Jan. 2007, Vol.22, No.1, pp.44-53 J. Comput. Sci. & Technol.

CSchema: A Downgrading Policy Language for XML Access Control

Dong-Xi Liu (XI5 #)

Department of Mathematical Informatics, University of Tokyo, Japan
E-mail: liu@mist.i.u-tokyo.ac.jp

Received October 15, 2005; revised July 2, 2006.

Abstract The problem of regulating access to XML documents has attracted much attention from both academic and
industry communities. In existing approaches, the XML elements specified by access policies are either accessible or inac-
cessible according to their sensitivity. However, in some cases, the original XML elements are sensitive and inaccessible, but
after being processed in some appropriate ways, the results become insensitive and thus accessible. This paper proposes
a policy language to accommodate such cases, which can express the downgrading operations on sensitive data in XML
documents through explicit calculations on them. The proposed policy language is called calculation-embedded schema
(CSchema), which extends the ordinary schema languages with protection type for protecting sensitive data and specifying
downgrading operations. CSchema language has a type system to guarantee the type correctness of the embedded calcula-
tion expressions and moreover this type system also generates a security view after type checking a CSchema policy. Access
policies specified by CSchema are enforced by a validation procedure, which produces the released documents containing
only the accessible data by validating the protected documents against CSchema policies. These released documents are
then ready to be accessed by, for instance, XML query engines. By incorporating this validation procedure, other XML

processing technologies can use CSchema as the access control module.

Keywords

1 Introduction

XML is the standard data format for exchanging in-
formation on the Internet. In many cases, it is desirable
to allow different users to access different parts in one
document according to their privileges or roles. This
is the problem of XML access control, which has at-
tracted many research efforts to solve it. For example,
some approaches!! ~¢! and standards!™® have been pro-
posed.

Access control mechanism is always an integral part
for information systems, in which access policy is used
to specify the accessibility of the sensitive resources to
different users. For example, the system security pol-
icy in UNIX systems can grant or deny access to files
to users. The existing approaches to XML access con-
trol also follow this style. Their policy languages specify
which elements in XML documents can be accessed and
which cannot probably under some conditionsl?!.

This style is suitable for protecting physical objects,
such as files or directories, but not necessarily suitable
for protecting data stored in XML documents. For XML
data protection, the released data sometimes needs to be
computed from the original sensitive data, not directly
selected from them. That is, the original sensitive data
is not accessible, but the data computed from them is,
as shown by the following motivating example. From
the perspective of information flow security?, this case
asks downgrading of the sensitive data from high secu-
rity level (inaccessible) to low security level (accessible).

1.1 Motivating Example
Consider the XML file in Fig.1(a), which stores the

access control, programming language, security policy, type system, XML

staff information for a company.

(department)
(name)Market(/name)
(staffs)
(staff)
(name) Tom(/name)
(salary)30(/salary) (department)
(/staff) (name)Market(/name)
(staff) (staffs)
(name)Peter(/name) (number)2(/number)
(salary)20(/salary) (totalsalary)50
(/staff) (/totalsalary)
(/staffs) (/staffs)
(/department) (/department)
(a) (b)

Fig.1. Example XML file. (a) Original data. (b) Data for the

assistant.

The users of this file include all staffs in the depart-
ment and a financial assistant. For some reason, the
company needs to impose the following access policy:

e Tom and Peter can access the whole document ex-
cept for each other’s salary;

e the assistant is authorized to see a document in
Fig.1(b), which is computed from the original data.

The document for the assistant includes two com-
puted elements: the element number for the number of
staffs and the element totalsalary for the sum of Tom
and Peter’s salary. In other words, the assistant is not
allowed to know who is in the department and his/her
salary.

The current approaches cannot specify such kind of
policies because they are only able to hide inaccessible
elements or release accessible elements existing in the

Regular Paper

Supported by the Program “Comprehensive Development of e-Society Foundation Software” of the MEXT, Japan, under the

project “Programmable Structured Documents”.

Dong-Xi Liu: CSchema: A Policy Language for XML Access Control 45

protected document, but cannot construct new accessi-
ble elements.

1.2 CSchema Overview

In this paper, programming language technologies,
mainly types and operational semantics, are used to pro-
vide a novel way of enforcing flexible XML access con-
trol. The proposed policy language is called calculation-
embedded schema (CSchema), which extends the ordi-
nary schema languages, such as XML Schema or DTD,
with protection type. This type consists of three com-
ponents: the type of sensitive data in the original doc-
ument, the type of the data accessible to users, and
an expression to compute the accessible data. This ex-
pression is the embedded calculation in schema and de-
scribes the downloading operation. The intuitive mean-
ing of protection type is that the sensitive data will be
replaced by the data computed by the embedded ex-
pression. Since CSchema policies include embedded cal-
culations, we provide a type system to guarantee their
type correctness, and after type checking, this type sys-
tem also generates a security view!!! with respect to the
checked CSchema policy.

Writing a CSchema policy is just similar to writing
an ordinary schema for XML documents, except that
when meeting with a type that corresponds to sensitive
data, the type should be changed into a protection type.
Some general XML processing languages, like Java or
CDucel'Y, can transform the original document to the
released document shown in Fig.1, but writing policy
with them is inconvenient since they cannot let policy
writers focus on the sensitive data, explained more by
the example in Section 6.

The access policy expressed in CSchema is enforced
by an extended validation procedure. XML is an ex-
ternal format to represent data, and by validating an
XML file against a schema, either an internal represen-
tation of the file is generated or the validation fails!*?!.
In CSchema, when validating an external value against a
protection type, instead of really performing validation
as usual, the expression in this type will be evaluated
and its result will be used as the internal value at the
position of this external value, and thus this external
value is hidden. If a document does not include sensi-
tive data, then the CSchema policy for this document
does not have any protection type, so the enforcement of
this policy does not incur any overhead for access control
purpose since it just performs the ordinary validation.
The implementation of this enforcement method needs
only a conservative extension to the ordinary validation
procedure by supporting validation against protection
type.

