v1, ..., vn

u ::= non | mod | ins | del

Figure 2. Syntax of XML Data

X ::= xid | xconst S | xvar Var | xchild | xsetcnt X
| X1; X2 | X1||X2 | xmap X | xif P X1 X2

| xlet Var X | xfunapp fname [X1, ..., Xn]
P ::= xwithtag str |xistext | xiselement | X
G ::= ε | G, fun fname(Var1, ...,Varn) = X

Figure 3. Syntax

Then, in a bidirectional context, the forward execution of the
query in Figure 1 will generate the following view, which is the
table-of-contents of the book:

<toc>
<section id="intro">

<title>Introduction</title>
<section><title>Audience</title></section>

</section>
<section id="syntaxnew">

<title>A Syntax For Data</title>
</section>

</toc>

On this view, users can modify titles or id attributes, insert or
delete sections. These updates will be put back into the source file
“book.xml” automatically by executing backward this query. For
example, if we change the id attribute on this view from “intro”
into “introduction” and insert a new section after the first section,
then after the backward execution of this query the value of the
corresponding attribute in the source data is also changed into the
same value and the new section will appear between the first and
second sections. This example can be found at [1].

3. The Bidirectional Language
This section introduces the bidirectional language for interpreting
XQuery. The backward semantics of the language in this section
does not consider insertions on views.

3.1 XML Values
The syntax of XML values is given in Figure 2. An XML value is
either a single value v or a sequence S of single values. An empty
sequence is written as (). To save space, the end tags of XML
elements are omitted and their contents are enclosed by brackets.

Strings or elements are annotated with the flag u, which indi-
cates their updating status. The non flag means the strings or the
tags of elements are not modified, otherwise the mod flag should
be used. The ins flag is for inserted values, and del for deleted
values. In addition, if an element has the ins or del flag, then all
strings and elements in its contents also have the same flag.

In this work, deleted values in the updated source data are still
kept, but flagged with the del flag. They can be removed easily by
an independent procedure like the database trigger, which can take
into account some application-specific constraints on the source
data when removing values. As an example, for the source data
in Section 2, if an element title is indicated by del, then the
section element containing it can be removed since a section
should have a title.



3.2 Syntax
The syntax of this language is defined in Figure 3. In this syntax,
Var and fname represent the variable names and function names,
respectively. The metavariable X represents bidirectional trans-
formations. The transformations xconst and xvar correspond to
the constant or variable expressions in general programming lan-
guages. The transformations xchild and xsetcnt are used to get
or set the contents of elements. The transformation X1; X2 is to
execute X1 and X2 sequentially with the result of X1 as the in-
put of X2, while the transformation X1||X2 executes X1 and X2

independently with their results combined as the view. The con-
structs xmap, xif, xlet and xfunapp corresponds to the expres-
sions of map, if, let and function application in general functional
languages, respectively. G includes the globally defined functions.
Other language constructs, such as those to deal with element at-
tributes or name spaces, are not presented in this paper.

3.3 Semantics
This language supports variable bindings, so evaluation contexts
or environments are needed to maintain the values of variables in
both forward and backward executions. The context for forward
executions is denoted by C, which maps variables to their values;
the context for backward executions is denoted by E , which maps
variables to pairs of values. Suppose for a variable Var, E(Var)
= (S, S′). Then, S is the original value of Var, and S′ is the
updated value of Var during backward executions. The notation
E(Var).1 is used for the first component of the pair E(Var), and
E(Var).2 for the second component; the notation E .1 denotes a
new evaluation context, say C′, defined as Dom(E) = Dom(C′)
and ∀Var ∈ Dom(E), C′(Var) = E(Var).1, where Dom(E) (or
Dom(C′)) means the domain of E (or C′). These contexts can be
processed like stacks. The notation C ⊕ [Var 7→ S] denotes a
new context where a new binding of variable Var to S is pushed
onto the top of C, and similarly for pushing new bindings onto
E . The notation E [Var 7→ S] means the bound value of the least
recent variable Var in E is changed to S. When we concern the top
variable binding in the context E , the notation E1•[V ar 7→ (S, S′)]
is used to represent E , where E1 denotes the bottom part of E .

Let V be a sequence of XML values. The forward and backward
semantics of each language construct is defined in the forms:

• The forward semantics: [[X]]C(S) = V , meaning that applying
X to the source S generates the view V under the context C.

• The backward semantics: [[X]]E(S , V ′) = (S′, E ′), meaning that
under the environment E , applying X to the updated view
V ′ and the original source S generates the updated source
data S′. In addition, a new environment E ′ is also generated.
The backward execution of X probably fails, and the form
[[X]]E(S , V ′) = fail is used for such case.

In what follows, we will define the forward and backward se-
mantics for each language construct in Figure 3.

Identity transformation: This transformation keeps the (updated)
source data and the (updated) view identical in the both directions.
It is just the identity lens in [10] except for the evaluation contexts.

[[xid]]C(S) = S
[[xid]]E (S ,V ) = (V, E)

Constant transformation: This transformation returns a constant
view V for any source data in the forward direction and returns
the original source data in the backward direction without allowing
updates on V . When the special value fail is generated, the being
executed program terminates immediately.

[[xconst V ]]C(S) = V

[[xconst V ]]E (S ,V ′) =


(S, E), if V = V ′

fail, otherwise

This transformation provides a template to implement other
non-invertible functions in XQuery, such as the sum and compari-
son operations. Their backward executions do not update the source
data and their views cannot be changed.

Variable reference: The forward execution hides the source data S
and returns the value of the variable Var as the view. In its backward
execution, the source data is not changed, and instead the value
of the variable Var in E is updated. The mg operation merges the
updates in two values and will be defined later.

[[xvarVar ]]C(S) = C(Var)
[[xvarVar ]]E(S , V ′) = (S, E ′)
where
E ′ = E[Var 7→ (E(Var).1, mg(V ′, E(Var).2))]

Element destructing: This transformation corresponds to the
child axis in XPath, which is used by XQuery to locate elements
and attributes in XML data. It returns the contents of the source el-
ement in the forward execution, and replaces the contents with the
updated view in the backward execution. If the source data is not
an element, then the transformation will get stuck, and similarly for
the construct xsetcnt below.

