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Abstract

Second-order patterns, together with second-order matching, enable concise specification of program transf
and have been implemented in several program transformation systems. However, second-order matching in g
nondeterministic, and the matching algorithm is so expensive that the matching is NP-complete. It is orthodox to
constraints on the form of higher-order patterns so as to obtain the desirable matches satisfying certain propertie
decidability and finiteness. In the context of unification, Miller’shigher-order patterns have a single most-general unifier.
this paper, we relax the restriction of his patterns without changing determinism in the context of matching instead of un
As a consequence, ourdeterministic second-order patterns cover a wide class of useful patterns for program transforma
The time-complexity of our deterministic matching algorithm is linear in the size of a term for a fixed pattern.
 2004 Elsevier B.V. All rights reserved.
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Second-order patterns, together with second-o
matching, enable concise specification of progr
transformation, and have been implemented in s
eral program-transformation systems [4,10]. Howev
second-order matching in general is nondetermi
tic [9] (there is more than a single match). It is o
thodox to restrict the form of higher-order patterns
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In the context of unification, Miller defined
certain class ofhigher-order patterns [11] that are
deterministic, i.e., patterns have at most a sin
most-general unifier. He required that free variab
should appear as the head of a term where
arguments are distinct bound variables. For exam
the patternλxy.pyx is valid, since the arguments o
the free variablep are distinct bound variablesy
andx. Miller’s higher-order patterns, however, are t
restrictive for program transformations.

In this paper, we relax the restriction of Miller
patterns by allowing the arguments to be terms,
that ourdeterministic second-order patterns cover a

.
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wide class of useful patterns for program transfor-
mations. Consider, for example, the following fu-
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domain of substitutionφ is written asdom(φ). Given
substitutionsφ andψ , the composition of substitutions
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sion transformation rule, which eliminates unnec
sary intermediate data structures, in Haskell-like
tation [2]:

∀x, y.x ⊗ fy = f (x ⊕ y)

f. foldr(⊕)e = foldr(⊗)(f e)

which says that a composition of functionf with a
foldr can be fused into a singlefoldr, provided that
one can find a function⊗ satisfying the side condi
tion, namelyx ⊗ fy = f (x ⊕ y). The key step of dis
covering a suitable⊗ is actually a higher-order match
ing problem. Consider fusingsum andfoldr(λxy.x ∗
x : y)[ ]. To see this, expanding the right-hand side
the fusion condition, we get:

λxy.f (x ⊕ y)

= λxy. sum(x ∗ x : y)

= λxy.x ∗ x + sum y.

We then obtain⊗ by matching the resulting term
λxy.x ∗ x + sum y, with the patternλxy.x ⊗ sum y.
This pattern is beyond Miller’s higher-order patte
and the match{⊗ �→ λy1y2.y1 ∗ y1 + y2} cannot be
obtained by first-order matching. On the other ha
our approach can deal with such patterns and gua
tee a unique match.

2. Deterministic second-order patterns

We consider simply-typed lambdaterms. Terms are
built recursively from constants, variables,λ-abstrac-
tions, and function applications.

T = c | v | λx.T | T T .

Given two termsT1 andT2, we writeT1 ✂ T2 if T1 =α

T2 or T1 is a proper subterm ofT2, up to α-equiva-
lence. For a termvT1 · · ·Tn, we callv thehead of the
term andT1, . . . , Tn the arguments of v. A term T is
calledη-(short) normal ifT has noη-redex.

Let FV be the function mapping from a term to th
set of its free variables. We call the termT closed if
FV(T ) = { }. For readability we sometimes use infi
notation, sox + y denotes the term(+)xy.

A substitution (ormatch) is a partial function from
variables to closed terms likeφ = {p �→ λx.xb}. The
is written asφ . ψ . Thequasi-composition of substitu-
tionsφ ◦ ψ is defined asφ . ψ if the same variables in
domains have the same ranges:

∀v ∈ dom(φ) ∩ dom(ψ) . φv =αβη ψv,

where the equality operator(=αβη) is moduloαβη-
conversion. Otherwise,φ ◦ ψ is fail. We use a specia
matchfail that is the zero of match composition, i.
fail◦ m = m◦ fail = fail.

Let T0 be the set of base types. The set of typeT

is defined as follows.

