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Abstract

With the increasing popularity of parallel programming
environments such as PC clusters, more and more sequen-
tial programmers, with little knowledge about parallel ar-
chitectures and parallel programming, are hoping to write
parallel programs. Numerous attempts have been made to
develop high-level parallel programming libraries that use
abstraction to hide low-level concerns and reduce difficul-
ties in parallel programming. Among them, libraries of par-
allel skeletons have emerged as a promising way towards
this direction. Unfortunately, these libraries are not well ac-
cepted by sequential programmers, because of incomplete
elimination of lower-level details, ad-hoc selection of li-
brary functions, unsatisfactory performance, or lack of con-
vincing application examples. This paper addresses prin-
ciple of designing skeleton libraries of parallel program-
ming and reports implementation details and practical ap-
plications of a skeleton library SkeTo. The SkeTo library is
unique in its feature that it has a solid theoretical founda-
tion based on the theory of Constructive Algorithmics, and
is practical to be used to describe various parallel compu-
tations in a sequential manner.

1. Introduction

Parallel programming offers the potential for substantial
performance improvements, but exploration of this poten-
tial has been regarded as sort of privilege of expert pro-
grammers. This situation is changing dramatically with
the availability of low-cost hardware and fast computer net-

works which makes it easy to build up parallel computer
systems such as PC clusters. More and more sequential pro-
grammers, with little knowledge about parallel architecture
and parallel programming, are hoping to write parallel pro-
grams. For non-experienced parallel programmers who are
used to sequential programming, the rapid development of
a correct parallel application is as important as its execu-
tion time; they would like to build parallel applications with
a minimum of effort. This eagerly calls for a new parallel
programming paradigm such that a sequential programmer
can easily and quickly develop parallel programs running
reasonably fast on some nearby parallel machines.

There have been numerous attempts to develop high-
level parallel programming tools that use abstraction to hide
low-level concerns and reduce complexity so that users
can quickly build correct parallel programs. These tools
may appear as a new high-level parallel programming lan-
guage [4] or a complicated parallel programming library
such as MPI and PVM, and therefore they usually require
non-experienced parallel programmers to spend much time
for learning them due to the gap between the styles of se-
quential and parallel programming. It would be ideal if one
could write parallel programs as if he or she wrote sequen-
tial ones, except some specific functions that have both se-
quential and parallel interpretations. The parallel interpre-
tation could be automatically adopted, when programs run
on parallel machines.

Skeletal parallel programming1 (or structured parallel
programming) [17, 22, 23, 46, 50] has emerged as a promis-
ing way towards this direction. In skeletal parallel pro-

1See http://homepages.inf.ed.ac.uk/mic/Skeletons/.



gramming, programmers are encouraged to build a paral-
lel program from ready-made components (i.e., skeletons
or patterns) for which efficient parallel implementations are
known to exist, making the parallelization process simpler.
There are many definitions of skeletons, but the point is that
useful patterns of parallel computation and interaction are
packaged up as constructs, such as a framework [50], a sec-
ond order structure [49], or a template [12]. Skeletal parallel
programs are easy to understand even for non-experienced
parallel programmers, because they look very much like se-
quential programs with just a single execution stream.

Unfortunately, few widely-used applications are actually
developed with parallel skeletons. There are mainly four
reasons for this. First, like design patterns in software engi-
neering, parallel skeletons have been introduced in a rather
ad-hoc manner mostly based on application domains. There
is no clear discipline on skeleton design for adding new
skeletons or combining different sets of skeletons developed
for different purposes. Second, because parallel program-
ming relies on a fixed set of parallel primitive skeletons for
specifying parallelism, programmers often find it hard to
choose proper ones and then to integrate them well to de-
velop efficient parallel programs. In many cases, the rea-
son programmers feel reluctant to use skeletons is simply
because they are not sure whether the provided skeletons
are powerful enough to solve their problems and they give
up too early. Third, since parallelism should be specified
with the skeletons, big overheads could be introduced due
to, for example, unnecessary intermediate data structures
passed between skeletons. Finally, since most skeleton sys-
tems are defined upon some new languages or require ex-
tension of existing languages with new syntax, and they
do not completely hide all lower-level details of parallel
programming from programmers, sequential programmers
(non-experienced parallel programmers) often feel uncom-
fortable to use them.

To solve these problems, we borrowed the theory of Con-
structive Algorithmics to define and structure skeletons and
developed a new skeleton library named SkeTo.2 The the-
ory of Constructive Algorithmics [3, 7, 10, 26, 37, 43], also
known as Bird-Meertens Formalisms (BMF for short), was
initially proposed for systematical construction of efficient
sequential programs by means of program calculation. In
Constructive Algorithmics, programs are structured so that
calculation rules and theories are constructively established
for deriving efficient programs from initial specifications.
The key observation is that each control structure (of BMF)
should be derivable from the data structure it manipulates.
The fact that skeletons are basically control structures en-
courages us to apply the theory of Constructive Algorith-
mics to define and structure skeletons according to the data

2See http://www.ipl.t.u-tokyo.ac.jp/SkeTo/ for de-
tails including information about how to download the SkeTo system.

structures.
This paper addresses principle of designing skeleton li-

braries of parallel programming, and reports implementa-
tion details and practical applications of the skeleton library
SkeTo that supports complete sequential style of parallel
programming. The library is unique in that it has a solid
theoretical foundation based on the theory of Constructive
Algorithmics, and is practical to be used to describe vari-
ous parallel computations in a sequential manner. Our main
contributions are two folds.

• In principle: We propose a unified approach to defin-
ing and structuring skeletons on various parallel data
structures. Though many works have been devoted to
applying Constructive Algorithmics to formal devel-
opment of parallel programs on regular data structures
like lists [30,32,34,49], as far as we are aware, we give
the first constructive definition for irregular data struc-
tures like trees. This enables us to define and structure
skeletons on irregular data structures as we do on reg-
ular data structures.