[[xchild]]C(<tagu>[S ]) = S
[[xchild]]E(<tagu>[S ], S′) = (<tagu>[S′], E)

Element constructing: The source data of this transformation is
also required to be an element. In its forward execution, the con-
tents of the source element are replaced by the result of executing
the argument transformation X , and in its backward execution the
original contents are restored. The updates on V are reflected back
to the tag of the source element and the values of variables in E .

[[xsetcnt X]]C(<tagu>[S]) = <tagu>[[[X]]C(())]

[[xsetcnt X]]E(<tagu>[S], <tag ′u
′
>[V ]) = (<tag ′u

′
>[S], E ′)

where
((), E ′) = [[X]]E((), V )

The transformation X takes the empty sequence as its source
data. This makes the definition of backward semantics more con-
cise since we need not to consider the updated source data gen-
erated by X , which is still the empty sequence. This design idea
is also applied in the definitions of the transformations of parallel
composition, xlet and xfunapp.

Sequential composition: This transformation takes two argument
transformations X1 and X2 and applies them one by one. This
definition is the same as that in [10] except that the definition here
takes into account the evaluation contexts. Note that the backward
execution of X2 needs to invoke the forward execution of X1 to
generate the intermediate source data.

[[X1; X2]]C(S) = [[X2]]C([[X1]]C(S))
[[X1; X2]]E(S , V ) = [[X1]]E′ (S, V ′)
where

(V ′, E ′) = [[X2]]E ([[X1]]E.1(S), V )

Parallel composition: This transformation executes its argument
transformations X1 and X2 independently, and composes their
views in order. The operator len returns the length of a sequence,
and the operator split(V, [l1, ..., ln]) divides the value V into n
subsequences V ′

i (1 ≤ i ≤ n), where len(V ′
i ) = li. For example,

split(v1, v2, v3| {z }, [2, 1]) generates two subsequences: v1, v2| {z } and

v3. For clarity, a sequence value is sometimes underbraced.
[[X1||X2]]C(S) = [[X1]]C(()), [[X2]]C(())
[[X1||X2]]E(S , V ) = (S, E ′′)
where

V ′
1 , V ′

2 = split(V, [len([[X1]]E.1(())), len([[X2]]E.1(()))])
((), E ′) = [[X2]]E((), V ′

2)
((), E ′′) = [[X1]]E′ ((), V

′
1)

Mapping: Suppose S = v1, ..., vn. This transformation applies its
argument transformation X to each single value vi(1 ≤ i ≤ n) in



the source data S.
[[xmap X]]C(S) = [[X]]C(v1), ..., [[X]]C(vn)
[[xmap X]]E (S , V ) = (v′1, ..., v′n| {z }, E ′)

where
V ′
1 , ..., V ′

n = split(V, [len([[X]]E.1(v1)), ..., len([[X]]E.1(vn))])
(v′n, En−1) = [[X]]E (vn, V ′

n)
(v′n−1, En−2) = [[X]]En−1 (vn−1, V ′

n−1)
...
(v′1, E ′) = [[X]]E1 (v1, V ′

1)

Conditional transformation: The argument transformation X1

is chosen if the predicate P holds, otherwise X2 is chosen. A
predicate holds if it does not return the empty sequence.

[[xif P X1 X2]]C(S) =


[[X1]]C(S), if [[P ]]C(S) 6= ()
[[X2]]C(S), otherwise

[[xif P X1 X2]]E (S , V ) =


[[X1]]E(S, V ), if [[P ]]E.1(S) 6= ()
[[X2]]E(S, V ), otherwise

Predicates: Predicates are only used as the condition of xif, where
only their forward semantics are concerned. This means that the
predicates are not essential to the expressiveness of our language,
and the language can include other needed predicates, such as the
existential predicate in XQuery Core, without affecting the defini-
tion of xif. The predicates used in this paper will be introduced
informally.

The predicate xwithtag str holds if the input data is an el-
ement with the tag str; the predicates xiselement and xistext
judge whether the input data is an element or a string, respectively.
When these three predicates hold, they can return any nonempty
value as their results. We let them return the string “true”. A trans-
formation X can also be used as a predicate, and its value is deter-
mined by its forward semantics.

Variable binding: This construct provides the primitive variable
binding mechanism for this bidirectional language. It will be used
to define other constructs that need bound variables, such as func-
tion calls, and the let and for expressions in XQuery.

[[xlet Var X]]C(S) = [[X]]C⊕[Var 7→S](())
[[xlet Var X]]E (S , V ) = (S′, E ′)

where
((), E ′ • [Var 7→ (S, S′)]) = [[X]]E⊕[Var 7→(S,S)]((), V )

The forward semantics of this construct is the same as that of
the let in general functional programming languages. Its backward
semantics is defined by executing backward the transformation X
under the context E ⊕ [Var 7→ (S, S)], where the variable Var is
bound to a pair of the original source data S. After the backward
execution of X , the generated context E ′ • [Var 7→ (S, S′)]
contains the updated source data S′ in its top binding.

Function call: Suppose the function fname is defined as
fun fname(Var1, ...,Varn) = X

Then, the semantics of applying the function fname to n arguments
X1, ..., Xn can be defined by using the constructs defined before.

xfunapp fname [X1, ..., Xn] = xconst (); X′
1

where
X′

1 = X1; xlet Var1 X′
2

X′
2 = X2; xlet Var2 X′

3
...
X′

n = Xn; xlet Varn X

In this definition, all argument transformations are first evalu-
ated, and then their results are bound to the corresponding vari-
ables. And then, the function body X is executed. Note that in
this definition, the source data for the function body is always the
empty sequence () due to the definition of xlet. That is, it can-
not directly use and update the source data of the transformation

fun toc($book-or-section) =
xvar $book-or-section; xchild;
xmap (xif (xwithtag ‘‘section’’) X0 (xconst ()))

where
X0 = xlet $section

(xconst <section>[]; xsetcnt (X1||X2))
X1 = xvar $section; xchild;

xmap (xif (xwithtag ‘‘title’’) xid (xconst ()))
X2 = xfunapp toc [xvar $section]

Figure 4. A Programming Example

xfunapp. Hence, any data to be processed by the function body
should be passed as the arguments of the function call.