The contributions of this work are summarized as
follows.

e Motivating the downgrading problem for XML ac-
cess control, which moves the focus of downgrading poli-
cies from the traditional code level to data level.

e Designing a calculation-embedded schema lan-
guage to express downgrading access policies for XML
access control.

e Formalizing a type system to check the type cor-
rectness of CSchema policies and automatically generate
security views.

e Enforcing CSchema policy by validation that can
be implemented by a conservative extension to the or-
dinary validation procedure.

The remainder of this paper is organized as follows.
Section 2 gives the syntax of CSchema and represents
the motivating example by this syntax. In Section 3,
the type system for CSchema is formalized and illus-
trated. Section 4 shows the validation procedure to-
gether with the dynamic semantics of embedded expres-
sions and gives a property about CSchema. Section 5
discusses another potential application of CSchema and
compares it with other approaches. Section 6 surveys
the related work. Section 7 concludes this paper.

2 Syntax of CSchema

The syntax of CSchema is presented in Fig.2. It in-
cludes two parts: the syntax of types and the syntax of
expressions. A CSchema policy is a type .

ko= x|xm—*

7 = t|()]|string|int|bool| (I)[7]
|1, T2 |1 | T2 | T * |71 > To&e | pt.T

e == d|/p|self ::l/p| f(e)

d = z|()|isempty(d)|s|di =sd2|n|di + d2 |true|false
|if d then d; else da | (l)[d] |d/p|d1,d2 | head(d) |
tai1(d)| £(d)

p u= €|child :l/p

G o= . [fun f(z:7m): 72 =4d

Fig.2. Syntax of CSchema.

2.1 Syntax of Types

The syntactic categories k and 7 in Fig.2 are rele-
vant to the syntax of types. The types given here are
built upon regular expression types3l. A type can be
an atomic type including the type variable t, the empty
sequence (), string, int, bool, or a composed type in-
cluding the element type (I)[7], the sequence type 7y,
To, the choice type 71 |72, the type 7%, the protection
type 71 — To&e and the recursive type pt.7. The occur-
rence modifier * means zero or more occurrences of the
modified type. In this syntax, we omit other occurrence
modifiers 7 and +. Actually, they can be defined using
the existing constructs: 7?7 = () |7 for optional occur-
rence of 7, and 74+ = 7, 7% for one or more occurrences
of 7. The element type (I)[7] is said to be the parent of
7, and in turn 7 is its child. Later, b is often used to
range over the set {bool, int, string, ()}.

The novelty in this type language is the protection
type 11 — To&e, where 71, called original component, is
the type of the original sensitive data; 75, called view
component, is the type of the data that replaces the

46

sensitive data and is exposed to users; e is the embed-
ded expression for an downgrading operation to compute
the released data. Hence, the expression e must have the
type To. This invariant is guaranteed by the type system
in next section. For the access control purpose, the type
Ty in the protection type 71 — To&e should no longer be
constructed directly or indirectly by any other protec-
tion types since it is the type for released data that need
not be protected any more. This requires to distinguish
between the types which include protection types and
those which do not. As usual, a kind system, shown in
Fig.3, is used to classify types. The judgment 7 :: k
means the type 7 has the kind k. If k is x then 7 does
not include protection types; if k is * — % then 7 does.
And k{ @ ky is defined as: if k; = x and ky = x then
k = x else k = x — x. That is, a composed type has
kind x — x only if one of its constituent types has such
kind.

Tk

bux tux 1 &enx—=x (D[] k
Tk Tk T ikyToike

Txk ptT ik T,7T2 0t k1 D ke
11 5 k1 T2 i ke

’7'1|’T2 k1 @ ke

Fig.3. Kinding rules.

2.2 Syntax of Expressions

An expression e is used only when defining a protec-
tion type. It can be a variable d, an absolute path /p, a
relative path self::l/p or a function application f(e).

In Fig.2, G contains the globally defined functions
that can be used when writing expressions. Each func-
tion is defined in the form fun f(z : 7) : 72 = d, which
takes the argument x of the type 7 and returns a value
of the type 7. The function body is in syntactic cat-
egory d. By this syntax, the absolute or relative path
expressions cannot be used in a function body, but they
can be used as the argument in the function application
f(e). Recursive functions are supported by this syn-
tax and they are useful to deal with values of recursive
types.

The path expression, /p or self: :[/p, can be used to
locate either the type components in CSchema policies
at the type checking stage or the data in XML doc-
uments at the validating stage. Correspondingly, the
context for evaluating /p is a whole CSchema policy or
a whole document, and the context for self::l/p is the
original component of the protection type containing it
or the data validated against this protection type. The
label [in a path expression can be a string representing
an element name or the symbol # representing basic
values. In addition, each path expression ends with e.

The other expressions include variable = as well as
introduction and elimination forms of data of each type.
For example, (I)[d] constructs an element and d/p is to
use it; dq, dy constructs a sequence data and it can be de-
structed by head(d) and tail(d); s represents a string,

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1

n an integer; d; = .ds is to judge whether two strings d
and dy are equal.

2.3 Examples

This section represents the motivating example in
Section 1 by the syntax of CSchema. A schema for that
document without access control can be represented as
follows:

7 = (department) [(name) [string],

(staffs) [(staff) [(name) [string],
(salary) [int]]1#*]].