• In practice: We have successfully implemented a prac-
tical skeleton library SkeTo, with which many inter-
esting and practical applications have been developed
(Section 6). Our skeleton library system has the fol-
lowing features.

– Our system gives the first efficient parallel imple-
mentation of constructive skeletons for manipu-
lating trees and matrices on distributed memory
architectures.

– Our system hides all lower-level details of par-
allel programming from programmers, and the
parallel programs with the skeletons look like se-
quential ones. Such parallel programs are easy to
understand and debug. They have neither explicit
data communication and nor danger of deadlock.

– A meta mechanism is introduced to support ex-
tension of new skeletons and for optimizing
skeletal parallel programs. In contrast, most
high-level parallel programming tools use a pro-
gramming model that suffers from a lack of open-
ness, making it difficult to tune performance.

The rest of this paper is organized as follows. We start
by briefly explaining related work in Section 2. Then, we
show how to apply the theory of Constructive Algorithmics
to design parallel skeletons for manipulating parallel data
structures, regular or irregular, in Section 3. We illustrate
our SkeTo library with a simple example in Section 4, and
explain in detail the implementation issues in Section 5. We
list applications and give experimental results in Section 6,
and conclude the paper and highlight future works in Sec-
tion 7.



2. Related Work

Skeletal parallel programming was first proposed by
Cole [17], and many researchers have been devoted them-
selves to it [46].

Darlington [22,23] is one of the pioneers in this research
area. In his framework, each application program has two-
layers structure: higher skeleton level and lower base lan-
guage level. In the higher level, users write a program
with skeletons, abstracting its parallel behavior using the
SCL (structured coordination language) whose syntax has
some kind of functional notation. In the lower level, users
describe sequential aspect of the program in the base lan-
guage. Darlington selected Fortran as the base language in
his implementation. The idea that skeletal parallel part and
sequential part are separated in a parallel program is also
adopted in the P3L [2,21] system. In a P3L program, skele-
tal part is written in a functional notation with clear spec-
ification of its input and output, while the base part is de-
scribed in the C language. From these descriptions, the P3L
compiler generates a C code that calls MPI library func-
tions.

From users’ point of view, both Darlington’s system and
P3L have higher level layer which has to be written in the
specific language in functional-like notation. Thus users,
especially outside the computer science field, may feel dif-
ficulties in using these systems in the development of par-
allel programs, because they have to acquire the ability of
programming in the new language.

Some systems have only a single layer but syntactically
extend the base language for the description of skeleton-
related part of the program. An instance of such systems
is Skil [14, 15], which is an imperative, C-based language
with some enhancements of functional features. The en-
hancements include introduction of type variables for poly-
morphism, special data structure for distributed objects, and
higher-order functions. Although Skil is an epoch-making
system in the research of skeletal parallel programming, it is
now somewhat obsolete because most of the enhanced fea-
tures can be easily achieved by the C++ language. HPC++
[38] is another system that introduces extensions (compiler
directives) into the base language. HPC++ is a C++ library,
developed from the viewpoint of parallelization of the stan-
dard template library. Although it is not explicitly addressed
that the library implements parallel skeletons, the library in-
cludes parallel algorithms that correspond to such data par-
allel skeletons as map, reduce and scan.

In contrast to the above systems with enhanced syntax
into the base language, our SkeTo library introduces no spe-
cial extension to the base C++ language. Thanks to this de-
sign principle, users who can develop a standard C++ pro-
gram can use the SkeTo library without being annoyed with
the acquisition of new syntax or new language.

Among recent skeleton libraries that have no syntactic
enhancements, Muesli and eSkel are well known. Muesli,
developed by Kuchen [39], is a C++ library that works using
MPI. It supports data parallel skeletons for distributed array
and matrix, and control parallel skeletons. eSkel [5, 6, 19]
is a library of C functions, also on top of MPI. The latest
version of eSkel supports control parallel skeletons, putting
emphasis on addressing the issues of nesting of skeletons
and interaction between parallel activities. Compared with
these libraries, SkeTo stands on the data parallel program-
ming model with a solid foundation based on Constructive
Algorithmics, and we can offer data parallel skeletons on
wide variety of distributed data structures; SkeTo supports
tree besides array and matrix in a constructive way. In ad-
dition, SkeTo has a new skeleton accumulate [33, 35] that
abstracts a general and nice combination of data parallel
skeletons.

Our work was inspired by the development of Muesli.
We are developing the SkeTo library as the practical prod-
uct of our researches on Constructive Algorithmics. One
of its important results is systematic program optimization
by fusion transformation. This transformation merges two
successive function calls into a single one and eliminates the
overhead of both function calls and generation of interme-
diate data structures passed between the functions. SkeTo
is equipped with automatic fusion transformation based on
the idea of shortcut deforestation [28] with some modifi-
cations that makes it adapt to parallel data structures [33].
By the shortcut deforestation, we can reduce the number of
transformation rules and make the implementation of SkeTo
simple. This is in sharp contrast to other transformation ap-
proaches [31] with large number of transformation rules.
This simple optimization mechanism by fusion transforma-
tion is SkeTo’s distinguishing feature that has not been im-
plemented in other systems.

3. Constructive Skeletons

In this section, we explain the principle in the design of
our skeleton library, which is based on the theory of Con-
structive Algorithmics. We show what kind of basic skele-
tons should be defined, and how to add and structure new
skeletons. Since our skeletons are designed based on Con-
structive Algorithmics, they are considered to be construc-
tive.

3.1. Constructive Algorithmics

Constructive Algorithmics [3, 7, 10, 26, 37, 43] is a
theory proposed for systematic development of algebraic
rules/laws based on which efficient programs are derived
from specification via program calculation (manipulation).