3.4 Merging Updates
For view updating of XQuery, it is common that one source value
has several replicas, which may contain different updates. The
merging operation mg is to combine all updates in two repli-
cas if there are no conflicts. For example, merging the elements
<Titlemod>[Xquerynon] and <titlenon>[XQuerymod] will generate
a new element <Titlemod>[XQuerymod], and merging the elements
<pricenon>[30mod] and <pricenon>[25mod] will cause a conflict.

The mg operation in this section only merges the values without
insertions. It will be extended in Section 6 to consider inserted
values. This operation is defined as follows.

mg((), ()) = ()
mg(v, S|{z}, v′, S′| {z }) = mg′(v, v′), mg(S, S′)

The operation mg′ merges two strings or elements, defined as
follows.

mg′(stru , str ′u
′
) =

8>><>>:
stru , if u 6= non and u′ = non

str ′u
′
, if u = non and u′ 6= non

stru , if u = u′ and str = str ′

fail, otherwise

mg′(<tagu>[S], <tag ′u
′
>[S′]) = <tag ′′u

′′
>[S′′]

where S′′ = mg(S, S′)

tag ′′u
′′

= mg′(tagu , tag ′u
′
)

The mg′ operation fails if the updates of two strings are conflict-
ing or two elements contain conflicting updates on tags or some
text contents. In this case, the backward execution terminates im-
mediately with the special value fail.

3.5 Programming Examples
To help understand this language, we give two programming exam-
ples in this section. The first example uses this language to imple-
ment the recursive toc function in Figure 1, which is divided into
several pieces for the convenience of reading. The program is given
in Figure 4. The function body first gets the contents of the input
element. The contents consist of the author, title, section and other
elements. Next, only section elements are chosen, and for each sec-
tion element, the code X0 is used to construct the section element
in the view with the help of code X1 and X2, which correspond to
the expression $section/title and the recursive function call in the
example query, respectively. The id attribute is omitted in this im-
plementation. It is similar to the code X1 except that the construct
xchild should be replaced by xattribute in our implementation.

The child axis of XPath is primitively defined by xchild in
the bidirectional language. In the second example, we define an-
other useful axis in XPath, the descendant axis. This axis returns
all descendant nodes of the input element. The function xdes be-
low is for this axis in the bidirectional language. It is not difficult
to define other XPath axes, such as descendant-or-self, in this
language.



fun xdes($elm) =
xvar $elm; xchild;
xlet $cnt (xvar $cnt || (xvar $cnt; X))

where
X = xmap (xlet $cnt1 (xfunapp xdes [xvar $cnt1]))

3.6 Property of Bidirectional Execution
For the language in this section, a successful backward execution
will yield the updated source data which contains all modifications
or deletions made on views. To state this property precisely, we
assume that all strings and element tags in the source data are
annotated with unique identifiers id; all strings and element tags in
the arguments of xconst (or the results of non-invertible functions)
have the special identifier c. A single value with the identifier I
is written as stru

I or <tagu
I >[S], where S is also annotated with

appropriate identifiers. The identifiers are kept unchanged during
transformations and updating views.

Based on these assumptions, the views produced by forward ex-
ecutions also contain strings or elements annotated with identifiers.
If a value has the identifier c, then it origins from the arguments
of xconst; if it has the identifier id, then it comes from the source
data.

Suppose S is the original source data or view, S′ the updated
source data or view. The operation S �S′ ⇒ U returns all updates
U in S′ with respect to S. The updates in the set U has the form
(I, str, str′, mod) (or (I, tag, tag′, mod)) meaning that the string
str (or the tag tag) with identifier I is modified to str (or tag′), or
the form (I, del) meaning that the string or element with identifier
I is deleted.

strnonI � strnonI ⇒ φ

strnonI � str ′
mod
I ⇒ {(I, str, str′, mod)}

strnonI � strdelI ⇒ {(I, del)}

S � S′ ⇒ U

<tagnonI >[S] � <tagnonI >[S′] ⇒ U

S � S′ ⇒ U

<tagnonI >[S] � <tag ′modI >[S′] ⇒ {(I, tag, tag′, mod)} ∪ U

S � S′ ⇒ U

<tagnonI >[S] � <tagdelI >[S ′] ⇒ {(I, del)} ∪ U

vi � v′i ⇒ Ui (1 ≤ i ≤ n)

v1, ..., vn � v′1, ..., v′n ⇒ U1 ∪ ... ∪ Un

Note that the above operation � requires users to annotate all
view updates correctly: the modified strings or tags must be anno-
tated with the mod flag; the values with del flag cannot be modified
at the same time. For view updates with incorrect annotations, this
operation will fail since no rule above can be applied. Though this
operation is defined here for studying the property of the bidirec-
tional language, it is also used in our implementation to do the san-
ity check of updated views before backward execution. The prop-
erty of bidirectional execution is stated below.

THEOREM 1 (Property of Bidirectional Execution). Suppose X is
a bidirectional program, S is the source data and φ is the empty
context C or E . If [[X]]φ(S) = V , V � V ′ ⇒ Uv and [[X]]φ(S ,V ′)
= (S′, E ′), then E ′ = φ and Us = Uv , where S � S′ ⇒ Us. 2

This theorem can be proved by induction over each language con-
struct with the help of the following two lemmas: LEMMA 2 is
used when proving the construct xvar, which depends on the mg
operation in its backward semantics; LEMMA 3 is used when prov-
ing those constructs, such as xlet and xsetcnt, which update
their contexts after backward executions.

