
Bytecode Verification for Enhanced JVM Access Control

Dongxi Liu
School of Information Science and Technology, University of Tokyo

liu@mist.i.u-tokyo.ac.jp

Abstract

This paper presents an approach to addressing the
known weaknesses and security issues of JVM stack in-
spection in a unified framework. We first propose an en-
hanced JVM access control mechanism. In this mechanism,
values are also associated with security levels. When en-
forcing access control, this mechanism checks not only the
permissions of code on stack as the usual stack inspection,
but also the security levels of values to make sure they are
used legally. We then present a static type system to ver-
ify whether a bytecode program satisfies the security prop-
erty achieved by this enhanced mechanism. This type sys-
tem performs modular and context-sensitive analysis at the
method level by generating and solving constraints, and
path-sensitive analysis at the code block level by using a
trace-based approach. In addition, this type system does
not need any user annotation for verification.

1 Introduction

The extensible programs based on mobile code always
consist of software components with different origins and
different trust levels. When an extensible program runs, all
its components share the same system resources, so it is de-
sirable to enforce access control at the code level rather than
according to the rights of users running this program. A
well known mechanism for this situation is stack inspection
implemented in Java Virtual Machine (JVM) [4].

In stack inspection, each piece of code is associated with
some permissions according to the prescribed security pol-
icy. During runtime, when some code intends to access
sensitive resources, this mechanism scans the current stack
frames top-down to guarantee that all running code has the
required permissions, unless it meets a stack frame with a
special flag. In Java, the method checkPermission im-
plements the stack inspection mechanism and the method
doPrivileged sets the special flag. To enforce access
control, the method checkPermission must be explic-
itly called in the API code for accessing resources.

However, this mechanism has been found some inher-
ent weaknesses and security issues. The known weaknesses
include: inspecting stack dynamically incurs runtime over-
head; bytecode programs cannot be optimized by some
methods if they change the calling stack after optimization;
it is difficult to guarantee that the implementers always in-
sert the method checkPermission in each API code for
accessing sensitive resources. On the other hand, the known
security issues are caused by two reasons. The first reason
is that stack inspection does not check all code that have
run, and some untrusted code possibly left the running sys-
tem in an unexpected state after they terminate. The second
is that some classes encapsulating the sensitive resources,
such as FileInputStream and Socket, invoke stack
inspection only when creating the instances of the classes,
and do not perform security check when really accessing
resources by using the methods, such as read or write.
However, the objects of these classes created by trusted
code could be carelessly passed or returned to untrusted
code, and then used by them illegally beyond the control of
stack inspection. Exploiting these security issues, untrusted
code can access sensitive resources without required per-
missions. There are more details and examples about these
security issues in [1, 4].

There have been much work, such as the security-passing
style in [10] and the type systems in [8, 5, 7], to avoid all
or some the weaknesses of stack inspection, but they do not
address the known security issues. The work in [1] pro-
poses a method to address the security issue caused by the
first reason by dynamically examining the permissions of
all code that has run in execution history. However, it can-
not solve the security problem caused by the second reason,
and still suffers from some weaknesses of stack inspection,
such as runtime overhead and manually-inserted code for
security check. The purpose of this work is to address these
weaknesses and security issues in one framework.

1.1 Our Approach

In stack inspection, only code is associated with per-
missions, while in our approach, the values like objects or

strings are also specified with some security level (i.e., a
set of permissions). The security mechanism is enforced
not only by checking the permissions of code on stack, but
also checking whether a value is used legally. An object is
legally used only when its methods are invoked by the ob-
jects with higher security level, i.e., owning more permis-
sions, and for a string, it is legally used when its security
level is higher than that of the objects whose methods take
this string as an argument to specify sensitive resources.

The enforcement of access control in this model is com-
pletely guided by security policies, which specify not only
the permissions of code,but also the permissions required to
access sensitive resources. The stack inspection is invoked
when some code tries to access the resources protected by
some security policy, rather than by explicitly calling a spe-
cial method like checkPermission. Thus, in order to
check which resources are in protection, the administrators
just need to look at the current policies, which is more ef-
fective than to seek calls of checkPermission scattered
in code base.

We first present an operational semantics for a secure
JVM calculus. This operational semantics enforces secu-
rity check based on security policies, embodying our idea
of enhancing stack inspection by ensuring the legal use of
values. If some code fails to pass security check, it will get
stuck according to the semantic rules. This mechanism can
address the security issues of stack inspection, but it still in-
curs runtime overhead since runtime security check is used.

To address the shortcoming of dynamic security check,
we then propose a type system to verify the enhanced secu-
rity property of bytecode programs statically. In this type
system, the types of values are annotated with security lev-
els, and the type signatures of methods are annotated with
permissions required to invoke them. Hence, we can depend
on these security levels or permissions to check whether a
program is secure. However, it is boring and error prone
for users to annotate their programs for verification. In our
approach, users do not need to annotate the code, and the
security levels on types are inferred automatically by this
type system based on security policies.