It has been proved to be very useful for development of ef-
ficient sequential programs [10, 37].

The key point of Constructive Algorithmics is that each
computation structure used in a function (program) should
be derivable from the data structure on which the compu-
tation is defined. We will not detail the theory; rather we
explain the facts that actually motivated us to use it in the
design of our parallel skeletons.

3.1.1 Algebraic Data Structures

In Constructive Algorithmics, data structures are defined
constructively (algebraically). For instance, integer lists can
be defined by3

IntList = Nil
| Cons Int IntList

saying that a list may be empty denoted by Nil, or a list
denoted by Cons a x, which is built up from an integer
element a and a (shorter) list x by the constructor Cons. So
Cons 1 (Cons 2 (Cons 3 Nil)) constructs a list with three
elements 1, 2 and 3.

3.1.2 Homomorphic Computation Structures

Each algebraic data structure is equipped with a basic com-
putation pattern called homomorphism. For instance, a ho-
momorphism, say h, on the integer lists is the following
computation pattern:

h (Nil) = e
h (Cons a x) = a ⊕ h (x)

where e is a constant and ⊕ is an infixed binary oper-
ation. Choosing different pairs of e and ⊕, h(x) de-
notes different computation, which will be represented by
homIntList(e,⊕, x). When it is clear from the context, we
may omit the subscript. For instance, computation for sum-
ming up elements of a list x is described as hom(0,+, x).

3.1.3 Properties of Homomorphisms

Homomorphism plays a central role in program develop-
ment [10]. We briefly review those features that are much
related to the design of our skeleton library, which has not
been well recognized so far in the community of skeletal
parallel programming.

• Homomorphism, though being simple, is powerful in
theory to describe any computation on the data struc-
ture it is defined upon, appearing either as a single

3Although the skeleton library is in C++, we explain the principle in
this section using Bird Meertens Formalism (BMF for short) [7,8], a func-
tional notation designed for program development. BMF is very similar to
the functional language Haskell [9].

homomorphism or a compositional use of homomor-
phisms. We believe that the descriptive power of com-
positional use is worth emphasizing in skeletal parallel
programming.

• Homomorphism enjoys many nice algebraic rules that
are useful to eliminate overheads caused by unnec-
essary data passed between skeletons, or to construct
new rules to optimize programs that are defined with
homomorphisms. So if we consider homomorphisms
as skeletons, skeletal programs can be efficient enough.

• Homomorphism can serve as the basis for building
practical computation such as the dynamic program-
ming [24, 48], incremental computation [36], and the
inverse computation [45]. So with homomorphism, we
are able to add other useful algorithmic computation
patterns as skeletons.

3.2. Design Issues

3.2.1 Challenges in Design of Parallel Skeletons

The features of homomorphism indicate that homomor-
phism can serve as the basis of our skeleton design. A big
challenge is how to formalize parallel data structures in
an algebraic way such that homomorphisms manipulating
these data in parallel can be derived.

It has been shown that useful data structures like lists,
nested lists, and trees can be described algebraically but se-
quentially. Recall the above definition of IntList. Though it
is constructive, it is not in parallel in the sense that there is
an order on the construction. As a matter of fact, it remains
open how to constructively define parallel data structures, in
particular for the irregular data structures like ill-balanced
trees and for the nested data structures like dense or sparse
matrices.

In the following, we will first explain in detail the basic
idea in the design of data parallel skeletons through the case
study on parallel lists. Then, we briefly explain the design
of the data parallel skeletons on parallel matrices and paral-
lel trees with a focus on showing how we can constructively
define these two parallel data structures.

3.2.2 Skeletons on Parallel Lists

Following Constructive Algorithmics, we start with the fol-
lowing definition of a constructive and parallel view of lists
(i.e., parallel lists or distributed lists).

DList α = Empty
| Singleton α
| DList α ++ DList α

A list (of type DList α) is either the empty list, a sin-
gleton list containing a single element (of type α), or the



concatenation of two lists (of type DList α) by ++ . Con-
catenation ++ is associative, and Empty is its unit.

(x ++ y) ++ z = x ++ (y ++ z)

Parallelism in this constructive list lies in the associa-
tivity of ++ , giving many ways of constructing a list, i.e.,
no specific (sequential) order is imposed on the list con-
struction. For simplicity, we write [ ] for Empty, [a] for
Singleton a, and the term [1] ++ [2] ++ [3] denotes a list
with three elements, often abbreviated to [1, 2, 3].

Homomorphism on Parallel Lists

List homomorphisms (or homomorphisms when it is clear
from context) [7] are those functions on parallel lists that
promote through list concatenation. More precisely, a func-
tion h satisfying the following three equations is called a list
homomorphism:

h([ ]) = ι⊕
h([a]) = f(a)
h(x ++ y) = h(x) ⊕ h(y)

where f and ⊕ are given functions, and ⊕ is associative
with the identity unit ι⊕. We shall write homL(f,⊕, x)
for h(x). For example, the function sum(x), summing up
all elements in a list x, can be defined as a homomorphism
homL(id,+, x).

List homomorphism captures a natural recursive com-
putation pattern and can serve as the most essential par-
allel skeleton on parallel lists, which has been recognized
in [18, 29, 49]. Intuitively, the above h means that the value
of h on the larger list depends in a particular way (using
binary operation ⊕) on the values of h applied to the two
pieces of the list. The computations of h(x) and h(y) are in-
dependent of each other and can thus be carried out in par-
allel. This simple equation can be viewed as expressing the
well-known divide-and-conquer paradigm of parallel pro-
gramming.

Basic Skeletons

While list homomorphism is a good parallel skeleton in gen-
eral, specialized list homomorphisms can be implemented
more efficiently. The most important three such skeletons
are map, reduce and scan (Figure 1).

Map is the operation that applies a function to every ele-
ment in a list. Informally, we have

mapL(f, [x1, x2, . . . , xn]) = [f(x1), f(x2), . . . , f(xn)].