Var ::= NCName
Expr ::= String | () | Expr ,Expr | $Var

| for $Var in Expr return Expr
| let $Var := Expr return Expr
| if (Expr) then Expr else Expr
| Expr op Expr | Axis NodeTest
| element NCName {Expr}
| NCName (Expr1, ...,Exprn)

op ::= + | < | = | >
Axis ::= child :: | descendant :: | self ::
NodeTest ::= NCName | ∗ | text() | node()
FunDec ::= function NCName(ArgList){Expr}
ArgList ::= $Var1, ..., $Varn

Figure 5. Syntax of the XQuery Core

LEMMA 2 Suppose S is the source data, and S1 and S2 are two
updated replicas of S. If S � S1 ⇒ U1, S � S2 ⇒ U2, S′=
mg(S1, S2) and S′ 6= fail, then U1 ∪U2 = Us′ , where S �S′ ⇒
Us′ . 2

LEMMA 3 Suppose X is a bidirectional program, S is the source
data and E is a evaluation context where each variable is mapped
to a pair of same values. If [[X]]E.1(S) = V , V � V ′ ⇒ Uv

and [[X]]E(S ,V ′) = (S′, E ′), then Dom(E) = Dom(E ′) and
UE ∪ Us = Uv , where S � S′ ⇒ Us, and UE is the union of all U
in the set {U |E ′(Var).1 � E ′(Var).2 ⇒ U,Var ∈ Dom(E ′)}. 2

4. Interpreting XQuery
The expressions of XQuery can be normalized to the equivalent
expressions in XQuery Core, for instance, by the Galax XQuery
engine [2]. The syntax of XQuery core is more compact. Hence,
like the work [15], we implement bidirectional XQuery based on
the XQuery Core syntax.

4.1 Syntax of XQuery Core
The syntax of the XQuery Core presented in this paper is given
in Figure 5. In this syntax, the XPath axes, child, descendant
and self, implicitly use the reserved variable $dot to refer to
their context nodes. This syntax does not include the reverse axes
of XPath, such as the parent axis. This axis returns the parent
of the current context node. Actually, it is difficult to implement
reverse axes using the technique in the previous section since from
the source element we have no information about its parent node
or its ancestor node. But this is not a limitation to our approach.
The technique in [16] can be used to rewrite path expressions with
reverse axes into equivalent reverse-axis-free ones.

XQuery also includes a lot of predefined functions, such as
fn:data and fn:subsequence. In order to process all XQuery
expressions, we must define the bidirectional versions of these
functions in the underlying bidirectional language. The functions
fn:data and fn:subsequence have been supported in our im-
plementation. Although we have not implemented all predefined
functions in XQuery, we believe that it is possible to achieve this
goal. The basic idea is that if a function is invertible, then the back-
ward semantics is defined to put updates on views back, otherwise
its backward semantics does not change the original source data,
just like that of the xconst transformation.

4.2 The Translation
Figure 6 gives the rules for translating XQuery Core expressions
into the code of the bidirectional language. With such an interpre-
tation, XQuery Core expressions can also execute in two directions:
generating the view in the forward direction and putting view up-
dates back in the backward direction. The translation is not diffi-



[[String]]I = xconst Stringnon

[[()]]I = xconst ()
[[Expr1,Expr2]]I = [[Expr1]]I ||[[Expr2]]I
[[$Var ]]I = xvar $Var
[[for $Var in Expr1 return Expr2]]I = [[Expr1]]I ; xmap (xlet $Var [[Expr2]]I)
[[let $Var = Expr1 in Expr2 ]]I = [[Expr1]]I ; xlet $Var [[Expr2]]I
[[if (Expr) then Expr1 else Expr2]]I = xif [[Expr ]]I [[Expr1]]I [[Expr2]]I
[[Expr1 op Expr2]]I = xop [[Expr1]]I [[Expr2]]I
[[Axis NodeTest ]]I = [[Axis]]I ; [[NodeTest ]]I
[[child ::]]I = xvar $dot; xchild
[[descendant ::]]I = xfunapp xdes [xvar $dot]
[[self ::]]I = xvar $dot
[[NCName]]I = xmap (xif (xwithtag NCName) xid (xconst ()))
[[∗]]I = xmap (xif xiselement xid (xconst ()))
[[text()]]I = xmap (xif xistext xid (xconst ()))
[[node()]]I = xid
[[element NCName {Expr}]]I = xconst <NCNamenon>[]; xsetcnt [[Expr ]]I
[[NCName (Expr1, ...,Exprn)]]I = xfunapp NCName [[[Expr1]]I , ..., [[Exprn]]I ]

Figure 6. Translation of XQuery Core Expression

τ ::= a | () | str | string | <tag>[τ ] | τ ∗ | τ, τ | τ |τ | µa.τ

Figure 7. Syntax of Types

cult due to the expressiveness of the target language. Some of these
rules are illustrated below.

In the rule of for expression, the subexpression Expr1 is first
translated, and then composed with an xmap, which takes an xlet
with the arguments the variable $Var and the translation result of
the subexpression Expr2. That is, the variable $Var is bound to
each value in the sequence returned by [[Expr1]]I , and then used in
[[Expr2]]I .

The operator xop represents the sum (+) and the comparison
operators (<, = and >) in the bidirectional language. They are all
defined in a style similar to xconst.

In the XQuery Core, the expression Axis NodeTest means
the axis Axis first produces a list of nodes from its context node,
and then from this list the node test NodeTest selects the nodes
satisfying some condition. In the translation of this expression, we
need to explicitly get the context node of an axis by referring to the
value of the reserved variable $dot , and then the translation results
of Axis and NodeTest are composed.

An XQuery function declaration of the form:
function NCName($Var1, ..., $Varn){Expr}

is translated into the following function declaration in the bidirec-
tional language:

fun NCName($Var1, ..., $Varn) = [[Expr]]I

The translation defined in Figure 6 satisfies the following prop-
erty, which says that the translation preserves the semantics of
XQuery Core.

THEOREM 4 (Correctness of Translation). Let C be a context that
maps variables to XML values. If an XQuery Core expression Expr
is evaluated to a value under C, then the expression [[[[Expr ]]I ]]C(())
is also evaluated to the same value. 2

This theorem can be proved by induction over each translation rule.