α ∈ T0 ⇒ α ∈ T , α,β ∈ T ⇒ α → β ∈ T .

Theorder of base typesT0 is 1. The order of function
types is the maximum of one plus the order of
argument type and the order of the result type. T
order of a term is defined as the order of its type.

We are now ready to define our class of patte
the deterministic second-order patterns. As we will
see later, matching a pattern in this class with a clo
term yields at most one match.

Definition 1 (DSP). A term P is said to be a deter
ministic second-order pattern (DSP), if the arguments
E1, . . . ,Em of any free variable occurring in the pa
tern satisfy the following conditions.

(i) ∀i.FV(Ei) �= { }.
(ii) ∀i, j. i �= j ⇒ Ei � Ej .
(iii) ∀i.(v ∈ FV(Ei) ⇒ v /∈ FV(P )).
(iv) For all i, Ei is first-order.

The conditions on the arguments are relaxat
of Miller’s idea from “distinct and bound variables
to “non-mutually embedded terms containing bou
variables”:

(i) Ei should not be a closed term. For example,
termp1 is not aDSP because the argument 1
closed.

(ii) For all i, j (i �= j), Ei is not a subterm ofEj .
Therefore,λx.px(x + 1) is not a DSP since
the argumentx is a subterm of another argume
x + 1.

(iii) Free variables inEi should be bound in th
patternP . As a result,pq is notDSP .
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(iv) For example,p(λx.x) is not DSP because the
argument(λx.x) is more than first-order.
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The following are examples ofDSP wherec and
d are constants.

λx.p(cx)(dx),

λxy.px(cy),

λx.c(px)(qx).

In the rest of the paper, we use the followi
notational convention. Small lettersa, b, c, d represent
constants, and other small letters such asp, q , v, x,
y, z represent variables. Normally, we usep,q to
denote the free variables andx, y, z to denote bound
variables. Greek identifiersφ, ψ , σ represent matche
(substitutions), and capital letters represent term
patterns. Lists of variablesx1 · · ·xl are represented b
x̄, and lists of termsE1 · · ·Em by �E. For example, a
termλx1 · · ·xl.pE1 · · ·Em is represented byλx̄.p�E.

3. Deterministic second-order matching

A pattern is a term which can contain free var
ables. Given a patternP and a closed termT where
P andT areβη-normal, arule is a pair of terms writ-
ten asP → T .

The generalmatching problem is: given a ruleP →
T , find all the substitutionsφ such thatφP =αβη T .
Such a substitutionφ is called amatch, denoted by
φ � P → T . If there exists at most one matchφ, we
say the match isdeterministic. If there exists exactly
one match, we simply say that the matchφ is unique.
If the maximum order of the free variables inP is at
most two, we say that matching problem issecond-
order.

Second-order matching is known to be nonde
ministic. Algorithms computing all the matches h
been proposed in, for example, [9]. The contribut
of this paper, on the other hand, is to show that seco
order matching is deterministic if we restrict the p
terns toDSP .

To begin with, let us introduce the important co
cept of discharging subterms. DischargingE1, . . . ,Em

by y1, . . . , ym in T means replacement of all the occu
rences ofE1, . . . ,Em with fresh variablesy1, . . . , ym

respectively inT . One possible implementation
given in Fig. 1. Intuitively, the function
discharge sv = replace sv

discharge s(λx.T1) =
let T ′ = replace s(λx.T1)

in if T ′ = (λx.T1) then λx.(discharge sT1) else T ′

discharge s(T1T2) =
let T ′ = replace s(T1T2)

in if T ′ = (T1T2)

then ((discharge sT1)(discharge sT2))

else T ′

replace[ ]T = T

replace((y,E) : s)T =
if E = T then y else replace sT

Fig. 1. Discharging algorithm.

discharge
[
(y1,E1), . . . , (ym,Em)

]
T

replaces all the occurrences ofE1, . . . ,Em with fresh
variablesy1, . . . , ym respectively inT . That is:

B = discharge
[
(y1,E1), . . . , (ym,Em)

]
T

⇒ (λȳ.B)�E =αβη T ∧ ∀i.Ei � B.

Lemma 2. If P = λx̄.p�E is a DSP where p is a free
variable, then there is at most a single match φ such
that φ � P → T .