Several technical difficulties are encountered when de-
signing this type system. First, a method or a code block
might require a context-sensitive analysis because they may
be called or entered with different security contexts. How-
ever, because of recursive methods or loops in code blocks,
the type analysis will fail to terminate if we naively analyze
a code block or the body of a method at each jumping or
calling point. Moreover, it is not a modular approach. Sec-
ond, due to the mechanism of initializing objects in JVM
[3], the security level of an object cannot be determined at
the time it is created, and when its security level can be
determined, the type of this object probably has been du-
plicated and moved, and thus appears in several different

places. So this type system must be able to recognize the
types of the same object and annotate them with the same
security level.

We propose several techniques to tackle these difficul-
ties. First, this type system analyzes each method only
once and generates constraints for each method after analy-
sis. At each method calling point, the constraints of the in-
voked method are instantiated with the information specific
to this calling context to achieve context-sensitive analysis.
A program is secure if all these constraints can be satisfied.
Second, this type system analyzes the code blocks in one
method by following the control flow among them. In or-
der to prevent infinite analysis loops, this type system builds
and maintains a set of predecessor traces for the entry point
of each block from which this block has been entered and
analyzed, which can then be used to determine whether this
block needs to be analyzed again when there is a reentry to
it. In addition, this trace-based approach allows the analysis
of polymorphic code blocks, such as bytecode subroutines
[9]. Third, if the security level of a class type cannot be de-
termined, this type is represented as a singleton type, and at
the time its security level can be determined, all the single-
ton types with the same index value, indicating the replica
types of the same object, will be annotated with the same
security level. In addition, singleton class types can also
help in detecting the use of uninitialized objects. Single-
ton string types allows more precise permissions. That is, a
permission is defined by an access operation together with a
resource identifier, not just by an access operation like those
in [8, 7].

The remainder of this paper is organized as follows: Sec-
tion 2 describes the syntax of security policies; Section 3
gives the secure JVM calculus and its operational seman-
tics; Section 4 presents the type system; Section 5 gives the
related work and the conclusion.

2 Security Policies

In this work, security policies not only assign permis-
sions to code but also specify the permissions required for
accessing sensitive resources. The syntax of security poli-
cies is defined in Figure 1. A permission π or θ(x) is a pair
of an access operation and a resource identifier. A resource
identifier is the name of some resource, such as a file name
or a network address. π is a permission instance, and θ(x)
is a parameterized permission, where x is a string variable
and can be instantiated.

The permissions of code are specified by P which maps
a class name to a set Π of permission instances. These per-
missions are assigned generally according to the features
of code, such as its origin or signature. For example, if
some code has the permissions { (FileRead, “pwd.dat”),
(FileDelete, “pwd.dat”) }, then it can read and delete

C ∈ Classes
π ∈ {(FileRead, str1),(FileDelete, str2), ...}

Σ, Π ::= {π, ...}
P ::= {C �→ Π, ...}

θ(x) ∈ {(FileRead, x), (FileDelete, x), ...}
Θ(x) ::= {θ(x), ...}

O ::= {(C, i) �→ λx.(Θ(x), Θ′(x))}, ...)}
Q ::= {(C, m, i) �→ λx.Θ(x), ...}
x ∈ String V ariables
i ∈ Integers

Figure 1. Syntax of Security Policies

the file “pwd.dat”; if it has an empty permission set, de-
noted by φ, then it has no right to access any resource.

The permissions for sensitive resources are specified ei-
ther on class constructors by the mapping O or on methods
by the mapping Q.

The mapping O maps a pair of a class name and an in-
teger to a pair of parameterized permission sets, with the
free variable x bound by λ. The notation Dom(O) is for
the domain of O. A mapping (C, i) �→ λx.(Θ(x),Θ′(x))
in O declares that when creating an object from C, the
ith argument of its constructor should be a string, say str,
for identifying the resource encapsulated by this class, and
the permission sets Θ(str) and Θ′(str) obtained by apply-
ing λx.(Θ(x),Θ′(x)) to str specify respectively the permis-
sions required for creating this object and the security level
of the created object.

For example, to protect from unauthorized file read
through the class FileInputStream, the mapping
entry (FileInputStream, 1) �→ λx.({(FileRead, x)},
{(FileRead, x)}) should be declared in O. This protec-
tion applies to the constructor of FileInputStream tak-
ing the file name as its argument. However, the class
FileInputStream also has a constructor taking a File
object as its argument. In this case, this constructor is not
protected by the security policy, and instead the construc-
tor of the class File with a file name parameter should
be protected by declaring (File, 1) �→ λx.(Θ(x),Θ′(x)),
where both Θ(x) and Θ′(x) are the set {(FileDelete,
x), (FileRead, x) }, since this class can be used to delete
files and also read files. Note that Θ(x) and Θ′(x) can be
different.