5. The Type System
This type system serves two purposes. The first is, as usual, to guar-
antee the bidirectional programs are type-correct. For example, the
xchild cannot be applied to a text node. The second is to annotate

Γ; τ ` xid : τ ⇒ xid

Γ; τ ` xconst S : S ⇒ xconst S

τ ′ = Γ(Var)

Γ; τ ` xvar Var : τ ′ ⇒ xvarτ ′ Var

τ = <tag1>[τ1]|...|<tagn>[τn]

Γ; τ ` xchild : τ1|...|τn ⇒ xchildτ

τ = <tag1>[τ1]|...|<tagn>[τn] Γ; () ` X : τ ′ ⇒ X′

Γ; τ ` xsetcnt X : <tag1>[τ
′]|...|<tagn>[τ

′] ⇒ xsetcnt X′

Γ; τ ` X1 : τ1 ⇒ X′
1 Γ; τ1 ` X2 : τ2 ⇒ X′

2

Γ; τ ` X1; X2 : τ2 ⇒ X′
1; X′

2

Γ; () ` X1 : τ1 ⇒ X′
1 Γ; () ` X2 : τ2 ⇒ X′

2

Γ; τ ` X1||X2 : τ1, τ2 ⇒ X′
1||

τ2
τ1X′

2

Γ; τ `m xmap X : τ ′ ⇒ τ ′′ Γ; τ ′′ ` X : τ ′′′ ⇒ X′

Γ; τ ` xmap X : rmbar(τ ′) ⇒ xmapτ ′ X′

Γ; τ ` P : τP ⇒ P ′ Γ; T(τ, P ) ` X1 : τ1 ⇒ X′
1

Γ; F(τ, P ) ` X2 : τ2 ⇒ X′
2

Γ; τ ` xif P X1 X2 : τ1|τ2 ⇒ xif
τ2
τ1 P X′

1 X′
2

P ∈ {xiselement, xistext, xwithtag str}
Γ; τ ` P : string|() ⇒ P

Γ[Var 7→ τ ]; () ` X : τ ′ ⇒ X′

Γ; τ ` xlet Var X : τ ′ ⇒ xlet Var X′

fun fname(V ar1, ..., V arn) = X ∈ G
Γ; () ` Xi : τi ⇒ X′

i 1 ≤ i ≤ n fname(τ1, ..., τn) 6∈ Dom(Γ)
[Var1 7→ τ1, ...,Varn 7→ τn,
fname(τ1, ..., τn) 7→ a]; () ` X : τ ′ ⇒ X′ a is fresh

Γ; τ ` xfunapp fname [X1, ..., Xn] : µ a.τ ′

⇒ xfunapp[τ1,...,τn] fname [X′
1, ..., X′

n]

fun fname(V ar1, ..., V arn) = X ∈ G
Γ; () ` Xi : τi ⇒ X′

i 1 ≤ i ≤ n Γ(fname(τ1, ..., τn)) = a

Γ; τ ` xfunapp fname [X1, ..., Xn] : a

⇒ xfunapp[τ1,...,τn] fname [X′
1, ..., X′

n]

Figure 8. Typing Rules



Γ; () `m xmap X : () ⇒ ()

τ ∈ {string, <tag>[τ ′]} Γ; τ ` X : τ ′′ ⇒ X′

Γ; τ `m xmap X : τ ′′ ⇒ τ

Γ; τ `m xmap X : τ1 ⇒ τ ′1

Γ; τ∗ `m xmap X : τ1∗̄ ⇒ τ ′1

Γ; τ1 `m xmap X : τ ′1 ⇒ τ ′′1 Γ; τ2 `m xmap X : τ ′2 ⇒ τ ′′2

Γ; τ1, τ2 `m xmap X : τ ′1, τ ′2 ⇒ τ ′′1 |τ ′′2
Γ; τ1 `m xmap X : τ ′1 ⇒ τ ′′1 Γ; τ2 `m xmap X : τ ′2 ⇒ τ ′′2

Γ; τ1|τ2 `m xmap X : τ ′1|τ ′2 ⇒ τ ′′1 |τ ′′2

Figure 9. Typing Rules for xmap

some program constructs with types, and the type information will
be used to process insertions.

The syntax of types is given in Figure 7, which is just the regular
expression types in [12]. As the definition there, the notation S ∈ τ
means the value S has the type τ . The recursive type µa.τ is
regarded as equivalent to its unfolded form τ [µa.τ/a], where all
occurrences of the free type variable a in τ are replaced with
µa.τ . For brevity, recursive types and type variables will not be
considered in this paper. Note that a string str is also a type,
containing only itself.

The typing rules for the bidirectional transformation language
are defined in Figure 8. The judgment has the form Γ; τ ` X :
τ ′ ⇒ X ′, meaning that under the typing context Γ, if the source
data has the type τ , the transformation X will generate a view with
the type τ ′. The transformation X ′ is the result of annotating X
with types. The typing context Γ maps variables to their types or
function names together with the types of their arguments to their
view types.

In Figure 8, only those constructs that need type information to
process insertions are annotated with types. How to use them will
be discussed in the next section. The transformation xvar is anno-
tated with the type of the variable it concerns, xchild is annotated
with the type of its source data, and the parallel composition is an-
notated with the view types of its two argument transformations.

The transformation xmap applies its argument transformation X
to each single value in the source data. Therefore, in its typing rule,
we need to identify each string and element type in the source-
data type of xmap, and then use it as the source-data type to check
X . The view type of xmap is just its source-data type with each
string or element type replaced by the view type of applying X
to it. This typing procedure is defined by rules in Figure 9. These
rules also collect all top-level string and element types in the
source-data type of xmap and represent them by a choice type. This
choice type will then be used to check X again, so that X will be
annotated with all possible string or element types. The view type
of xmap generated by the rules in Figure 9 contains a special star
∗̄, which tells that the type component modified by it corresponds
to a string type or element type, which is also modified by ∗ in
the source-data type. The view type with ∗̄ is only used to annotate
xmap, and otherwise ∗̄ is changed into ∗ by the operator rmbar.
The example below illustrates that the refined ∗ can help update the
source data in a more reasonable way for the inserted values. The
use of refined ∗ is given in Figure 13.