The access policy for Tom is given in Fig.4, where
a function auth is defined to remove salary information
from its argument element if this element is not for Tom.
In this policy, the element type staff is changed into a
protection type. Its view component indicates that each
released staff element may or may not contain child el-
ement salary and this element is the result of applying
auth to the original staff element specified by the path
self :: staff/e.

fun auth (z:(staff)[(name)[string],
(salary)[int]]) : (staff) [(name) [string], (salary)
[int]?] =
if ®/child::name/child::#/e = ‘‘Tom’’ then z
else (staff)[(name)[x/child::name/child::#/€l]

7 = (department)[(name)[string], (staffs)[
((staff)[(name) [string], (salary)[intll—
(staff)[(name) [string], (salary)[int]?]&
auth(self::staff/e))*]]

Fig.4. Access policy for Tom.

The policy for the financial assistant is given in Fig.5.
Two functions are defined for this policy: count for
computing the number of the staffs and sum for sum-
ming their salaries. They are both recursive since the
department can have any number of staffs. To express
this policy, the staff element type modified with x is
changed into a protection type with the view compo-
nent () and the embedded expression (), which means
that all staffs should be hidden to the financial assis-
tant. Moreover, another two protection types are added
to construct the elements number and totalsalary, re-
spectively. These two types do not protect any data in
the original document, so their original components are

both ().

fun count(x:(staff)[(name)[stringl, (salary)[int]]*):int=
if isempty(x) then O else 1+count(tail(x))
fun sum(z:(staff)[(name)[string], (salary)[int]l#) : int =
if isempty(z) then O else head(z)/child::salary/
child: :#/e+sum(tail(x))
7 = (department) [(name)[string], (staffs)[
(staff) [(name)[string], (salary)[int]l]l*— ()&(),
() +— (number)[int]&(number) [
count (/child: :department/child::staffs/child::
staff/e)],
(O + (totalsalary)[intl&(totalsalary)[
sum(/child: :department/child: :staffs/child::
staff/e)]1]]

Fig.5. Access policy for financial assistant.

Dong-Xi Liu: CSchema: A Policy Language for XML Access Control

3 Type System for CSchema

This section presents a type system to guarantee type
correctness of CSchema. It intends to prevent the fol-
lowing type problems.

e The view component in a protection type is not

the same as the type of the embedded expression.

e The embedded expression in a protection type has

type errors.

e A path expression refers to wrong element names

with respect to its context element.

In addition, this type system also generates security
views for the successfully checked CSchema policies. A
security view is just an ordinary regular expression type
without including protection types. The type system is
illustrated in two parts: the first is for CSchema correct-
ness checking, and the second is for checking the types
of embedded expressions. The first part depends on the
second part.

3.1 Type Checking of CSchema

CSchema correctness checking, given in Fig.6, can
prevent the first type problem. The judgment has the
form A; ©;I' -, 7 = 7', which means under the envi-
ronments A, © and I', the type 7 at the position 7 is
type correct and a corresponding security view 7' can be
derived. In the judgment, the position 7 is an absolute
path recording the path from the root of the current
policy to the 7’s parent.

The environments are defined as follows:

A= |AtQr @ u=.|0,t > putr == .|z T

47

where t@m means that the variable ¢ is bound at posi-
tion 7 in current policy; t — ut.7 maps the variable ¢ to
its definition; = : 7 means x has the type 7. In all cases,
the dot . just plays a syntactic role and can be omitted
when the environment is not empty. In the following,
we introduce the rules for checking type variable and
the protection type.

The rule for checking type variable t has two
premises. First, t is asked to be bound at some position
7w in A. Second, the path 7’ should be a strict prefix
of m judged by the operator < defined below. These
premises check two syntactic requirements on CSchema
policies. The first is that free type variables is now al-
lowed in a correct policy, and the second is that any
recursive variable (bound by p) must be guarded by
at least an element name. For example, according to
this rule, the recursive type ut.t is not correct. This is
to avoid nonterminated validation, which is illustrated
more in Subsection 4.1. However, this rule also prevents
the recursive types like pt.int,t. This is not a really lim-
itation for CSchema since this type can be represented
as int, intx*.

e<pifp#e
/p1 < /p2,if p1 < p2
child ::l/p; < child ::1/pa,if p1 < po

In the rule for protection type 7 — Tx&e, the type
To is checked under empty A, @ and I' because it can-
not include any protection type. And, when checking e,
self: Oy is preserved in I" because e probably contains
the subexpression self::l/p and consequently the

tQn’' € An' <7

A, 05 't ycnina T 7!

A 0;' - b=>b
A;@;ka’rl@'r{ A;@;Fkﬂ’rzﬁ’ré

A;0; Nt =t

A; 05 o T17T2:>’T{,’Té
A;0;Tbp =1/
A;0;T Fn % = T/%

4; 051" bx (D[7] = (O[]
A;60;T 11 :>T{ A;@;FFW’Q:}T;
A;0;T b 1|12 = 7 | 7h

A tQm; Ot — pt.r; M b 7= 77

A;0; 1 :>T{ Gg.-Frmo =79 I'yself : Oy bre:m 79 %

A; ©;T b5 ptor = pt.r!

A;0; g 11— To0&e = T2

Fig.6. CSchema checking rules.