Reduce is the operation that collapses a list into a single
value by repeated application of some associative binary op-
erator. Informally, for an associative binary operator ⊕, we

have

reduceL(⊕, [x1, x2, . . . , xn]) = x1 ⊕ x2 ⊕ · · · ⊕ xn.

Scan is the operation that accumulates all intermediate
results in the computation of reduce. Informally, for an as-
sociative binary operator ⊕, we have

scanL(⊕, [x1, x2, . . . , xn])
= [x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn].

Map, reduce and scan have nice massively parallel im-
plementations on many parallel architectures [13, 49]. If
f and ⊕ use O(1) computation time, then mapL(f, x)
can be implemented using O(1) parallel time, and both
reduceL(⊕, x) and scanL(⊕, x) can be implemented us-
ing O(log n).

It is worth noting not only that the three skeletons are
specialized version of homomorphisms, but also that a ho-
momorphism is a composition of them:

homL(f,⊕, x) = reduceL(⊕, mapL(f, x)).

Adding New Skeletons

Quite often, we need to introduce new parallel skeletons for
some specific application domains, but extension of skele-
tons has been treated in an ad-hoc way.

In our framework, new skeletons are defined around ho-
momorphisms, that is, new parallel computation patterns
are defined with the basic skeletons or the skeletons that are
defined upon the basic ones. Theoretically, this is always
possible if one does not care about efficiency. Any function
f on lists can be expressed as a composition of a projection
function with a homomorphism, often called almost homo-
morphism [18]:

f(x) ≡ fst(homL(g,⊕, x))

where fst is a projection function returning the first element
of a pair, and the function g and the associative operator ⊕
are defined by

g(x) = (f([x]), [x])
(r1, x1) ⊕ (r2, x2) = (f (x1 ++x2), x1 ++x2).

In practice, we care about efficiency when introduc-
ing new domain-specific skeletons. Let us see how we
define new skeletons. Suppose we want to introduce a
new skeleton poly(⊕,⊗, x) for capturing the pattern of
general polynomial computation: computing on list x =
[x1, x2, . . . , xn] with two associative operators ⊕ and ⊗ and
producing the result of

x1 ⊕ (x1 ⊗ x2) ⊕ · · · ⊕ (x1 ⊗ x2 ⊗ · · · ⊗ xn).



We may define this new skeleton by

poly(⊕,⊗, x) = reduceL(⊕, scanL(⊗, x))

and this new skeleton inherits nice properties of homomor-
phism. As a simple use of this this skeleton, if we choose
⊗ as + and ⊕ as the function bigger to return the bigger
of two numbers, then poly(bigger,+, x) will compute the
maximum of all the prefix sums of a list x.

As a matter of fact, a new skeleton can be defined in var-
ious ways even with homomorphisms. For the above poly
skeleton, we can do better by defining it by

poly(⊕,⊗, x) = fst(homL(dup,�, x))
where dup(a) = (a, a)

(a1, b1) � (a2, b2) = (a1 ⊕ (b1 ⊗ a2), b1 ⊗ b2)

provided that ⊗ is distributive over ⊕. This new definition
is more efficient since it is a one-pass algorithm.

3.2.3 Skeletons on Regularly Nested Data Structures

Following the same thought of parallel lists, we are defining
skeletons to manipulate matrices (a list of lists of the same
length), a kind of regularly nested data structures. As ex-
plained in Section 3.2.1, we focus ourselves on the key step
of giving a constructive and parallel view (representation)
of matrices.

The traditional representations of matrices by nested lists
(row-majored or column-majored representations) [37, 49]
impose much restriction on the access order of elements.
Wise et al. [27, 51] represented a two-dimensional array by
a quadtree, which does not fully expose freedom in the con-
struction of matrices.

We borrow the idea in [11] where a more flexible con-
struction of matrices is given for derivation of sequential
programs. We define a matrix to be built up by three con-
structors |·| (singleton),−◦ (above) and − ◦ (beside) [25].

DMatrix α = |α|
| (DMatrix α)−◦ (DMatrix α)
| (DMatrix α) − ◦ (DMatrix α)

Here, |a| constructs a matrix with a single element a. Given
two matrices x and y of the same width, x−◦ y constructs
a new matrix where x is located above y. Similarly, given
matrices x and y of the same height, x − ◦y constructs a matrix
where x is located on the left of y.

The parallelism in this definition of matrices is revealed
by the following properties of−◦ and − ◦.

1. Constructors−◦ and − ◦ are associative.

2. Constructors −◦ and − ◦ satisfy the following abide (a
coined term from above and beside) property.

(x − ◦ u)−◦ (y − ◦ v) = (x−◦ y) − ◦ (u−◦ v)

Thanks to these properties, a matrix can be represented in
many ways. For example, the following 3 × 3 matrix

⎛
⎝

1 2 3
4 5 6
7 8 9

⎞
⎠

can be represented by many ways, two of which are given
below.

(|1| −◦ |2| −◦ |3|)−◦ (|4| −◦ |5| −◦ |6|)−◦ (|7| −◦ |8| −◦ |9|)
(|1|−◦ |4|−◦ |7|) − ◦ (|2|−◦ |5|−◦ |8|) − ◦ (|3|−◦ |6|−◦ |9|)

This is in sharp contrast to the quadtree representation of
matrices [27], which does not allow such freedom.

With this parallel matrices, we can directly define matrix
homomorphisms and basic skeletons of mapM , reduceM

and scanM on parallel matrices. Figure 2 gives informal
definitions of three important skeletons on matrices.

3.2.4 Skeletons on Irregular Data Structures

Trees are important and widely used in representing hierar-
chical structures such as XML, but trees are typically irreg-
ular; a tree may be ill-balanced and some tree nodes may
have too many children. It is a big challenge to give a con-
structive definition of parallel trees, which, as far as we are
aware, is an open problem.