The mapping Q protects those methods that di-
rectly take resource identifiers as arguments, such as
createTempFile in the class File. A mapping
(C,m, i) �→ λx.Θ(x) in Q means that the code calling
the method m defined in the class C must have permission
Θ(str), where str is the ith argument of this call. To sup-
port overloaded class constructors and methods, the domain
formats of O and Q can be extended with the type signa-
ture of each constructor and method. For simplicity, they
are omitted.

Prog ::= {C1 <: C′
1 �→ MS1, ..., Cn <: C′

n �→ MSn}
MS ::= {md1 �→ BS1, ..., mdn �→ BSn}
md ::= (C, m, τ)

σ ::= int | string | C
∆ ::= ε | σ · ∆
τ ::= ∆ → σ

BS ::= {l1 �→ B1, ..., ln �→ Bn}
B ::= return | goto l | in · B
in ::= new C | iconst n | ldc str | dopriv

| store x | load x | dup | ifeq l
| invokevirtual md | invokespecial md

v ::= n | str | {}C

Figure 2. Syntax of Secure JVM Calculus

3 A Secure JVM Calculus

In this section, we formalize a secure JVM calculus. Its
operational semantics enforces the enhanced stack inspec-
tion by runtime check based on security policies.

3.1 Syntax of the Calculus

The syntax of the JVM calculus is defined in Figure 2. A
program Prog consists of a set of classes. A class is denoted
by C <: C ′ �→ MS , which means the class C extends the
class C ′ and has a collection MS of methods. The inheri-
tance relation <: is transitive. A method is described by a
method descriptor md associated with a list of code blocks
BS. Each block B has a label l, and the block labeled with l1
is the entry block. For a method descriptor md of the form
(C,m,∆ → σ), we use the notation class(md) for its owner
class C,mname(md) for its name m,ty(md) for its signature
∆ → σ, and argty(md) and resty(md) for ∆ and σ, respec-
tively. The notation blk(md, l) denotes the code block l in
the method described by md, that is, blk(md, l) = BS(l),
where BS = MS(md) and MS = Prog(class(md)).

A code block B consists of a sequence of instructions
ended with return or goto l. The instruction new C al-
locates an uninitialized object of class C on the heap and
pushes its reference onto the operand stack; iconst n and
ldc s push the integer n or the string s onto the stack, re-
spectively; dopriv models the method doPrivileged
in Java; load x pushes the value of local variable x onto the
stack, and store x puts it back; dup duplicates the value
at the top of stack, and is used for object initialization [3];
ifeq l jumps to the block l if the top value of the stack
is zero; invokevirtual calls an ordinary method, and
invokespecial invokes a class constructor to initialize
an object. A value v can be an integer n, a string str or an
object {}C . An object is annotated with its class C, and is
an empty record since classes in this calculus do not include
fields. Adding fields to classes does not affect the security
mechanism of this calculus.

1 : (f, v · s, Π, return)md · (f ′, s′, Π′, B′)md′ · A; h
→ (f ′, v · s′, Π′, B′)md′ · A; h

2 : (f, s, Π, goto l)md · A; h → (f, s, Π, blk(md, l))md · A; h

3 : (f, s, Π, new C ·B)md ·A; h → (f, o · s, Π, B)md ·A; h[o �→ {}φ
C]

where o �∈ Dom(h)
4 : (f, s, Π, iconst n · B)md · A; h → (f, nΣ · s, Π, B)md · A; h

where Σ = P (class(md))
5 : (f, s, Π, ldc str · B)md · A; h → (f, strΣ · s, Π, B)md · A; h

where Σ = P (class(md))
6 : (f, s, Π, dopriv · B)md · A; h → (f, s, Π ∪ Σ, B)md · A; h

where Σ = P (class(md))
7 : (f, v · s, Π, store x ·B)md ·A; h → (f [x �→ v], s, Π, B)md ·A; h
8 : (f, s, Π, load x · B)md · A; h → (f, f(x) · s, Π, B)md · A; h
9 : (f, v · s, Π, dup · B)md · A; h → (f, v · v · s, Π, B)md · A; h
10 : (f, 0Σ ·s, Π, ifeq l ·B)md ·A; h → (f, s, Π, blk(md, l))md ·A; h
11 : (f, nΣ ·s, Π, ifeq l ·B)md ·A; h → (f, s, Π, B)md ·A; h (n �= 0)
12 : (f, s′ · o · s, Π, invokespecial md′ · B)md · A; h

→ ({0 �→ o, |s′|..1 �→ s′}, ε, Π ∩ P (C), blk(md′, l1))md′ ·
(f, s, Π, B)md · A; h′

where h(o) = {}φ
C , class(md′) = C,

mname(md′) = < init>, |s′| = |argty(md′)|,
sc1 (C, 1, s′, Π) = Σ and h′ = anno(h, o, Σ)