Proof. There is no match ifT is not transformed
into λx̄.T ′ by αη-conversion. The match of a ru
p�E → T ′ should be in the form{p �→ λȳ.B}. Since
free variables in eachEi are bounded inP by
Definition 1(iii), by definition of match the equatio
(λȳ.B)�E =αβη T ′ should be satisfied. Therefore,
term B is a result of replacing�E with ȳ in T ′. By
Definition 1(i), subtermsEi (1 � i � m) contain free
variables and if we leave any occurrences ofEi in
B, thenλȳ.B will contain free variables. This resul
in generating an illegal substitution containing fr
variables. Instead, a termB should be obtained by fu
discharging; replacing all the occurrences of�E with
ȳ in T ′, i.e., (λȳ.B)�E =αβη T ′ ∧ ∀i.Ei � B. If some
free variables still occur inB after the discharging
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this results in illegal substitution. Otherwise, since one
argument is not a subterm of another argument by
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Definition 1(ii), the order of replacing does not affe
the result of the match. Thus, the match is obtai
deterministically. ✷

Note that as in the proof, for discharging t
arguments of free variables in aDSP , we can use any
discharging function satisfying the condition(λȳ.B)�E
=αβη T ′ ∧ ∀i.Ei � B. In the following, we use the
functiondischarge for discharging the arguments fro
a term. We now give our main theorem below.

Theorem 3. If P is a DSP , there is at most a single
match φ such that φ � P → T .

Proof. We use mathematical induction on the stru
ture of the pattern.

Case (P = λx̄.c�E). There is no match if the cor
responding term cannot be transformed intoλx̄.c�F by
αη-conversion where the lengths of�E and�F are equal.
Otherwise, the matching can be decomposed intm

matchingsφi � λx̄.Ei → λx̄.Fi for i = 1 . . .m. By
the induction hypothesis, each matchφi � λx̄.Ei →
λx̄.Fi is unique or there is no match in which ca
φi = fail. Thereforeφ′ � P → T is the unique match
or there is no match ifφ′ is fail whereφ′ = φ1 ◦ · · · ◦
φm.

Case (P = λx̄.v�E ∧v /∈ FV(P )). Similar to the first
case.

Case (P = λx̄.v�E ∧ v ∈ FV(P )). By Lemma 2, the
match generated by the pattern is unique or there i
match. ✷

For example, considerP = λx.p(cx)(dx) and the
term T = λx.a(cx)(b(dx)) wherea, b, c and d are
constants,p andx are variables, andp occurs free in
P . To matchP againstT , we replacecx anddx with
fresh variablesy1 andy2 in T resulting in the unique
match{p �→ λy1 y2.ay1(by2)}.

4. An efficient deterministic second-order
matching algorithm

Given a ruleP → T whereP is a DSP , the al-
gorithmM❏P → T ❑, defined in Fig. 2 computes it
unique match if it exists. Otherwise it returns the s
cial match fail. For example,M❏c → λx.d❑ returns
= M❏λx1 · · ·xl .P1 → λx1 · · ·xl .T1xo+1 · · ·xl❑

if o < 1∧ P1 andT1 are notλ-abstraction

M❏λx̄.cE1 · · ·Em → λx̄.dT1 · · ·Tm❑

= M❏λx̄.E1 → λx̄.T1❑ ◦ · · · ◦M❏λx̄.Em → λx̄.Tm❑

if c = d

M❏λx̄.xiE1 · · ·Em → λx̄.xj T1 · · ·Tm❑

= M❏λx̄.E1 → λx̄.T1❑ ◦ · · · ◦M❏λx̄.Em → λx̄.Tm❑

if i = j

M❏λx̄.pE1 · · ·Em → λx̄.T1❑

= {p �→ λy1 · · ·ym.B}
if λy1 · · ·ym.B is closed

where

y1, . . . , ym are fresh variables

B = discharge[(y1,E1), . . . , (ym,Em)]T1

M❏_❑= fail

Fig. 2. The matching algorithm.

fail. In Fig. 2, the first case acts asη-expansion, so
M❏λx.p(cx) → c❑ returnsM❏λx.p(cx) → λx.cx❑.
The second and the third cases correspond to the c
in our proof of Theorem 3. If the heads of the p
tern and the term are equal and the lengths of t
arguments are the same, the rule is decomposed
smaller ones. The fourth case which calls the fu
tion discharge for exhaustive discharging correspon
to Lemma 2.M❏λar.a ⊗ sum r → λar.a ∗ a + sum r❑
is an example of the fourth case and computes the
lowing match.
{⊗ �→ λxy.

discharge
[
(y1, a), (y2, sum r)

]
(a ∗ a + sum r)

}
.