For simplicity, we consider binary trees:

Tree α = Leaf α
| Fork α (Tree α) (Tree α)

reading that a tree is either a tree with just a leaf node, or a
tree with a root node and left and right trees. This algebraic
representation of trees, as often seen very often in literature,
cannot describe “good” parallelism in ill-balanced trees. To
resolve this problem, we propose the following novel defi-
nition for parallel trees:

DTree α = Leaf α
| ForkL (DTree α) (DTree α) (DTree α)
| ForkR (DTree α) (DTree α) (DTree α)

DTree can be regarded as a generalization of Tree where
internal nodes are trees instead of node elements.

Parallelism of this DTree is expressed by the require-
ment that ForkL and ForkR satisfy the following tree-shift
property.

ForkL nt (ForkL nt′ lt′ rt′) rt
= ForkL (ForkL nt nt′ rt) lt′ rt′

ForkL nt (ForkR nt′ lt′ rt′) rt
= ForkR (ForkL nt nt′ rt) lt′ rt′

ForkR nt lt (ForkL nt′ lt′ rt′)
= ForkL (ForkR nt lt nt′) lt′ rt′

ForkR nt (ForkR nt′ lt′ rt′) rt
= ForkR (ForkR nt lt nt′) lt′ rt′



mapL(f, [x1, x2, . . . , xn]) = [f(x1), f(x2), . . . , f(xn)]

reduceL(⊕, [x1, x2, . . . , xn]) = x1 ⊕ x2 ⊕ · · · ⊕ xn

scanL(⊕, [x1, x2, . . . , xn]) = [x1, x1 ⊕ x2, x1 ⊕ x2 ⊕ · · · ⊕ xn]

Figure 1. Three basic skeletons on parallel lists (⊕ is associative.)

mapM (f,

0
BBB@

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

1
CCCA) =

0
BBB@

f(x11) f(x12) · · · f(x1n)
f(x21) f(x22) · · · f(x2n)

...
...

. . .
...

f(xm1) f(xm2) · · · f(xmn)

1
CCCA

reduceM (⊕,⊗,

0
BBB@

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

1
CCCA) =

(x11 ⊗ x12 ⊗ · · · ⊗ x1n)⊕
(x21 ⊗ x22 ⊗ · · · ⊗ x2n)⊕

...
(xm1 ⊗ xm2 ⊗ · · · ⊗ xmn)

scanM (⊕,⊗,

0
BBB@

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

1
CCCA) =

0
BBB@

y11 y12 · · · y1n

y21 y22 · · · y2n

...
...

. . .
...

ym1 ym2 · · · ymn

1
CCCA where yij =

(x11 ⊗ x12 ⊗ · · · ⊗ x1j)⊕
(x21 ⊗ x22 ⊗ · · · ⊗ x2j)⊕

...
(xi1 ⊗ xi2 ⊗ · · · ⊗ xij)

Figure 2. Three basic skeletons on parallel matrices (⊕ and ⊗ are associative and satisfy the abide
property.)

mapT (f,

x1

/\
x2 x3

/\
x4 x5

) =

f(x1)
/\

f(x2) f(x3)
/\

f(x4) f(x5)

reduceT (⊕,⊗, f,

x1

/\
x2 x3

/\
x4 x5

) = f(x1) ⊕ ((f(x2) ⊕ (f(x4) ⊗ f(x5))) ⊗ f(x3))

uAccT (⊕,⊗, k,

x1

/\
x2 x3

/\
x4 x5

) =

y1

/\
y2 y3

/\
y4 y5

where

8>>>><
>>>>:

y1 = f(x1) ⊕ ((f(x2) ⊕ (f(x4) ⊗ f(x5))) ⊗ f(x3))
y2 = f(x2) ⊕ (f(x4) ⊗ f(x5))
y3 = f(x3)
y4 = f(x4)
y5 = f(x5)

dAccT (�, gl, gr, c,

x1

/\
x2 x3

/\
x4 x5

) =

z1

/\
z2 z3

/\
z4 z5

where

8>>>><
>>>>:

z1 = c
z2 = c � gl(x1)
z3 = c � gr(x1)
z4 = c � gl(x1) � gl(x2)
z5 = c � gl(x1) � gr(x2)

Figure 3. Four basic skeletons on parallel trees (�, ⊕ and ⊗ are associative, and ⊗ is distributive
over ⊕.)



Figure 4. Balancing an imbalanced tree.

This property can be considered as a tree-version associa-
tively, compared to the associativity of ++ in the definition
of parallel lists. With this property, any tree, balanced or
imbalanced, can be expressed as a balanced tree, as seen in
the example of Figure 4.

For lack of space, we just give informal definitions of the
four important skeletons on parallel trees in Figure 3. All of
these skeletons can be efficiently implemented by the tree
contraction algorithm [44], as will be seen later.

4. The SkeTo Library

4.1. An Overview

Figure 5 depicts the framework of the SkeTo library4

with which programmers are allowed to write skeletal paral-
lel programs in C++ in a sequential style. The SkeTo library
itself is implemented in standard C++ and MPI, and the op-
timization mechanism is in OpenC++ [16], a meta-language
for C++.

The SkeTo library provides parallel skeletons for data
structures of lists, matrices, and trees. For each data struc-
ture, the library consists of two classes (in C++); one pro-
vides the definition of parallel data structure, and the other
provides the parallel skeletons. The parallel data structures
are implemented based on the theory discussed in Section 3,
and the implementation conceals the detail of data distribu-
tion from the user. The user thus can use the parallel data
structures as he or she uses the sequential ones. For each
parallel data structure, homomorphism and basic skeletons
such as map, reduce, and scan are provided. These skele-
tons are implemented carefully using the MPI library, and
thus skeletal programs with these skeletons run efficiently.
The domain-specific skeletons such as poly are not pro-
vided but can be added afterwards easily with our basic
skeletons as shown in Section 5.2.