13 : (f, s′ · o · s, Π, invokevirtual md′ · B)md · A; h
→ ({0 �→ o, |s′|..1 �→ s′}, ε, Π ∩ P (C′), blk(md′′, l1))md′′ ·

(f, s, Π, B)md · A; h
where h(o) = {}Σ

C , C <: class(md′), |s′| = |argty(md′)|,
Σ ⊆ Π, m = mname(md′), C′ = srcclass(C, m),
sc2 (C′, m, 1, s′, Π) = φ and md′′ = (C′, m, ty(md′))

Figure 3. Operational Semantics with Run-
time Security Check

The type ∆ → σ is the type for methods. Its argument
type ∆ is a stack type, which is a sequence of types. An
empty sequence is written as ε. There are several notations
about stack types: |∆| is the length of ∆, and ∆[i] returns
the ith entry of the stack type ∆ for 1 ≤ i ≤ |∆|, which
is defined as (σ · ∆)[1] = σ and (σ · ∆)[2] = ∆[1], and
so on. These notations are also used on other kinds of se-
quences, such as sequences of values. The operator · is used
to concatenate two sequences.

3.2 The Operational Semantics

The operational semantics describes how programs ex-
ecute from one state to the next state. The operational se-
mantics for the calculus is defined in Figure 3. An execu-
tion state is a configuration A;h consisting of a sequence
A of stack frames and a global heap h. A stack frame
for executing the method md has the form (f, s,Π, B)md ,
where f maps local variables (specified by integers) to val-
ues, s is the operand stack (a sequence of values), and
Π is the valid permissions owned by code B. The heap
h maps an object reference to an object, and the notation
h[o �→ v] means a new mapping h′, such that h′(o) = v,
and h′(o′) = h(o′) if o �= o′.

The state (f, v · s,Π, return)md ;h is regarded as the
final state since there is no instruction to execute and the

sc1 (C, i, s, Π) = φ, if i > |s|
sc1 (C, i, s, Π) = sc1 (C, i + 1, s, Π)

if i < |s| and (C, i) /∈ Dom(O)
sc1 (C, i, s, Π) = Θ′(str) ∪ sc1 (C, i + 1, s, Π)

if i < |s|, O((C, i)) = λx.(Θ(x), Θ′(x)), s[|s| − i + 1] = strΣ,

Θ(str) ⊆ Π and Θ(str) ⊆ Σ

sc2 (C, m, i, s, Π) = φ, if i > |s|
sc2 (C, m, i, s, Π) = sc2 (C, m, i + 1, s, Π)

if i < |s| and (C, m, i) /∈ Dom(Q)
sc2 (C, m, i, s, Π) = sc2 (C, m, i + 1, s, Π)

if i < |s|, Q((C, m, i)) = λx.Θ(x), s[|s| − i + 1] = strΣ,

Θ(str) ⊆ Π and Θ(str) ⊆ Σ

Figure 4. Operators sc1 and sc2

whole program will return successfully a value v. In the
following, we will introduce how this operational semantics
annotates values with security levels, enforces stack inspec-
tion, and checks whether values are used legally.

The instruction new allocates a new uninitialized ob-
ject on the heap. For this object, its initial security level
does not contain any permission, denoted by φ. This secu-
rity level will be changed when initializing this object us-
ing the method invokespecial if the class of this ob-
ject is protected by some security policy. The ldc instruc-
tion annotates the string constant str with the security level
P (class(md)), which is the permissions of the method md
being executed since the constant string str belongs to this
method. The instruction dopriv amplifies the valid per-
missions of its subsequent code by incorporating the per-
missions P (class(md)) owned by the current method md.

The instruction invokespecial invokes the class
constructor of class C to initialize the object o. The values
o and s′ in the operand stack are the arguments for invoking
the constructor. The notation |s′|..1 �→ s′ means the inte-
ger i (1 ≤ i ≤ |s′|) is mapped to the value s′[|s′| − i + 1]
in the new stack frame. The security check in this rule is
done by the operator sc1 in Figure 4. If the string argument
str refers to some sensitive resource according to security
policies, this operator checks the condition Θ(str) ⊆ Π
to make sure the current code has enough permissions to
create the object o and the condition Θ(str) ⊆ Σ to make
sure str is legally used to instantiate this object. The former
check enforces the stack inspection mechanism, and the lat-
ter prevents trusted code from accessing resources specified
arbitrarily by untrusted code. If the security check succeed,
sc1 will return a set of permissions Σ, which is then used by
anno to update the security level of the object o on the heap.
That is, suppose h(o) = {}φ

C and h′ = anno(h, o,Σ).
Then h′(o) = {}Σ

C , and h′(o′) = h(o′) if o �= o′.
The instruction invokevirtual invokes a method of

object o. This instruction first checks whether object o is
legally used by comparing its security level with the per-
missions of current code, i.e., Σ ⊆ Π. And then, based on

γ ::= int | string(str) | C | C(o)
δ ::= γY

S, T ::= ε | δ · S
τ ::= T

D

X,Y �� δ

X, Y ∈ V ariables of Permission Sets

Figure 5. Syntax of Internal Types

the security policy, it uses the operator sc2 to check whether
current code has enough permissions to invoke this method
and the validity of string arguments if they refer to sensitive
resources. Note that due to dynamic dispatching, we need
to determine the method which is really executed. The no-
tation srcclass(C,m) returns the class C itself if it imple-
ments the method m or returns its least super class C ′ that
implements m. Hence, in this instruction, the security pol-
icy declared on the method m in the class srcclass(C,m)
is really enforced by sc2.