For example, suppose we have the code xmap xchild. If the
source-data type is <box>[<apple>[string]∗], then the view type
annotated on xmap is <apple>[string]∗; if the source-data type
is <box>[<apple>[string]]∗, then the view type annotated on
xmap is <apple>[string]∗̄. This refined ∗ can tell us whether

let P = xwithtag str

T(τ, P ) = (), where τ ∈ {(), string, τ∗}

T(<tag>[τ ], P ) =


<tag>[τ ], if str = tag
(), otherwise

T(τ1, τ2| {z }, P ) =

8<: T(τ1, P ), if τ2 = ()
T(τ2, P ), if τ1 = ()
(), otherwise

T(τ1|τ2, P ) = T(τ1, P )|T(τ2, P )

Figure 10. The operator T for xwithtag

the apple elements in a view come from the same box element
or from a sequence of different box elements. If we insert a new
apple element on the view, which already contains a list of apple
elements from the source data, then in the first case, the new
apple element should be used together with other existing apple
elements by xchild to update the source data, resulting in the new
box element containing both the existing apple elements and the
new inserted one; while in the second case, the inserted apple
element should be processed independently by xchild as other
existing elements, and the result is the updated source contains a
new box element for this new apple element. Anyway, in both
cases, the updated source data still has the valid type due to using
the information provided by the refined ∗. If both the box and
apple type in the source-data type are modified by ∗, then xmap
will be annotated by <apple>[string] ∗ ∗̄. For this case, both
updating ways, putting the new element back into an existing or
a new box element, generate the valid source data. In this work, we
choose the first updating way since it leads to less changes on the
source data.

The typing rule of xif checks its two branches under the source-
data type computed by T(τ, P ) and F(τ, P ), respectively. This is
to generate more accurate view types for each branch. The fol-
lowing example shows that such accuracy is useful. In this exam-
ple, suppose we have the code xif (xwithtag “book”) xchild
(xconst ()) and the source-data type <book>[string]|string. If
the source-data type of xif is directly used to check its branches,
the true branch will cause a type error since xchild can only be ap-
plied to elements. Actually, if the true branch is chosen at runtime,
we know the xwithtag predicate must hold, so the source data of
this branch must be an element. The operator T(τ, xwithtag str)
selects in τ the element types with the tag str, which is defined
in Figure 10, and the operator F(τ, xwithtag str) does the re-
verse selection. These two operators on xiselement and xistext
are defined similarly. For any transformation X , both T(τ, X) and
F(τ, X) returns τ . After type checking, xif is annotated with the
view types of its two branches.

There are two typing rules for function calls. If a function to-
gether with the types of its arguments is not in the domain of Γ,
then the first rule is used, otherwise the second is taken. In the
first rule, the function body X is checked under the typing context,
where the variable Var i is mapped to the type τi, and the func-
tion name funname together with these argument types is mapped
to a fresh type variable a. The view type τ ′ of the function body
X probably contains the free type variable a because of recursive
function calls. Therefore the view type of xfunapp in the first typ-
ing rule is a recursive type µ a.τ ′. In the second rule, the function
body will not be checked since its resulting type is already avail-
able. Note that the type-annotated function body in the first rule is
not used in the typing result. This does not mean that we do not
need type annotations in the function body. Rather, this is because
we want to avoid the trouble of managing different versions of the
same function with different type annotations. Our approach is to
annotate function calls with the types of their arguments, and then



use these types to type check and annotate function bodies when
meeting with function calls at runtime.

The soundness property of this type system is stated as follows.
This property concerns both the forward and backward behaviors of
well-typed programs. For the backward behavior, the type system
cannot guarantee a well-typed program will not fail since it cannot
check conflicting and improperly updates statically.

THEOREM 5 (Soundness). Given a transformation X and a source
value S, if φ; τ ` X : τ ′ ⇒ X ′ and S ∈ τ , then [[X ′]]φ(S) =
V and V ∈ τ ′; and moreover, if V ′ ∈ τ ′ and [[X ′]]φ(S , V ′) =
(S′, E ′), then E ′ = φ and S′ ∈ τ . 2

Note that from this theorem modifications to element tags are
not allowed if they produce views violating the expected types,
although they are allowed as updating operations.

6. Insertions
This section discusses several view updating problems caused by
insertions, and shows our type-based solution. In the solution, val-
ues are always needed to be related to the types against which they
have been validated, and the related type is consulted when merg-
ing or splitting values. For this purpose, we annotate each string
and element type with the unique index I , written as stringI and
<tagI >[τ ]. After an XML value is successfully validated against a
type, all strings and elements within this value are annotated with
the corresponding indexes in this type. For a validated value S or a
type τ , the operator Id(S) or Id(τ ) returns a set of indexes at the
top-level of S or τ . Hence if Id(S) ⊆ Id(τ ), we know the value S
has the value τ .

The source data used in this section is shown below. It contains
a list of books, each of which may contain a title and any number
of authors and the non flags on values are omitted.

<book>[<title>[a], <author>[b]],
<book>[<title>[c], <author>[d], <author>[e]]

6.1 Merging Inserted Values
We use the following code to illustrate the problem when merging
two inserted values. The variable $books in this expression is
supposed to be bound to the above source data.

xvar $books;
xmap (xlet $b (const <item>[] ; xsetcnt (X1||X2)))

where
X1 = xvar $b; xchild;

xmap (xif (xwithtag "title") xid xconst ())
X2 = xvar $b; xchild;

xmap (xif (xwithtag "author") xid xconst ())

The view of the above code consists of two items. Consider the
following updated view.

<item>[<title>[a], <author>[b]],
<item>[<title>[c], <author>[d]], <author>[e],
<itemins>[<titleins>[fins], <authorins>[gins]]

Then, during the backward execution of the above code, the ex-
pression X1 and X2 will deal with the title and author elements
in the view, respectively. For the third item, since it is not gen-
erated from a book in the original source, the variable $b is not
bound to any value at the beginning of the backward execution of
xlet above. The backward execution for processing the third item
is sketched as follows. First, X1 is used to deal with the inserted
title element. After its backward execution the value of $b can
be simply set to a new book element containing only the inserted
title since $b has no valid value yet. Next, X2 is used to deal
with the inserted author element. When executing the backward
execution of xvar in X2, its view is a new book element containing

mgins(S1, (), τ) = S1

mgins((), S2, τ) = S2

mgins(S1, S2, τ∗) = S1, S2| {z }
mgins(str

ins
I , str ′insI , stringI) =


strinsI , if str = str ′

fail, otherwise
mgins(<taginsI >[S1], <taginsI >[S2], <tagI>[τ ]) = <taginsI >[S′]

where S′ = mgins(S1, S2, τ)
mgins(S1, S′1| {z }, S2, S′2| {z }, τ1, τ2| {z }) = mgins(S1, S2, τ1), mgins(S