The skeleton library also provides several wrapper func-
tions of MPI to make the skeletal programs look just like

4SkeTo is an abbreviation for “Skeleton Library in Tokyo”, and means
“supporter” in Japanese.
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Figure 5. The framework of the SkeTo Library.

sequential ones. We can see some of them in the sample
program in the following section (Figure 6).

The parallel programs composed with the skeletons may
suffer from poor performance. To resolve this problem, the
SkeTo library provides meta optimization mechanism based
on the fusion transformation techniques. This mechanism is
implemented in OpenC++ and automatically optimizes the
skeletal programs. See [41] for the details of this optimiza-
tion mechanism.

4.2. A Programming Example

To give a flavor of how to write parallel programs in a
sequential style using the SkeTo library, let us consider the
computation of the variance of a list [x1, x2, . . . , xn].

var =
n∑

i=1

(xi − ave)2/n

ave =
n∑

i=1

xi/n

We can specify the algorithm in the following clear parallel
program with our skeletons:

variance(x) = var
where

n = length(x)
ave = reduceL(+, x) / n
var = reduceL(+, mapL(sqr,

mapL(sub(ave), x))) / n

where sqr is a function to square a number, and sub(ave)
is a function to subtract ave from a number. The executable
C++ code on the SkeTo library for this problem is given in
Figure 6.



1 /* definitions of header files and other function objects */
2
3 struct Sub : public skeleton::unary_function<double, double> {
4 double val;
5 Sub(double val_) : val(val_){ }
6 double operator()(double x) const { return x - val; }
7 };
8
9 int SketoMain(int argc, char **argv)

10 {
11 dist_list<double> *as = new dist_list<double>(gen, SIZE);
12
13 double ave = list_skeletons::reduce(add, add_unit, as) / SIZE;
14
15 list_skeletons::map_ow(Sub(ave), as);
16 list_skeletons::map_ow(sqr, as);
17 double var = list_skeletons::reduce(add, add_unit, as) / SIZE;
18
19 skeleton::cout << "average:" << ave << "\n" << "variance:" << var << "\n";
20
21 delete as;
22 return 0;
23 }

Figure 6. A sample program that computes the variance.

The program starts from the SketoMain function
(line 9). MPI functions such as MPI_Init and
MPI_Finalize are concealed under the implementation
of this function. There are several other wrapper functions
of the MPI, for example, the class skeleton::cout
(line 19) enables us to output only from the master pro-
cessor, which often has rank 0, with the same usage as the
std::cout. These wrapper functions are helpful for pro-
grammers who are not familiar with the MPI.

The sample program first generates an instance of par-
allel list structure, data_list (line 11), by specifying a
generator function and the size of list. Note that no details
about data distribution are revealed on the program, since
the constructor automatically distributes the elements in a
proper way.

The sample program then computes the average and the
variance with the reduce and the map skeletons (lines 13–
17). The functional arguments passed to the skeletons are
function objects, and thus the functions are inline-expanded
by the C++ compiler and the overhead of function calls are
removed. The map_ow (lines 15, 16) is a specialized ver-
sion of the map skeleton which overwrites the output on the
input list. These specialized skeletons enable users to write
more efficient skeletal parallel programs.

Thanks to the efficient implementation of the skeletons,
the skeletal programs show good scalability. Furthermore,
by using meta optimization mechanism we can obtain more
efficient programs, in which intermediate structures passed
between the skeletons are removed. In the sample program,
the meta optimizer automatically fuses the successive calls
of map_ow and reduce into one. The optimized program
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Figure 7. The computation time before/after
the optimization.

runs 1.3 times faster (Figure 7) than the original skeletal
program. The optimized program is almost the same as the
carefully hand-coded program with MPI library functions,
and so is the performance.

As seen so far, users can compose parallel programs eas-
ily in a sequential manner, and the obtained programs are
reasonably efficient.



1 template<typename A, typename OP, typename OT>
2 struct poly_odot : public skeleton::binary_function<std::pair<A,A>, std::pair<A,A>,
3 std::pair<A,A> >
4 {
5 OP oplus; OT otimes;
6 poly_odot(OP oplus_, OT otimes_) : oplus(oplus_), otimes(otimes_) {}
7 std::pair<A,A> operator()(const std::pair<A,A>& lhs, const std::pair<A,A>& rhs) const {
8 return std::pair<A,A>(oplus(lhs.first,otimes(lhs.second,rhs.first)),
9 otimes(lhs.second, rhs.second));

10 }
11 };
12
13 template<typename A, typename OP, typename OT>
14 A static poly(const OP& oplus, const A& e_oplus,
15 const OT& otimes, const A& e_otimes, const dist_list<A>* as) {
16 dist_list<std::pair<A,A> > *bs = map(poly_dup( ), as);
17 A result = reduce(poly_odot<A,OP,OT>(oplus, otimes),
18 std::pair<A,A>(e_oplus, e_otimes), bs).first;
19 if ( bs ) delete bs;
20 return result;
21 }

Figure 8. A sample code for imlementing the poly skeleton.

5. Implementation Issues

5.1. Functional Arguments of the Skeletons

The skeletons take function objects for their functional
arguments, and this is beneficial in the point of efficiency
and extensibility of the skeletons.

In the classic C programs we implement skeletons us-
ing pointers to the functions. This implementation is much
worse than the hand-coded programs because of sorrowful
overhead of calling functions. The function objects, on the
other hand, can be inline-expanded by the C++ compiler,
and thus the skeletal programs implemented with function
objects are much more efficient, and in many case they are
as efficient as the hand-coded one.