4 The Type System for Verification

In this section, we give a static type system to enforce
the same security check done before by the operational se-
mantics.

4.1 Internal Types

The syntax of types used internally by the type system
is given in Figure 5. The singleton type string(str) de-
notes a string type for the string str, C(o) a class type for
the object o. The type δ is the result of annotating γ with
a security level variable. In the method type τ , the annota-
tion X is the security level of the implicit object argument
(i.e., this in Java), Y indicates the permissions required to
invoke this method, and the variable D represents the con-
straints among the components of this type signature. The
value of D is determined by security policies and the condi-
tions for invoking other methods in this method body, which
will be described in later sections.

Each method in JVM bytecode programs has explicit
type signatures. In order to verify them using this type sys-
tem, we need to translate their type signatures into the inter-
nal form. For the method type ∆ → σ in Figure 2, it can be

translated into the form T
D

X,Y �� δ by the following steps:

1) The type string in ∆ or σ is changed into
string(str)X , and the class type C is changed into CX ,
where str is a fresh string variable, X a fresh security level
variable.
2) The annotation X should be φ if ∆ → σ is the type
of a class constructor, since when calling a constructor the

object to be initialized has no real security level yet; other-
wise, X must be a fresh variable. The variables Y and D
must also be fresh.

The singleton class type C(o) is not used in the method
signature, that is, uninitialized objects cannot be passed as
arguments or returned values. It is used only when an object
has been allocated on the heap, but has not been initialized.
This is because the type of this newly allocated object has
to be duplicated to initialize it [3], and after determining its
security level in initialization, we must update all replicas
of this type by annotating them with this security level. The
index value o is to help recognize all such replicas.

4.2 Analysis Traces among Blocks

The body of a method generally consists of a number
of code blocks. This type system starts from the first code
block and analyzes all reachable blocks following the con-
trol flow. But the type system cannot naively begin to an-
alyze a block each time when it meets a goto or ifeq
instruction targeting to this block. The code blocks in a
method may contain loops, and by this way the type analysis
will fail to terminate. To solve this problem, this type sys-
tem builds and maintains for the entry point of each block
a set of predecessor traces from which this block has been
entered and analyzed. A block is analyzed only when the
current trace entering this block is new.

An analysis trace tr, defined below, is a sequence of
block labels: l1 · l2... · ln, meaning that the blocks l1, l2,...,
ln have been analyzed in sequence by the type system.

tr ::= ε | tr · l J ::= {l1 �→ {tr, .., tr}, ..., ln �→ {tr, .., tr}}

The mapping J in this definition is used by the type sys-
tem to record for each block its predecessor traces. At the
beginning of analyzing a method, J maps each block label
to an empty trace set. When entering a block l from the
trace tr, J is updated by the operator log(J, l, tr), which
returns a new mapping J ′, such that J ′(l)=J(l)∪ {tr}, and
J ′(l′)=J(l′) if l′ �= l. At the end of analysis, J records
for each block all its predecessor traces covered by the type
system.

A trace tr is new for a code block l with respect to
the mapping J , written as newtr(tr, J, l), if there does
not exist tr′ ∈ J(l), which satisfies: 1) tr′ = tr · tr1;
or 2) tr = tr′ · tr2 and tr′ = tr3 · tr2 for some traces
tri(1 ≤ i ≤ 3). The first condition says tr has been cov-
ered by the previous trace tr′, and the second condition says
tr falls in a loop trace by repeating the subtrace tr2. The no-
tation oldtr(tr, J, l) means tr is not new.

Suppose there is a method with the control flow graph
given in Figure 6. The type system will finally generate
the mapping J in Figure 7. For example, under this J , the
analysis trace l1 · l2 · l4 · l2 · l4, coming from the block l4, is

l1

l2

l4

l3

l5

Figure 6. The Control Flow Graph

l1 �→ φ
l2 �→ {l1, l1 · l3, l1 · l2 · l4, l1 · l3 · l2 · l4}
l3 �→ {l1}
l4 �→ {l1 · l2, l1 · l3 · l2, l1 · l2 · l4 · l2, l1 · l3 · l2 · l4 · l2}
l5 �→ {l1 · l2 · l4, l1 · l3 · l2 · l4, l1 · l2 · l4 · l2 · l4,

l1 · l3 · l2 · l4 · l2 · l4}

Figure 7. The Entering Traces of Each Block

not new for the block l2 because the trace l1 · l2 · l4 ∈ J(l2)
satisfies the second condition above. The traces J(l5) for
the exit block l5 gives all traces (with the concatenation of
l5) covered by this type system.