I'btre:m Togp=>r

z:T7 €Tl c € {true,false,n,s, ()} I'bre:Tx I'bre:Tx
I'btraxz:T I'krc:b Ity head(e) : ()| 7 It tail(e) : 7%
I'bFre:Tx I're:bool'Frer:T7I'Frex:T I'bgep:string I' by ex: string
I' b, isempty(e) : bool I'l, if ethene; elsees : T I'F: e1 =ges : bool
I'bFrer:int I''bx ea : int funf(x:Tl):nge'EF TMux mux x:mibre i bre:m
I'brel +eo:int 't fe) : 7
I'Fre:T I'btrey:m1 Ibres:mo I'kFrei:mm I'bres:m
I'bx (Dle] = (D[7] I'trel,ea: 11,72 I'breilea: 11|m2

doc:7' €T T'oyp=>7 /p A7

e (eona(p, 7))

self:7/ € 7oyl = 7" 7orp=>r
I'br self :l/p: T

(cond(p, 7))

o (cond(p, 7))

I'kre:m [m]g(: [lg
I'Fre:m

Fig.7. Typing rules for expressions.

48

self’s type is needed for typing e. O is a type ob-
tained by replacing all free variables in 7; with their
definitions in @. Note that ©@7; does not contain free
type variables for a well-typed policy because all free
variables in 7y are required in the domain of A accord-
ing to the typing rule for type variables, and A and ©
have the same domain according to the checking rule for
recursive types.

Suppose there is a CSchema policy 7, e.g., in Fig.4
or Fig.5. The judgment . ;. ;doc : (doc)[r] F. 7 = 7’
is used to check it and generate the security view 7/, in
which the type of doc is kept for typing the absolute
path expressions embedded in 7. Finally, the following
lemma says that a security view is an ordinary regular
expression type.

Lemma 1 (CSchema Checking). If . ;. ;doc :
(doc)[r] . T = 7', then 7' :: %.

3.2 Typing Expressions

The typing rules for expressions are given in Fig.7,
which can prohibit the second and the third type prob-
lems. The judgment is defined as I' F e : 7, indicating
that the expression e has the type 7 under the typing
environment ['. Some rules are illustrated in the follow-
ing.

In the expression e/p, e is the context element of
the path p. To check the type of this expression, e is
first checked to get the context element type 7/, under
which p is checked. Then, the operator o, (formally de-
fined later) is used to extract 7 from 7’ according to the
path p. Finally, 7 is the type of e/p if cond(p,) holds.
The condition cond(p,7) is true if p = €, or if p # ¢
and 7 # (). On the other hand, this condition fails if p
includes wrong element names or refers to the content
of empty elements. These cases are regarded as static
errors as discussed in [14].

The rule for the expression self ::l/p first deter-
mines the self’s type 7’ in I', which is preserved by
the CSchema checking rule for protection type in last
subsection. And then, the operator e; (formally defined
later) is used to filter 7/ with the label [and get the new
context element type 7 for the path p. The remaining
checking is the same as that of the expression e/p.

The absolute path /p has the context element doc.
The type of doc is recorded in I' when beginning to
check a CSchema policy. The typing rule is almost sim-
ilar to that of e/p except for the condition /p Z 7, which
means that /p is not a prefix of 7. This condition is to
avoid circular reference among elements. The prefix re-
lation < is a reflexive closure of <, that is, p < p or
p1 2 p2 if p1 < pa.

The last rule is about type subsumption. The nota-
tion [7]g denotes the type obtained by erasing all pro-
tection types in 7. This operation is defined as follows:

bl =0b
tlg =t

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1

(D]l = DI[]g]

]
(71, T2l = [T1]g, 2]
[T1]72]g = [m]g | [2]g
[T1 = To&elp =7
[T %]p = [T]px
7]

Erasure operation changes the protection type 7 —
To&e into 5. Since 75 has the kind x, [71]g and [7»]g in
the last rule are both ordinary regular expression types.
[r1]1g (: [=]g indicates that [71] g is a subtype of
[751g. The subtype relation between two ordinary reg-
ular expression types can be determined by using the
approach in [15]. The subsumption rule means that if
expression e has the type 71 and [11]1g (¢ [72]g, then e
also has the type 7.

3.3 Position Typing Operators

The operation 7 oy p extracts the constituent type of
T at position p and 7 e [is to filter type 7 with label L
They are defined as follows:
T oy € = T,if T is not a variable
torp =)
bog child ::l/p = ()
(I'V[7] os child ::1/p = (T @ [) ox p
T1,T20¢ P =T1 Ot P, T2 0t D
Ti|T20sp=T10cp|T20: p
Txoygp= (T oy p)*

ptrorp="7[t— pt.T]oyp

be,# =10
te,l=()
be.l =)

(Dr] o I = (D[7]
(D] e U = (),if L £
T, Ta 0 L =71 @y 12 @]
Ti| e l=T10 |20
Tx el = (7 ey l)x
1 To&e ol =11 0.1

ptregl=pt.(rel).

There are several points worth some explanation.

First, t oy p generates () definitely. If this case hap-
pens, it says that t is free in the current policy be-
cause when extracting constituent type from the recur-
sive type pt.7, it is unrolled, i.e., all free occurrences of
t in 7 are substituted with pt.7.

Second, the operator oy is not applied to protection
type because this type is never used as a context ele-
ment type. The reason is that if the context element is
doc or self, their types are not protection types; on the
other hand, if the context element type is generated by
the operator ey, they are not, either, according to the
definition of e,.

Dong-Xi Liu: CSchema: A Policy Language for XML Access Control 49

Third, a regular expression type is actually a se-
quence at its top level. For example, (I)[7] is a singleton
sequence; 71,72 is a sequence of two constituent types.
Filtering a type with wrong element name will lead to
an empty context element type.

Fourth, when filtering a protection type, 71 is con-
sidered and 75 is ignored. That is, when a path is across
a protection type, the path is redirected to its original
component.