Furthermore, the function objects are manipulatable like
functional programming in conjunction with the template
mechanism of C++. For example, we can implement com-
position of functions and partial-binding of arguments with
these mechanisms. This advantage is essential in importing
the theoretical results based on Constructive Algorithmics
to extend the skeletons (the following section) and to im-
plement the meta optimization mechanism [41].

5.2. Extensibility of the Skeletons

Homomorphism and basic skeletons are provided as
ready-made skeletons in the SkeTo library. Other skele-
tons can be easily implemented with these skeletons. Here,
we briefly show how we can extend the SkeTo library for
domain-specific purposes, with the example of the poly
skeleton.

A new skeleton can be implemented in the following
two steps; first we define the function objects passed to the
ready-made skeletons, and then we define the new skeleton
by calling the ready-made skeletons with the newly defined
function objects. Figure 8 gives a sample code of imple-
menting poly. In lines 1–11, we define a new function ob-
ject for � with function objects for ⊕ and ⊗. The func-
tion object for dup can also be defined in the same way. In
lines 13–21, we implement the new skeleton by calling ba-
sic skeletons map and reduce.

Defining the new skeletons with basic skeletons is much
easier than defining them from scratch. Furthermore, the
inline-expansion of function objects and the fusion transfor-
mation by the optimization mechanism provide reasonably
efficient implementations of the newly defined skeletons.

5.3. Implementation Issues on Matrices

The parallel representation of matrices in Section 3 en-
ables us to split any matrix and distribute it in arbitrary sizes
and shapes. This is in sharp contrast to traditional repre-
sentations such as nested lists or quad-trees that restrict the
shape of a distributed submatrix to be a list (vector) or a
square matrix of the power of two. This freedom of dis-
tribution enables the library to use an arbitrary number of
processors, and supports the library to be potentially scal-
able even in heterogeneous environments.

On this freedom, the library automatically distributes a
matrix among processors so that the division of the ma-
trix becomes as square as possible. This block distribution
is suitable for the memory hierarchy that recent computers
have. Some algorithms require particular distribution man-
ners, such as row-major, column-major or square blocking,



for their efficient execution. For example, an efficient algo-
rithm of matrix multiplication needs the shape of the distri-
bution to be square. In those cases, users can control the dis-
tribution of matrices by specifying a distribution policy to
the library so that the algorithm can be executed efficiently.
We provide policies for row-major, column-major, strictly
square blocking and roughly square blocking. The skele-
tons also allow manual distribution for expert users.

We implemented three specialized homomorphisms in
Section 3 and some other useful functions as skeletons. The
implementation of the basic matrix skeletons is a straight-
forward extension of that of list skeletons: the execution of
the skeleton consists of local computation on each processor
and global tree-style communication among the processors,
where the difference is that the computation proceeds in two
directions in an arbitrary order.

The skeletons take two operators satisfying the abide
property, while other existing libraries only take one asso-
ciative and commutative operator. In fact, an associative
and commutative operator satisfies the abide property with
itself, and thus our matrix skeletons capture wider range of
parallel programs.

5.4. Implementation Issues on Trees

The parallel structure of binary trees introduced in Sec-
tion 3 provides the basis of efficient parallel programs ma-
nipulating trees. For a given binary tree, we can construct
its parallel structure in more than one way, and thus finding
a well-distributable parallel structure with reasonably small
cost is important. By borrowing the idea of m-bridges [47],
which are segments in a tree satisfying certain properties on
their size, we implemented a two-pass algorithm for con-
structing parallel structures of trees. This algorithm guar-
antees the size of the divided trees to be certain factor of
evenly-divided size, and the scalability of the parallel pro-
grams for binary trees of arbitrary shapes.

The parallel skeletons for binary trees are implemented
based on the tree contraction algorithms. The tree con-
traction algorithms, first proposed on shared memory ar-
chitectures [1, 44], and then extended on hypercube net-
works [42], are distinguished parallel algorithms for com-
puting on trees. We reformalized the algorithms in order to
apply them on our parallel tree structures.

We implemented seven parallel skeletons including the
four basic skeletons shown in Section 3 carefully using
the MPI. As the list skeletons’ case, domain-specific skele-
tons are implementable by composing these skeletons. For
example, consider the following more specific reduction
skeleton defined on (sequential) tree with an associative and
commutative operator ⊕.

reduce′
T (⊕,Fork n l r)

= n ⊕ reduce′
T (⊕, l) ⊕ reduce′

T (⊕, r)

We can implement it with the ready-made basic skeleton
reduceT in the same way as the implementation of the poly
skeleton. The simplicity of extending our skeleton library is
more worth noting for tree skeletons since writing parallel
tree algorithms from scratch is not straightforward.

We now briefly remark on the parallel skeletons for gen-
eral trees. There have been only a few studies on the par-
allel programming on general trees and they were rather ad
hoc. We have formalized the parallel tree skeletons for gen-
eral trees based on binary tree skeletons [40]. Under this
formalization we have implemented general tree skeletons
as wrapper functions of the binary tree skeletons with the
same techniques as in adding new skeletons. As far as we
are aware, these binary and general tree skeleton library is
the first that supports general-purpose tree manipulations in
parallel.

6. Applications and Experiments

SkeTo allows users to write parallel programs for various
problems. We have so far written a set of skeletal parallel
programs listed below5, and measured their speedups. TA-
BLE 1 shows the execution times of the programs without
the initial data distribution and final data gathering. The
first three programs are written with list skeletons, the fol-
lowing four with matrix skeletons, and the last three with
tree skeletons.

The parallel computer environment for the experiments
is a PC cluster of sixteen uniform PCs connected with Gi-
gabit Ethernet. Each PC has a CPU of Pentium4 3.0GHz
(Hyper Threading ON) and 1GB memory, with Linux 2.6.8
for the OS, gcc 2.95 for the compiler, and mpich 1.2.6 for
the MPI.