Based on the mapping J obtained at the end of analysis,
we can check whether all blocks in a method reachable from
its entry block can lead to one of its exit blocks. Suppose a
method md contains n blocks and Tr = J(l1)∪ ...∪ J(ln).
Then, the predicate wellcode(md , J) defined below per-
forms such a check, which will be used later for the well-
typedness of method md.

The predicate wellcode(md , J) holds under the condi-
tion that the last instruction of the block blk(md, li) (1 ≤
i ≤ n) must be return if there exists a trace tr ∈ J(li),
which is not covered by any trace in Tr \ J(li).

4.3 Constraints

This type system verifies program modularly, that is each
method is analyzed only once. After analysis of a method,
a set of constraints is generated, as the value of the variable
D in its type, to keep all conditions of securely executing
this method. The syntax of constraints is given in Figure
8. R represents a set of constraints. A constraint can be
either an equation between strings or an inclusion between
permission sets. Θ is just Θ(x) without restricting the re-
source identifiers to be variable x. A set of constraints can
be satisfied if all used string and security level variables can
be unified to some strings or permission instances such that
all inclusions and equations in this set hold.

Before analyzing each method, we need to prepare an
initial constraint as the input of the type system. The initial

R ::= {I, ..., I}
I ::= Z1 ⊆ Z2 | str1 = str2

Z ::= X | Y | Π | Θ

Figure 8. Syntax of Constraints

constraint contains the conditions derived from the security
policy and the conditions of the legal use of strings.

Suppose the constructor of the class C has the type

T
D

φ,Y �� voidY ′ , where Y ′ on a void type is specially for

the security level of the object being initialized. Then the
initial constraint for this constructor is built by the follow-
ing rules: 1) If � ∃i.(C, i) ∈ Dom(O), then its initial
constraint is the set {Y ⊆ P (C)}; or 2) ∀i.O((C, i)) =
λx.(Θ(x),Θ′(x)), and if T [i] = string(str)X′

, then the
set {Y ⊆ P (C), Θ(str) ⊆ X ′, Θ(str) ⊆ Y, Θ′(str) ⊆ Y ′ } is
its initial constraint.

Suppose the method m of the class C has the type

T
D

X,Y �� γY ′ . Then the initial constraint for this method is

built by the following rules: 1)If � ∃i.(C,m, i) ∈ Dom(Q),
then its initial constraint is the set {Y ⊆ P (C)}; or 2)
∀i.Q((C,m, i)) = λx.Θ(x), and if T [i] = string(str)X′

,
then the set {Y ⊆ P (C), Θ(str) ⊆ X ′, Θ(str) ⊆ Y } is its
initial constraint. Note that a high level object can flow into
a low level code since we do not have condition on Y ′, but
cannot be used in the low level code.

4.4 The Type System

The typing rules are given in Figure 9. The judgment has
the form

F, S, X, tr, J, R �l
md B � (J ′, R′)

which means that the code block B with the label l in
the method md is checked under the context described by
F, S,Π, tr, J and R, and after type checking, a new J ′ and
R′ are generated. In this judgment, F maps local variables
to types; S is a stack type for the operand stack; X rep-
resents the valid permissions owned by the current code; tr
indicates the trace from which the current block l is entered;
J records the traces the typing procedure has covered; R is
the constraint generated for the method md so far.

For a method md with the type T
D

X,Y �� γY ′ , we start

from analyzing its entry block by deriving the judgment
FI , ε, Y, ε, JI , RI �l1

md blk(md, l1) � (J ′, R′), where FI maps 0
to class(md)X , and i to T [i] for 1 ≤ i ≤ |T |, and the initial
JI and RI are built as discussed in the previous subsections.
The constraint R′ will be used as the value of the constraint
variable D. The method md is well-typed if the above judg-
ment can be derived and the predicate wellcode(md, J ′)
holds because when all possible traces can reach an exit

block, the first two typing rules in Figure 9 guarantee each
trace has the correct returning type.

The operation match is used in the typing
rules for the instructions invlokespecial and
invlokevirtual. The match(S,T) operation checks
whether the argument type S from the caller matches the
argument type T declared in the method type, and returns
a set of substitutions ρ if S and T are matched, otherwise
indicates a type error. A substitution consists of the items
X/Y or str/str′, meaning that the substitution of X for
Y , or str for str′. The notation ρD means the application
of substitutions ρ to the terms in the constraint D. By
this way, at each calling point, the constraint on securely
invoking a method is instantiated with the arguments and
security annotations specific to that point. Hence, the
analysis in this work is context-sensitive without sacrificing
modularity.