3.4 Case Study 1: Policy Type-Checking
The access policy in Fig.5 will be checked in this sec-

tion. For the convenience of presentation, the policy 7
is broken into the following pieces:

T = (department)[71, T2]

71 = (name)[string]

Ty = (staffs)[rs, T4, Ts)

T3 = (staff)[(name)[string],

(salary)[int]]* — ()&()

74 = () — (number)[int]&e;

75 = () — Te&e2

76 = (totalsalary)[int]

e1 = (number)[count(p)]

ez = (totalsalary)[sum(p)]

p = /child :: department/child :: staffs/pg

po = child :: staff/e.

The type correctness derivation of the policy 7 is
sketched in Fig.8, where I' = doc : (doc)[7], 81 =
child :: department and sy = child: staffs. As
shown in the derivation tree, after type checking, the
security view only includes the accessible data for the

assistant, and also, the embedded code in the policy is
type correct.

4 Enforcement of Access Policy

Access policies in CSchema are enforced by the vali-
dation procedure in this section. A protected document
is an XML file in external format, and after validated
against a CSchema policy, it is changed into internal
format and contains only the accessible data, which can
then be accessed, for instance, by some XML query en-
gines. This work uses the following syntax to represent
XML documents in external format and internal format,
respectively:

ev = ()|s|(D]ev]|evy,evy
v = ()|s|n|true|false|(l)[iv]]|ivy,ivs.

4.1 Validation

The validation procedure is defined in Fig.9. The
judgment @;I" I ev > 7 = v indicates that validating
the external value ev against the type 7 generates the
internal value ¢v under the environment ¢ and I', where
I' is the typing environment as before and @ is defined
as: & u=.|d, xz =iv| P, x = ev, in which z is bound
to an internal value iv or an external value ev. When
validating a string s against the type bool or int, the
functions s-to-b and s-to-1i convert s into a Bool value
or an integer, respectively. The rules for recursive type
and protection type are explained in Fig.9.

When validating ev against the recursive type ut.7,
the result is that of validating ev against the unrolled re-
cursive type 7[t — ut.7]. Recall that the correctness of
CSchema requires that the free variable t in 7 is always

55T Freisa 3= (0 551 Fs /s, Ta = (number)[int] D

51 F /e s, T3,Ta, 75 = (number)[int], (totalsalary)[int]

sl ke =m0k, T2 = (staffs)[(number)[int], (totalsalary)[int]|

551)g, 71,72 = 71, (staffs)[(number)[int

where, derivation D is as follows:

5 'k .7 = (department)[7y, (staffs)[(number)

, (totalsalary)[int]]
int], (totalsalary)[int]]]

!
[

I'yself: () F/,, 5, sum(p) = int

.;.;FI—/SI/SZ O0=0 .;.;.I—/SIS2 Te => Tg T6 i1 % I",sel:f:‘:()l—/sl/52 es = Tg

EERS '_/31/32 T5 = T6

Fig.8. Type checking of the example policy.

&Ir-(0>0=0

&; I' s > bool = s-to-b(s)
O;I'Fevi > =>iv1 ;1 F eva D> 12 = ive

&; 'k s> string = s

&; 'k s> int = s-to-i(s)
S, 'FevD> T =

D, ' - evy,eva > 71, T2 = V1,102
S, 'FevD> T =

& rFevd ()| 1,1 = iv

& I'FevD T |m2 = W
& I'FevD T[t = pt.7] = w

S I'FevDd T |m2 = iv
o I'Fevd>T =W

S I'FevD> T = v
& self =ev;I',self: 1 Fel v

S I'FevD pt.t = w

@; I' = ([ev] > (D[] = B[]

S, I'FevD> T — To&e = v

Fig.9. Validating rules.

50

guarded by at least one element name. Hence, validat-
ing against the unrolled recursive type does not directly
incur this rule again, which can prevent against nonter-
minated validation caused by the continuous attempt of
trying this rule.

The rule of validating ev against a protection type
performs access control actions. This rule does not val-
idate ev and instead the internal value at the ev’s posi-
tion is obtained by evaluating the embedded expression
e in this protection type. That is, this rule not only
hides the sensitive data but also creates the accessible
data. The evaluation of e depends on the dynamic se-
mantics of expressions. Before evaluating an expression,
the self with value ev and type 71 are preserved in @
and I', respectively. Thus, when e refers to self, its
value and type can be found in these environments.

Suppose there is a protected document ev and a
CSchema 7. The access policy 7 should be enforced
under the following initial environments: @ contains
doc = {dodfev], and I' is doc : @dog[r]|. It should be
mentioned that if 7 does not include any protection
type, then this validation procedure will not evaluate
any expression, and consequently cost nothing for ac-
cess control purpose; if the access policy just hides some
sensitive data, then this validation procedure is more
efficient than ordinary ones since it eliminates the need
to validate the sensitive data. For an extreme example,
if the whole document should be hidden, it returns an
empty value immediately without validating the docu-
ment at all.

4.2 Dynamic Semantics

The dynamic semantics of expressions is presented
in Fig.10. The judgment has the form &;I" F e | iv.
That is, under the environments ¢ and I', evaluating
the expression e generates an internal value iv. Some
representative rules are illustrated below.

When applied to a sequence value, the head ex-
pression returns its first item and the tail expres-
sion returns its tail. The isempty(e) expression judges

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1

whether e evaluates to an empty value. Evaluation
of the function application f(e) needs to evaluate the
function body €’ under a new environment obtained by
adding the binding « = v into @, where iv is the eval-
uation result of the argument expression e.

In the expression e/p, the value of e is the context
element of the path p. To evaluate this expression, e is
evaluated first to the value iv'; and then, the value at
the position p of v’ is extracted by the operator o, and
used as the value of the expression e/p. The definitions
of o, and e, are given at the end of this subsection but
without too much explanation since they have similar
behaviors as the corresponding type operators oy and
...