• Variance: The program that computes the variance,
listed in Figure 6 in Section 4. The number of ele-
ments of the input is 10000000. The measurement is
of repetition of 100 times.

• Bracket Matching: The program that solves the
bracket matching problem of 4 kinds of brackets [35].
The length of the input string is 10000000. The mea-
surement is of repetition of 100 times.

• Heat Equation: The program that solves the one-
dimensional heat equation. The number of elements
of the input is 100000. The measurement is of ten unit
time.

• Matrix Multiplication: The program that executes
matrix multiplication which is fundamental matrix ma-
nipulation. The size of the input matrices is 1000 ×
1000.

5The sources of all the parallel programs are available at the SkeTo web
page, so we shall omit detailed explanation due to space limit.



Table 1. Speedups for parallel programs with the skeletons
P = 1 P = 2 P = 4 P = 8 P = 16

Problem time ratio time ratio time ratio time ratio time ratio

Variance 38.8 1 19.5 1.95 10.1 3.85 5.07 7.64 2.48 15.6
Bracket Matching 115.1 1 57.7 1.99 29.3 3.92 14.7 7.80 7.4 15.47

Heat Equation 86.7 1 43.0 2.02 20.4 4.25 7.38 11.8 5.36 16.2

Matrix Multiplication 14.1 1 5.21 2.71 2.52 5.60 1.05 13.40 0.530 26.62
Maximum Subarray Sum 6.21 1 3.51 1.77 2.30 2.70 1.72 3.61 1.50 4.15

F-Norm 0.21 1 0.104 1.97 0.053 3.88 0.026 7.72 0.013 15.01
QR Factorization 297.1 1 - - 96.60 3.09 64.76∗ 4.64∗ 70.47 4.22

Height of Tree 0.547 1 0.214 2.55 0.128 4.28 0.104 5.25 0.080 6.83
XPath Query 1.92 1 0.762 2.52 0.694 2.77 0.476 4.04 0.360 5.35

Party Planning 0.143 1 0.143 1.00 0.094 1.51 0.069 2.07 0.040 3.66

(* P = 9)

• Maximum Subarray Sum: The program that cal-
culates the maximum of all the subarray (submatrix)
sums. The size of the input matrices is 400 × 400.

• F-Norm: The program that calculates the Frobenius
norm of matrices (the square root of the sum of squares
of the elements). The size of the input matrices is
4000 × 4000.

• QR Factorization: The program that calculates QR
factorization of a given matrix. It uses Frens and
Wise’s algorithm [27], which is originally developed
for quadtrees, and thus this program restricts the num-
ber of processors involved in the calculation to be a
square number.

• Height of Tree: The program that computes the height
of given binary tree. The number of nodes of the input
tree is 2000001.

• XPath Query: The program that executes XPath
query in parallel. The number of nodes of the input
tree is 2000001, and the executed query is of five axes.

• Party Planning: The program that solves a dynamic
programming problem on general trees called party
planning problem [20], which is to find a set of nodes
that maximize the sum under certain condition. The
number of nodes of the input tree is 1000000.

The experimental results show good speedups in general.
In particular, the results of Variance, Bracket Matching,
and F-Norm show almost linear scalability. The results of
Heat Equation and Matrix Multiplication show super-linear
speedups. This can happen in memory-intensive applica-
tions where a large memory space is needed with respect
to the cache size. These results prove the efficiency of the
programs written with the SkeTo library.

The programs with tree skeletons are a bit less scalable
than those with list or matrix skeletons. This is because even
parallel trees cannot be as uniformly distributed as parallel
lists or matrices. These results suggest us further work on
dividing trees more suitable way.

Unfortunately the results of Maximum Subarray Sum
and QR Factorization show poor speedups. The former is
due to the current implementation of the SkeTo which only
allows the parallel execution of the outer skeleton when
nested calls of skeletons are used. Future version of the
SkeTo will allow fully parallelization of nested calls of
skeletons. The latter is due to the program that is written
to parallelize a part of the recursive execution.

7. Conclusion

This paper applies the theory of Constructive Algorithms
to the design and implementation of the SkeTo library sup-
porting parallel programming in a sequential way. Com-
pared with the existing skeleton libraries [39], the SkeTo
library attains several new features, which make the system
practically useful.

• It has high description power. Skeletons and their
combination are powerful to describe various parallel
computations. This is not only theoretically correct,
but also convinced by many practical applications be-
ing developed.

• The skeletons can be extended in a compatible way. A
new skeleton can be introduced systematically, either
as a special case of homomorphism or as a generaliza-
tion being a combination of homomorphisms, and it
inherits the nice properties that homomorphisms have.
Therefore, all the skeletons, old or new, coexist in a
compatible way.



• Efficiency can be achieved through systematic opti-
mization. Since all skeletons are basically homomor-
phisms, many useful calculation rules such as fusion
and tupling are easily to be transported here for opti-
mization of skeletal programs.

• The skeleton library supports a sequential style of par-
allel programming. It completely hides lower-level de-
tails about parallel programming, so that programmers
can stand on the algorithmic level and write parallel
programs sequentially without problems such as dead-
lock.

We are now working to make the SkeTo library more
practical to be used widely for parallel programming in se-
quential style. One of the current issues is to implement the
optimization rules for matrix and tree skeletons. In addition,
we are interested in how to formalize the control parallel
skeletons in theory of Constructive Alogrithmics, which is
a challenge but worth consideration.

References

[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatrik, and T. Przy-
tycka. A simple parallel tree contraction algorithm. Journal
of Algorithms, 10(2):287–302, June 1989.

[2] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and
M. Vanneschi. P3L: A structured high level programming
language and its structured support. Concurrency Practice
and Experience, 7(3):225–255, 1995.

[3] R. Backhouse. An exploration of the Bird-Meertens formal-
ism. In STOP Summer School on Constructive Algorithmics,
Ameland, September 1989.
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