Formally, we can prove the soundness of
algorithmM, i.e.,M returns the unique match if the
exists one.

Theorem 4 (Soundness).If P is a DSP , then

φ � P → T ⇔ φ =M❏P → T ❑∧ φ �= fail .

Proof. We prove it by induction on the structure
the pattern. The proof is straightforward except for
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case where the rule is in the formλx̄.pE1 · · ·Em →
λx̄.T1. We only show this case.
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B = discharge
[
(y1,E1), . . . , (ym,Em)

]
T1.

By the property ofdischarge, (λȳ.B)�E = T1 holds.
Therefore, the following matching property holds.

{p �→ λȳ.B} � λx̄.p�E → λx̄.T1.

(⇒) By Theorem 3, there is at most a single ma
φ such that

φ � λx̄.pE1 · · ·Em → λx̄.T1.

The form of the match should beφ = {p �→ λy1 · · ·
ym.B} where

{y1 �→ E1, . . . , ym �→ Em}B =αβη T1.

A term B should be made by replacing someEi with
yi from T1. By Definition 1(i), Ei contains free vari-
ables. Thus ifB containsEi , thenφ is illegal match.
Therefore a termB should be made by replacing a
the occurrenceEi with yi from T1. This operation
matchesB = discharge[(y1,E1), . . . , (ym,Em)]T1. ✷

The complexity of our matching algorithm is sum
marized in the following theorem. Letsize(t) be a
function computing a size of the termt .

size c = 1,

size v = 1,

size(t1t2) = 1+ size t1 + size t2,

size(λx.t) = 1+ size t .

Theorem 5 (Efficiency).Let P be a DSP , n be the
size of the term T , and m be the size of the pattern P .
The time complexity of M❏P → T ❑ is O(m2n).

Proof. Except for the second last case of the definit
of the matching algorithmM in Fig. 2, the time
complexity of M is straightforwardly linear in the
size of the pattern. For the second last case,
function discharge traverses the term, calling th
function replace that checks for each argumentEi .
Since equality check inreplace needs O(m), replace
costs O(m2). Thereforedischarge costs O(m2n). ✷

Sincem is often small and bounded, andm is much
smaller thann in practice, the algorithm is almos
O(n). For a fixed pattern, the algorithm is O(n).
In this paper, we proposed a class of patte
that have the unique second-order match. We bel
that the advantage of determinism is helpful
a user to express his intention to the compiler
program-transformation system in a more precise
predictable way. And it makes possible for the seco
order matching to be used in functional langua
efficiently [7].

Our pattern is a simple and natural extension
Miller’s pattern [11] which has a single most gene
unifier, and is a sort of a restriction of the tw
step valid pattern of Sittampalam and de Moor’s [
15]. But it is not linear time. They also develop
an efficient higher-order matching algorithm, one-s
matching algorithm which covers at least compl
second-order matches [5,14].

While the second-order matching algorithm is N
complete [1] and the implementations are exp
sive [3,9], the restriction on patterns sometimes le
to fast matching algorithms. Second-order pure ma
ing (even unification) with a bounded number of va
ables is PTIME [16]. Hirata, Yamada and Harao
have studied the complexity of various second-or
matching. According to their classification,DSP is a
predicate, namely any arguments of free variables
cludes no function variables. The matching problem
a predicate is polynomial if it isbinary function-free,
namely, any function variables are at most 2-ary an
includes no function constants.Linear context match-
ing, a restricted form of linear higher-order matchin
is O(n3) [13]. They solve the problem by dynamic pr
gramming with table of size O(n2) building from the
bottom up. Our restriction makes our matching alg
rithm fast; given a fixed pattern, the time complex
of our deterministic matching algorithm is linear in t
size of a term being matched.
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