For the path expression /p (or self::l/p), its con-
text element doc (or self) is still represented in the
external format, so the value at the position p is also
in the external format. After this value is extracted by
using the operator o, it is converted into the internal
format by validating against its type. Hence, the val-
ues specified by these path expressions are actually the
values in the released document. If a path expression
wants to refer to a sensitive value, it must penetrate
into the original component of the protection type that
protects this value. In addition, according to the typing
rule for /p, the expression in a protection type is prohib-
ited from referring to its parent type, so evaluating /p
with some context element will not cause evaluate this
expression again.

iV Oy € = TV
co, child ::1/p = ()
(I'V[#v] oy child ::1/p = (v ey 1) oy p
201, 1U2 Oy P = 11 Oy P, 1U2 Oy P
v ey # =1v
ce, =)
(D)liv] oy L = B[]
Ofiv) ex ' = (),if L £

1,102 oy 1 = vy 0, 1, dvs ey]

where ¢ € {(), s,n,true, false}.

r=1iv € P c € {(),s,n,false, true}

b, I'+eryn1 &;I'Fex ynas n=ny1+na

&, I'Fxliv &, I'Fclec
&;I'ter I s1 &I ex | s2 iv=(s1 equals s2)

b, I'Fel+exln
D, ' e | tv1,1vs D, '+ e) v, ivs

D, 'F el =ge2 v
&I Fell()

& I'Fel v iv#()

&; I' - head(e) J tv1 &; '+ tail(e) | ive
& I'Fel v

&; I' - isempty(e) | true
&;I'+el true &;I'Fe; Yivy D;I'F el false

&; I' - isempty(e) | false

@; ' = (D)[e] ¥ (Div]

S;I'Fex ive D3 ep Yivy &1 F ea) ive

®; '+ if ethenej elsees | iv1
P(self) oyl = ev evo,p=ev’ I['(self)egl =7 T

@; '+ if ethenej elsees || iva

D'k e1,ea | ivy,ive

ogp=>T1 & Fev >1 = iv

&; I' b self :l/p || v

&;I'kel i P (doc) oy p = ev fun f(z:m) 2 =€ €T
w' oy p = iv I'(doc)orp=7 & I'tevD>T= 1w &;I'telliv d,x=iv;" e || iv
&;I'+e/pliv &'k /pliv ;' f(e) Y3’

Fig.10. Dynamic semantics.

Dong-Xi Liu: CSchema: A Policy Language for XML Access Control 51

&'t evs,evg>13=() DI+ () > 74 = (number)[2] D

&; I' - evs, evy > 73, T4, 75 = (number)[2], (totalsalary)[50]

&'k evi > 11 = evy

&; ' F eva > 12 = (staffs)[(number)|2], (totalsalary)[50]]

&; 'k evy,evy D> 71,72 = evy, (staffs)[(number)[2], (totalsalary)[50]]

Derivation D is as follows:

@, ' b ev > 7 = (department)[evy, (staffs)[(number)[2], (totalsalary)[50]]]

&, self = ();I',self: () Fp iv P,self = (),x =iv;[,self: () F body_of_sum | 50

&, self = (); I',self : () - sum(p) | 50

&, self = ();I',self : () F ez | (totalsalary)[50]

&;I' - () > 75 = (totalsalary)[50]

Fig.11. Enforcement of the example policy.

4.3 Case Study 2: Policy Enforcement

In this subsection, the access policy in Fig.5 will be
enforced on the protected file in Fig.1(a), which is rep-
resented as follows in the external format:

ev = (departments)ev1, evs]

evi = (name)|["Market"]

evs = (staffs)[evs, evs)

evs = (staff)[(name)["Tom"], (salary)["30"]]
evs = (staff)[(name)["Peter"], (salary)["20"]].

This file will be validated against the policy in Fig.5
to produce the file in Fig.1(b) in the internal format.
For convenience, the policy notations in Subsection 3.4
are still used here. The validation procedure is sketched
in Fig.11, where & includes doc = (doc)[ev], " contains
doc : (doc)[r], D is the derivation for validating empty
value () against 75, and v is the following internal value
of the path expression p:

(staff)[(name)["Tom"], (salary)[30]],
(staff)[(name)["Peter"], (salary)[20]].

As the example shows, after policy enforcement, the
assistant only gets the accessible data with respect to
the access policy.

4.4 Property of CSchema

To state the property of CSchema, the semantics of
types with the kind % is needed. The semantics function
[] maps a type to a set of internal values, defined as
follows:

[01 = {0}
int] = {n}
[bool] = {true, false}

[string] = {s}
(D[] = {{Div] [iv € [7]}
[r1, 2] = {iv1,iv2 | ivy € [11], iv2 € [72]}

[r|72] = [n] U [r]

[r+] = {0} U lr, 7]

[ut.r] = [r[t — pt.7]].

Then, the following theorem says that when validat-
ing a protected document against a CSchema policy, a
released document is generated and it must match the
security view derived from this policy.

Theorem 1 (Access Policy Enforcement). Sup-
pose that T is a CSchema policy and ev a protected docu-
ment. If .;.;T'+.7= 7" and &; ' Fevi>7T = iv, then
v € [7'], where & contains the binding doc = (doc)[ev]
and I' includes the type information doc : (doc)[7].

The proof proceeds by induction over the CSchema
checking rules and validation rules for each type. For
brevity, only the case for the protection type is sketched.
By induction hypothesis, it is known that e has type 7
and v’ is the evaluation result of e. And 7 has the kind
*, 50 v’ € [12].

5 Discussion

This section will discuss other possible applications of
CSchema, compare it with other XML processing lan-
guages, and explain how to use CSchema with these
existing languages.