The update operation is used in the rule for
invlokespecial to update the security level on the
types of uninitialized objects. A type for the same ob-
ject probably appears in multiple places in the stack type
S or in the range of the mapping F because of, for in-
stance, the typing rules for dup and store. The operator
update(S, o, Y ′) (or update(F, o, Y ′)) changes the secu-
rity level of all singleton class types in S (or in the range
of F) into Y ′ if their index values are o. And after updat-
ing their security level, the update operation also changes
them into ordinary class types. This approach can also be
used to detect whether an object is used without initial-
ization. If the implicit object argument in the instruction
invlokevirtual has a singleton class type, then this
program is trying to use an uninitialized object, which is
not allowed.

4.5 The Property of the Type System

After analyzing a byecode program, if all methods are
well-typed, then we solve the generated constraints to check
whether this program is secure or not. Let →∗ be the tran-
sitive closure of →, and φ specify the empty local variable
mapping or the empty heap. The property of the type sys-
tem is stated as follows.

Suppose a closed program executes from a static method
md, and ty(md) = ε → σ. If all methods are well-typed and
their constraints can be satisfied, then the following transi-
tion

(φ, ε, P (class(md)), B)md ; φ →∗
(f ′, v · s, P (class(md)), return)md ; h′

holds and v has the type σ.
That is, for a well-typed program, if their constraints can

be satisfied, then the program can run without causing se-
curity check failure, and return the value with correct type
upon termination.

resty(md) = γY γ′ <: γ γ is not a string type

F, γ′X′ · S, X, tr, J, R �l
md return � (J, R ∪ {X′ ⊆ Y })

resty(md) = string(str)Y

� ∃str′′.str = str′′ ∈ R and str′′ �= str′

F, string(str′)X′ · S, X, tr, J, R �l
md return �

(J, R ∪ {str = str′, Y ⊆ X′})
oldtr(tr · l, J, l′)

F, S, X, tr, J, R �l
md goto l′ � (J, R)

newtr(tr · l, J, l′) J ′ = log(J, l′, tr · l)
F, S, X, tr · l, J ′, R �l′

md blk(md, l′) � (J ′′, R′)

F, S, X, tr, J, R �l
md goto l′ � (J ′′, R′)

F, C(o)φ · S, X, tr, J, R �l
md B � (J ′, R′) o is fresh

F, S, X, tr, J, R �l
md new C · B � (J ′, R′)

F, intP (class(md)) · S, X, tr, J, R �l
md B � (J ′, R′)

F, S, X, tr, J, R �l
md iconst n · B � (J ′, R′)

F, string(str)P (class(md)) · S, X, tr, J, R �l
md B � (J ′, R′)

F, S, X, tr, J, R �l
md ldc str · B � (J ′, R′)

F, S, X ∪ P (class(md)), tr, J, R �l
md B � (J ′, R′)

F, S, X, tr, J, R �l
md dopriv · B � (J ′, R′)

F [x �→ δ], S, X, tr, J, R �l
md B � (J ′, R′)

F, δ · S, X, tr, J, R �l
md store x · B � (J ′, R′)

F, F (x) · S, X, tr, J, R �l
md B � (J ′, R′)

F, δ · S, X, tr, J, R �l
md load x · B � (J ′, R′)

F, δ · δ · S, X, tr, J, R �l
md B � (J ′, R′)

F, δ · S, X, tr, J, R �l
md dup · B � (J ′, R′)

oldtr(tr · l, J, l′) F, S, X, tr, J, R �l
md B � (J ′, R′)

F, intY · S, X, tr, J, R �l
md ifeq l′ · B � (J ′, R′)

newtr(tr · l, J, l′) J ′ = log(J, l′, tr · l)
F, S, X, tr · l, J ′, R �l′

md blk(md, l′) � (J ′′, R′)
F, S, X, tr, J ′′, R′ �l

md B � (J ′′′, R′′)

F, intY · S, X, tr, J, R �l
md ifeq l′ · B � (J ′′′, R′′)

md′ = (C, <init>, T
D

φ,Y �� voidY ′
) |T | = |S′|

ρ = match(S′, T)
R′ = R ∪ {Y ⊆ X} ∪ ρD S′′ = update(S, o, Y ′)
F ′ = update(F, o, Y ′) F ′, S′′, X, tr, J, R′ �l

md B � (J ′, R′′)

F, S′ · C(o)φ · S, X, tr, J, R �l
md invokespecial md′ · B

� (J ′, R′′)

|argty(md′)| = |S′| C <: class(md′)
C′ = srcclass(C, mname(md′)) MS = Prog(C′)

(C′, mname(md′), T
D

X′,Y �� γY ′
) ∈ Dom(MS)