′
1, S′2, τ2)

where Id(S1) ⊆ Id(τ1), Id(S2) ⊆ Id(τ1),
Id(S′1) ⊆ Id(τ2) and Id(S′2) ⊆ Id(τ2).

mgins(S1, S2, τ1|τ2) =8<: mgins(S1, S2, τ1), if Id(S1) ⊆ τ1 and Id(S2) ⊆ τ1
mgins(S1, S2, τ2), if Id(S1) ⊆ τ2 and Id(S2) ⊆ τ2
fail, otherwise

Figure 11. The Operator mgins

only the inserted author element. Obviously, the merging opera-
tion used by xvar should merge this view with the existing value
of $b, that is, to build a new book element containing both the in-
serted title and author elements. In this example, it seems that
we can merge these two book elements just by putting their con-
tents together in the order they appear on the view. However, this is
probably not true for other cases. For example, the order of contents
on a view perhaps is different from that in the source, and contents
are perhaps needed to be merged further into a new content.

In our work, the merging operation for inserted values is guided
by types, which characterize the structures of the expected merging
results. These types can be obtained from the annotations of xvar.
This merging operation is defined in Figure 11, which has a type
argument except the two values to be merged. Before using the
operator mgins, the values to be merged should be validated against
the type argument, such that all strings and elements in each value
can be related to the corresponding type components.

LEMMA 6 Suppose S1 ∈ τ and S2 ∈ τ . If S3 = mgins(S1, S2, τ)
and S3 6= fail, then S3 ∈ τ . 2

As an example, if the expected result of merging S1 and S2 is
described by τ∗, then the merging result will be S1, S2| {z }, which has

the expected type τ∗ since S1 and S2 have been validated against
τ∗.

6.2 Child Axis and Conditional Transformation
The transformations xchild and xif also have problems when
dealing with inserted values. Recall the definitions of their back-
ward semantics, xchild needs the tag of the original element to
determine the tag of the updated element, and xif needs the source
data to determine which branch transformation should be chosen.

These problems are also solved by using the annotated types.
The type on xchild can provide information about what tag the
new source element should have, and the types on xif can help
choose the branch transformation according to which view type the
inserted value has. Note that the element returned by xchild in
this way is also annotated with the ins flag, and if the view types
annotated on xif are overlapped, the first view type has priority in
our implementation. The accuracy policy taken by the typing rule
of xif can greatly reduce the possibility of overlap in practice.

6.3 Splitting Inserted Values
The operator split is used by both xmap and the parallel compo-
sition to divide their views into subsequences, and then each subse-
quence is used as a view to perform the backward transformation.
When a view does not include inserted values, it can be divided



split((), [], τ) = ()
split(stru

I , [1], stringI ) = stru
I , if u 6= ins

split(strinsI , [], stringI ) = strinsI
split(<tagu

I >[V ], [1], <tagI >[τ ]) = <tagu
I >[V ], if u 6= ins

split(<taginsI >[V ], [], <tagI >[τ ]) = <taginsI >[V ]

split(V, ls, τ1|τ2) =


split(V, ls, τ1), if Id(V ) ⊆ Id(τ1)
split(V, ls, τ2), if Id(V ) ⊆ Id(τ2)

split(V, ls, τ ∗̄) = split(V, ls, τ, τ ∗̄| {z })
split(V, [l], τ∗) = V, if Id(V ) ⊆ Id(τ∗) and isNotIns(V )
split(V, [], τ∗) = V, if Id(V ) ⊆ Id(τ∗) and isIns(V )

split(V, ls, τ1, τ2| {z }) =


split(V, ls, τ1), if Id(V ) ⊆ Id(τ1)
split(V, ls, τ2), if Id(V ) ⊆ Id(τ2)

split(V, [], τ1, τ2| {z }) = split(V1, [], τ1), split(V2, [], τ2), if isIns(V )

where Id(V1) ⊆ Id(τ1), Id(V2) ⊆ Id(τ2) and V1, V2| {z } = V.

split(V, ls, τ1, τ2| {z }) =


split(V1, [], τ1), split(V2, ls, τ2), if isIns(V1) and isNotIns(V2)
split(V1, ls, τ1), split(V2, [], τ2), if isNotIns(V1) and isIns(V2)

where V1, V2| {z } = V, Id(V1) ⊆ Id(τ1) and Id(V2) ⊆ Id(τ2).

split(V, [l1, ..., ln], τ1, τ2| {z }) =

8>>>>><>>>>>:

(), split(V, [l2, ..., ln−1], τ1, τ2| {z }), (), if l1 = 0 and ln = 0

(), split(V, [l2, ..., ln], τ1, τ2| {z }), if l1 = 0 and ln 6= 0

split(V, [l1, ..., ln−1], τ1, τ2| {z }), (), if l1 6= 0 and ln = 0

split(V1, [l1, ..., lk], τ1), split(V2, [lk+1, ..., ln], τ2), if l1 6= 0 and ln 6= 0
where V1, V2| {z } = V, Id(V1) ⊆ Id(τ1), Id(V2) ⊆ Id(τ2), isNotIns(V1), isNotIns(V2),

lenNoIns(V1) = l1 + ... + lk and lenNoIns(V2) = lk+1 + ... + ln (1 ≤ k ≤ n).
split(V, ls, τ) = fail, if no above case can be applied.

Figure 13. The Operator split for xmap

split(V, [], [τ1, τ2]) = V1, V2

where isIns(V ), Id(V1) ⊆ Id(τ1), Id(V2) ⊆ Id(τ2)
and V1, V2| {z } = V.

split(V, [l1, l2], [τ1, τ2]) = V1, V2

where isNotIns(V ), Id(V1) ⊆ Id(τ1), Id(V2) ⊆ Id(τ2),
V1, V2| {z } = V and the following P holds for 1 ≤ i ≤ 2.

P =


lenNoIns(Vi) = li, if li > 0
Vi = (), if li = 0

split(V, ls, [τ1, τ2]) = fail, if no above case can be applied.

Figure 12. The Operator split for Parallel Composition

precisely according to the expected length for each subsequence
computed from the original source data. When the view includes
inserted values, the length information tells nothing about how to
divide them. The following example illustrates that an elegant split-
ting mechanism is needed for views with inserted values.