5.1 Other Possible Applications

Though CSchema is motivated to describe downgrad-
ing access policies for XML access control, actually it
can also be used to maintain the computation depen-
dency found in XML documents!*®!. For example, in an
XML file for a book, its table of contents depends on
the titles of its chapters. Fig.12 gives a CSchema policy

fun mktoc(x: (chap)[(title)[stringl, (p)[stringl=]x):
(title) [string]l*
= if isempty(x) then () else head(x)/child::
title/e,mktoc(tail(x))
T = (book)[(toc)[() +— (title)[string]x&mktoc(/child::
book/child::chap/e)],
(chap) [(title)[string], (p)[stringls]x]

Fig.12. CSchema policy for book.

52

for such a case, where a book consists of a table of
contents and a sequence of chapters. And, the ta-
ble of contents includes a sequence of chapter titles,
which are computed from the sequence of chap ele-
ments by applying the function mktoc to the argument
/child: :book/child: : chap/e.

5.2 Comparison with Other Approaches

Some XML processing languages like XQuery!*”! and
CDucel'!], or general programming languages enhanced
with XML processing ability like Java and Cw!'®!| can
transform the original document in Fig.1(a) to the re-
leased one in Fig.1(b). That is, these languages can be
used to write policies. However, writing policies with
these languages are very clumsy since they do not allow
the policy writers to focus on the sensitive data.

For example, suppose a leaf element in a big doc-
ument is supposed to be sensitive and should be hid-
den. Then the policy if written in CDuce has to use a
pattern designed by considering the whole document to
separate the sensitive leaf element from other insensitive
elements and then use the insensitive ones to construct a
new document; the policy if written in XQuery needs to
use many XPath expressions to extract the insensitive
elements to construct the released document since they
are both functional languages. For imperative languages
like Java or Cw, the policy needs not construct a new
released document, however it still needs to navigate to
the sensitive element and remove it from the document.

In CSchema, the policy writers just need to change
the type of the protected leaf element into a protection
type with the empty view component () and the empty
expression (), and then all work is done. Moreover,
the policy in CSchema is enforced when validating this
XML document, and thus the sensitive element is re-
moved by simply ignoring it during validation and thus
such enforcement does not incur any overhead.

5.3 Using CSchema with Other Languages

Though its advantage in enforcing XML access con-
trol, CSchema is not designed to compete with the exist-
ing XML processing languages, and rather CSchema can
be used together with them as the access control mod-
ule. The general idea is to find the validation modules in
existing languages and then conservatively extend them
to support protection type for CSchema without chang-
ing the validation method to other standard types, such
as element types or sequence types.

Two examples are given to explain how to incorpo-
rate CSchema into some existing languages. The first
example is about the Galax XQuey engine!'! (an imple-
mentation of XQuery). As shown in its architecturel2%,
there is an explicit stage Schema Validation to validate
the input XML document against an XML Schema. In
order to use CSchema in the Galax engine, we just need
to extend the Schema Validation module by support-

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1

ing protection type. The second example is about the
CDucel'". This language does not has an explicit pro-
cessing stage to valid an input XML document. Its val-
idation is implemented by a language construct match,
which matches an untyped input XML document in the
external form against a type, and generates the XML
data of this type in the internal form if this document
really has this type. In order to use CSchema, the con-
struct match is needed to extend to support protection

type.

6 Related Work

The current approaches of XML access control are
only able to release the accessible elements or hide the
inaccessible elements that are already existing in the
protected documents. For example, the approach in [1]
is a DTD-based mechanism, and the elements specified
with the structure of DTD, are only associated with the
access mode Y (accessible) or N (inaccessible); the ap-
proaches in [5—7] specify the elements only with the per-
missions of read granting or read denying; the elements
in [2, 3] are specified only with positive authorization
+ or negative authorization —; the browsing privileges
in [4] include view, navigate, and browse_all, and they
describe different conditions for reading the existing at-
tributes or elements in documents.

Active XML (AXML)2! allows code to be embed-
ded in XML documents, not in schema like the approach
in this work. Moreover, the code in an AXML is just web
service calling to integrate other data into the current
document, and cannot describe downgrading operations
for access control purpose. However, the embedded op-
erations in CSchmea can be used to exploit web services
if the appropriate functions are used. The work!! is
more general than AXML, but it also embeds code in
XML documents, not in schema. These approaches have
the shortcoming that if two XML documents have the
same schema (or same structure), they cannot let these
documents share the embedded code.

Language-based security??) is a very active research
area. Language technologies have been applied to such
areas as certified codel®3]| stack inspection[®¥, etc. But
none has used these technologies to protect the con-
tent of XML documents. The existing downgrading pol-
icy languages('®:?%! concern the information flow among
code, while CSchema moves the focus to the tree-
structured data.

7 Conclusion

This paper motivates the downgrading problem for
XML access control and proposes CSchema to address
this problem. By downgrading policies in CSchema,
such access control case can be expressed, where the
original sensitive element keeps inaccessible, but the ele-
ments computed from them become insensitive and can
be released to data requesters. In addition, CSchema

Dong-Xi Liu: CSchema: A Policy Language for XML Access Control 53

can also be used to maintain the computation depen-
dencies among one XML document.

CSchema extends the ordinary schema languages by
protection type, which is embedded by an expression to
describe the downgrading operation. A type system for
CSchema is also presented, and it not only checks the
type correctness of CSchema, but also generates secu-
rity views. Among the existing approaches, only method
in [1] can provide security view. Access policies repre-
sented in CSchema are enforced by a conservative ex-
tension of ordinary validation procedure and it can deal
with the validation of XML files against ordinary schema
as well.

CSchema does not conflict with other XML process-
ing technologies. For example, it can be used together
with XQuery by combining its validation procedure into
query engines.