ρ = match(S′, T) ∪ {X′′/X′}
R′ = R ∪ {Y ⊆ X, X′′ ⊆ X} ∪ ρD

F, γY ′ · S, X, tr, J, R′ �l
md B � (J ′, R′′)

F, S′ · CX′′ · S, X, tr, J, R �l
md invokevirtual md′ · B

� (J ′, R′′)

Figure 9. Typing Rules of the JVM Calculus

match(ε, ε) = φ
match(intX · S, intY · T) = {X/Y } ∪ match(S, T)
match(string(str)X · S, string(str′)Y · T) =

{X/Y, str/str′} ∪ match(S, T)

match(CX · S, C′Y · T) = {X/Y } ∪ match(S, T), if C <: C′

Figure 10. Operator match

Y1

Y2

Y3

P(C1)

P(C2)

P(C3)

Y1

Y2

Y3

P(C1)

P(C2)

P(C3) Pi

Figure 11. Two Constraints

4.6 An Example

Due to space limitation, only a brief example is ex-
plained to convey some intuitiveness of stack inspection en-
forced by this type system. A prototype implementation of
our approach can be found at [6], where some examples are
provided.

Suppose in a program the method md1 calls md2, which
in turn calls md3. Let Ci(1 ≤ i ≤ 3) be the class defin-
ing mdi, and Yi be the annotation on mdi’s type for the
permissions required to invoke it. In Figure 11, the dashed
edges represent the inclusion relation between permissions
from the initial constraint, and the solid edges are the inclu-
sion relation built according to the definition of R′ in the
last two rules in Figure 9. The upper node of an edge is re-
quired to have more permissions than the lower node. The
left constraint is for the case where no class is protected, and
the right one is for the case where the method md2 is pro-
tected by requiring the permissions Π (Pi in the figure) to
access it. Hence, for the first case, the stack inspection suc-
ceeds since there is a solution in which every Yi is empty,
while for the second case, the program is secure only when
Π ⊆ P (C1) and Π ⊆ P (C2) hold, that is, all code on the
calling chain should have the permissions Π.

5 Related Work and Conclusion

As introduced before, there have been some work, such
as [8, 5, 7, 1], proposed to address the weaknesses or se-
curity issues of stack inspection, but each of them always
focuses on one aspect and ignores the other. This paper ad-
dresses all known weaknesses and security issues in a uni-
fied model. Morevoer, the security policies here are more
flexible and permissions are more precise. The work [2]
incorporates runtime stack inspection into information flow
control, so that a single interface can provide information

with different security levels for different callers.
Our first contribution is the approach to enhancing the

usual stack inspection by checking whether values are used
legally according to security policies. Our second contri-
bution is the type system to verify whether a bytecode pro-
gram satisfies the security property guaranteed by this en-
hanced mechanism. It uses different techniques to perform
context-sensitive analysis at the method level and path-
senstive analysis at the code block level. This design choice
is based on the observations that in JVM methods already
have explicit type signatures and code blocks may be poly-
morphic. In addition, singleton types are used to make the
analysis more accurate and detect the use of uninitialized
objects. The type analysis in this work is based on the de-
clared security policy, not program annotations from users.

6 Acknowledgments

Thank Prof. Masato Takeichi for his support and Prof.
Zhenjiang Hu and other PSD members in Tokyo University
for discussions. Also thank anonymous reviewers for their
detailed comments.

References

[1] M. Abadi and C. Fournet. Access control based on execution
history. In The 10th Annual Network and Distributed System
Security Symposium, 2003.

[2] A. Banerjee and D. A. Naumann. Stack-based access con-
trol and secure information flow. Journal of Functional Pro-
gramming, 15(2):131–177, 2005.

[3] S. N. Freund and J. C. Mitchell. A Type System for Object
Initialization in the Java Bytecode Language. ACM Transac-
tions on Programming Languages and Systems, 21(6):1196
– 1250, 1999.

[4] L. Gong. Inside Java 2 Platform Security. Addison Wesley,
1999.

[5] T. Higuchi and A. Ohori. A Static Type System for JVM
Access Control. ACM Transactions on Programming Lan-
guages and Systems. (accepted).

[6] D. Liu. Enhanced JVM Access Control. http://www.ipl.t.u-
tokyo.ac.jp/˜ liu/enJAC.html.

[7] F. Pottier, C. Skalka, and S. Smith. A systematic approach
to static access control. ACM Trans. Program. Lang. Syst.,
27(2):344–382, 2005.

[8] C. Skalka and S. Smith. Static Enforcement of Security with
Types. In ACM International Conference on Functional Pro-
gramming, 2000.

[9] R. Stata and M. Abadi. A Type System for Java Byte-
code Subroutines. ACM Transactions on Programming Lan-
guages and Systems, 21(1), 1999.

[10] D. S. Wallach, A. Appel, and E. W. Felten. SAFKASI: A
Security Mechanism for Language-based Systems. ACM
Transactions on Software Engineering and Methodology,
9(4), 2000.