For the above source data, the code xmap xchild produces a
view consisting of a sequence of titles and authors of each book.
Consider the following updated view.

<title>[a], <author>[b],<authorins>[], <titleins>[],
<authorins>[], <title>[c], <author>[d], <author>[e]

In the backward execution of code xmap xchild, this view is first
divided into subsequences and then each of them is used as the
updated view of xchild. For this example, it is reasonable to split
the updated view into three subsequences: the first three elements,
the next two, and the last three. Thus, in the updated source data,
the first book is inserted with a new author, the second book is
new and contains the inserted title and author, and the third book is
unchanged. This example can also be found at [1].

The revised split for the parallel transformation is given in
Figure 12. It takes three arguments: the first is the updated view
to be split; the second is a list of integers, each of which indi-
cates the number of values expected by a subsequence; the third
one [τ1, τ2] contains the view types for the two composed transfor-
mations. The first case is applied when V contains only inserted

values, guarded by the predicate isIns(V ). In this case, the sec-
ond argument is an empty list since there is no original source data
available to compute this integer list. The second case, guarded by
the predicate isNotIns(V ), is applied when V contains both the
values computed from the original source data and inserted values.
The operator lenNoIns(Vi) returns the length of Vi without count-
ing inserted values. Before being split, the updated view should be
validated against the sequence type τ1, τ2. Note that in the second
case, if a subsequence is expected to have the zero length, then it
must be the empty sequence () and cannot include any inserted val-
ues. This is because the zero length means the original source data
for this subsequence is hidden by using the code xconst (), which
does not accept a changed view. This split operator only produces
two subsequences, corresponding to the two composed transforma-
tions.

The revised split for xmap is given in Figure 13. Its first
argument is the updated view to be split; the second also contains
integers for the expected length of each subsequence; the third is
the view type of xmap. The splitting procedure is directed by the
view type. To illustrate this operator, we take the cases for the type
τ1, τ2 as examples: the first case means V belongs to either τ1 or τ2;
the second case is applied when V contains only inserted values;
the third case is used to separate the inserted subsequence at the
head or the tail of V ; otherwise, the fourth case is applied, which
either produces an empty subsequence () for each zero integer in
the second argument ls, or divides both V and ls into two parts
such that the first (or second) part of V belongs to τ1 (or τ2) and
its length without counting inserted values should be the same as
the sum of integers in the first (or second) part of ls. A type-correct
view probably cannot be split sensibly. For example, if a new title is
inserted between an original title and its following original authors
in the view of code xmap xchild, then splitting this view will
fail. This is an example of improper insertions. A view should
be validated against with the view type before splitting. Note that
when applying the rule for the type τ ∗̄, the indexes on the type
τ, τ ∗̄|{z} should be re-assigned such that they are unique among τ and

τ ∗̄, and then V needs to be validated against this type to get new



indexes. The number of subsequences produced by this split can
be greater than the length of the original source data, but never less
than. This means that xmap can insert new values in its source data
after backward executions.

7. Implementation
The approach proposed in this work has been implemented in
Java with JDOM. Our system is available at [1], where several
XQuery Core examples are also provided. Most of these examples
are obtained by normalizing XQuery use cases from the W3C draft
[8] with the Galax XQuery engine [2].

Our implementation supports more XQuery Core syntax than
we present in this paper. For example, the order expression in
XQuery, the existential predicate, the attribute axis, XML name
spaces and the constructors for constructing and destructing se-
quences (or lists) are supported in our implementation. More inter-
estingly, our implementation can simulate higher-order functions in
functional languages by changing the argument fname in xfunapp
from a string to a transformation, and therefore a function argument
can also be used as a function name. This feature is useful when
we use this bidirectional language to interpret HaXML [17], which
contains some higher-order XML transformation combinators.

In this implementation, only the top node of an inserted or
deleted element needs to be marked with ins or del, and other
flags are derived by the system automatically. This prototype im-
plementation is not used to benchmark the performance of our ap-
proach since the implementation itself can be improved and the
code generated from XQuery Core has much space to optimize. In
our approach, the values generated by xconst and aggregate func-
tions, such as sum and count, cannot be modified. We review the
first forty-one XQuery use cases in [8]. Only six of them generate
views completely consisting of values from xconst or aggregate
functions, and do not allow any update. For other use cases, our
approach can be found useful to enable view update of XQuery.

8. Related Work
The main related work can be described from two aspects. The first
is related to the bidirectional language design, and the second is
about XML view update.

The related work in the first aspect includes [10, 5, 13]. They
cannot be used directly to interpret XQuery for the following rea-
sons. First, these languages do not have variable binding mecha-
nisms, and consequently the output of a transformation can only be
used by its successive transformations or the transformation com-
binators containing it. However, in XQuery, an output from an ex-
pression may be bound to a variable, and then used many times by
different subexpressions. Second, these languages do not provide
a general setting to interpret functions in XQuery. A function in
XQuery can have any number of arguments, each of which may
be used as the updatable source data. However, the current lan-
guages only allow functions with one argument as the updatable
source data. Third, the constructs in these languages are designed
for their particular purposes and are not suitable for interpreting
XQuery. For example, XPath axes are difficult to interpret in these
languages.

The work [6, 7] studies how to update the relational database
through XML views, rather than update XML data like our work.
They use query trees to capture common operations in most XML
query languages. However, query trees cannot support recursive
functions in XQuery, as shown by our motivating example. The
work in [14] also uses programming language technique to solve
the view updating problem. But their view definition language is
not bidirecitonal, so when defining a view, users have to write the
code for putting back possible updates into the source XML data.

9. Conclusion
In this paper, we design an expressive bidirectional XML trans-
formation language, and then use it to interpret XQuery. We use
this approach to address the view updating problem of XQuery.
Although we are motivated by interpreting XQuery, we believe
that our work provides a potential technique to define general bidi-
rectional functional languages since the bidirectional semantics of
functions and some constructors for algebraic data types can be de-
fined in this technique.

This work provides a basis for several future work. The first is
to analyze bidirectional programs and tell what are valid updates
on views, such that valid updates do not lead to failure during
backward executions. The second is to optimize the target language
code, for instance, by generating the efficient specialized backward
code for a particular source data from the forward execution.
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