Acknowledgment Thanks to the support from
Prof. Masato Takeichi and Prof. Zhen-Jiang Hu, and
discussions with other PSD project members in the Uni-
versity of Tokyo. We are also grateful to the anonymous
reviewers for their comments.

References

[1] Wenfei Fan, Chee-Yong Chan, Minos Garofalakis. Secure
XML querying with security views. In Proc. the 2004 ACM
Int. Conf. Management of Data, Paris, France, 2004, pp.587—
598.

Damiani E, di Vimercati S, Paraboschi S et al. Securing XML

documents. In Proc. Int. Conf. Extending Database Tech-

nology, Konstanz, Germany, 20000, LNCS 1777, pp.121-135.

Damiani E, di Vimercati S, Paraboschi S et al. A fine-grained

access control system for XML documents. ACM Trans. In-

formation and System Security, 2002, 5(2): 2: 169-202.

[4] Bertino E, Ferrari E. Secure and selective dissemination of
XML documents. ACM Trans. Information and System Se-
curity, 2002, 5(3): 290-331.

[5] Gabilon A, Bruno E. Regulating access to XML documents.
In Working Conf. Database and Application Security, On-
tario, Canada, 2001, pp.299-314.

[6] Makoto Murata, Akihiko Tozawa, Michiharu Kudo, Satoshi
Hada. XML access control using static analysis. In Proc.
10th ACM Conf. Computer and Communications Security,
‘Washington DC, USA, 2003, pp.73-84.

[7] Hada S, Kudo M. XML access control language:
visional XML documents.
http://www.trl.ibm.com/projects/xml/xacl.

[8] Godik S, Moses T. eXtensible access control markup 2

language (XACML) Version 1.0. 2003, http://www.oasis-

open.org/specs/index.php.

Irini Fundulaki, Maarten Marx. Specifying access control poli-

cies for XML documents with XPath. In Proc. the 9th ACM

Symp. Access Control Models and Technologies, New York,

USA, 2004, pp.61-69.

[10] Stephen Chong, Andrew C Myers. Security policies for down-

grading. In Proc. the 11th ACM Conf. Computer and Com-

[2

3

Pro-

authorization for 2000,

[9

munications Security, Washington DC, USA, 2004, pp.198—
209.

[11] Veronique Benzaken, Giuseppe Castagna, Alain Frisch.
CDuce: An XML-centric general-purpose language. In Proc.
the 8th Int. Conf. Functional Programming, Uppsala, Swe-
den, 2003, pp.51-63.

[12] Jerome Simeon, Philip Wadler. The essence of XML. In Proc.
the 30th ACM Symp. Principles of Programming Languages,
New Orleans, Louisiana, USA, 2003, pp.1-13.

[13] Hosoya H, Pierce B C. XDuce: A typed XML processing lan-
guage. ACM Trans. Internet Technology, 2003, 3(2): 117—
148.

[14] Dario Colazzo, Giorgio Ghelli, Paolo Manghi, Carlo Sartiani.
Types for path correctness of XML queries. In Proc. the 9th
ACM Int. Conf. Functional Programming, Snowbird, USA,
2004, pp.126-137.

[15] Haruo Hosoya, Jerome Vouillon, Benjamin C Pierce. Regular
expression types for XML. In Proc. the 5th ACM Int. Conf.
Functional Programming, Montreal, Canada, 2000, pp.11-22.

[16] Dongxi Liu, Zhenjiang Hu, Masato Takeichi. An environment
for maintaining computation dependency in XML documents.
In Proc. the 2005 ACM Symp. Document Engineering, Bris-
tol, UK, 2005, pp.42-51.

[17] W3C Recommendation. XML Query (XQuery).
http://www.w3.org/XML/Query.

[18] Bierman G, Meijer E, Schulte W. The essence of data access in
Comega. In European Conf. Object-Oriented Programming,
LNCS 3586, Glasgow, UK, 2005, pp.287-311.

[19] The Galax Team. Galax: An Implementation of XQuery.
http://www.galaxquery.org.

[20] Mary Fernandez, Jerome Simeon. Build your own XQuery
processor. In EDBT Summer School, Sardinia, Italy, 2004.

[21] Serge Abiteboul, Omar Benjelloun, Tova Milo. Positive active
XML. In Proc. the 23rd ACM Symp. Principles of Database
Systems, Paris, France, 2004, pp.35—45.

[22] Schneider F B, Morrisett G, Harperi R. A language-based ap-
proach to security. Informatics: 10 Years Back, 10 Years
Ahead, LNCS 2000, Springer-Verlag, 2000, pp.86-101.

[23] George C Necula. Proof-carrying code. the 24th
ACM Symp. Principles of Programming Languages, Paris,
France, 1997, pp.106-119.

[24] Cedric Fournet, Andrew D Gordon. Stack inspection: The-
ory and variants. In Proc. the 29th ACM Symp. Principles
of Programming Languages, Portland, Oregon, USA, 2002,
pp-307-318.

[25] Peng Li, Steve Zdancewic. Downgrading policies and relaxed
noninterference. In Proc. ACM Symp. Principles of Pro-

2005,

In Proc.

gramming Languages, Long Beach, California, 2005, pp.158—
170.

Dong-Xi Liu received his B.E.
and M.E. degrees from Taiyuan Univ.
Technology in 1996 and 1999, and his
Ph.D. degree from Shanghai JiaoTong
Univ. in 2003, respectively. He has
been a researcher in the University
of Tokyo since 2004, and before that
he worked at National University of
Singapore for one year as a research
fellow. His current research interests

include language-based security, software verification based
on advanced type systems, and bidirectional transformation
language design for XML processing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

