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Abstract

Second-order patterns, together with second-order matching, enable concise specification of program transformation,
and have been implemented in several program transformation systems. However, second-order matching in general is
nondeterministic, and the matching algorithm is so expensive that the matching is NP-complete. It is orthodox to impose
constraints on the form of higher-order patterns so as to obtain the desirable matches satisfying certain properties such as
decidability and finiteness. In the context of unification, Millemigher-order patterns have a single most-general unifier. In
this paper, we relax the restriction of his patterns without changing determinism in the context of matching instead of unification.
As a consequence, odeterministic second-order patterns cover a wide class of useful patterns for program transformation.

The time-complexity of our deterministic matching algorithm is linear in the size of a term for a fixed pattern.
00 2004 Elsevier B.V. All rights reserved.
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1. Introduction generate the desirable matches satisfying certain prop
erties such as decidability [12] and finiteness [6].

In the context of unification, Miller defined a
certain class otigher-order patterns [11] that are
deterministic, i.e., patterns have at most a single
most-general unifier. He required that free variables
should appear as the head of a term where the
arguments are distinct bound variables. For example,
the patterm.xy.pyx is valid, since the arguments of
the free variablep are distinct bound variableg
andx. Miller's higher-order patterns, however, are too
— _ restrictive for program transformations.

Ef::fgggf&?%f&ama@ipl_t_u_tokyo_ac_jp In this paper, we relax the restriction of Miller's
(T. Yokoyama), hu@mist.i.u-tokyo.ac.jp (Z. Hu), patterns by allowing the arguments to be terms, so
takeichi@mist.i.u-tokyo.ac.jp (M. Takeichi). that ourdeterministic second-order patterns cover a

Second-order patterns, together with second-order
matching, enable concise specification of program
transformation, and have been implemented in sev-
eral program-transformation systems [4,10]. However,
second-order matching in general is nondeterminis-
tic [9] (there is more than a single match). It is or-
thodox to restrict the form of higher-order patterns to
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wide class of useful patterns for program transfor- domain of substitution is written asdom(¢). Given

mations. Consider, for example, the following fu-

substitutiong andy, the composition of substitutions

sion transformation rule, which eliminates unneces- is written asg . v. Thequasi-composition of substitu-

sary intermediate data structures, in Haskell-like no-

tation [2]:

VX, yx® fy=f(x®y)
£. foldr (@)e = foldr (®)(fe)

which says that a composition of functigh with a
foldr can be fused into a singl®ldr, provided that
one can find a functio® satisfying the side condi-
tion, namelyx ® fy = f(x @ y). The key step of dis-
covering a suitable is actually a higher-order match-
ing problem. Consider fusingum andfoldr (Axy.x

x : y)[]. To see this, expanding the right-hand side o
the fusion condition, we get:

Axy.f(x @ y)

= AXy.SUM(x * X : y)

=Axy.x *x +sumy.
We then obtain® by matching the resulting term,
Axy.x * x + sumy, with the patterm.xy.x ® sumy.

This pattern is beyond Miller’s higher-order pattern,
and the matcH® +— Ayi1y2.y1 * y1 + y2} cannot be

fozeTo:>oeeT,

tions¢ o v is defined ag .  if the same variables in
domains have the same ranges:

Yv e dom(¢) Ndom(yr) . v =up, Y,

where the equality operatdt=,s,) is moduloafn-
conversion. Otherwisej o v is fail. We use a special
matchfail that is the zero of match composition, i.e.,
fail o m = m o fail = fail.

Let Tp be the set of base types. The set of types
is defined as follows.

a,pelT =a—peT.

Theorder of base typedp is 1. The order of function
types is the maximum of one plus the order of the
argument type and the order of the result type. The
order of a term is defined as the order of its type.

We are now ready to define our class of patterns,
the deterministic second-order patterns. As we will
see later, matching a pattern in this class with a closed
term yields at most one match.

Definition 1 (DSP). A term P is said to be a deter-

obtained by first-order matching. On the other hand, ministic second-order patter®SP), if the arguments
our approach can deal with such patterns and guaran-g,, .. .| E,, of any free variable occurring in the pat-

tee a unique match.

2. Deterministic second-order patterns

We consider simply-typed lambderms. Terms are
built recursively from constants, variablésabstrac-
tions, and function applications.

T=c|v|Ax.T|TT.

Given two termsl, andT>, we writeT1 < Ty if Ty =,

T> or T1 is a proper subterm of,, up to a-equiva-
lence. For atermvTy - - - T,,, we callv thehead of the
term andTy, ..., T, thearguments of v. A term T is
calledn-(short) normal ifT has nop-redex.

Let FV be the function mapping from a term to the
set of its free variables. We call the teffnclosed if
FV(T) = {}. For readability we sometimes use infix
notation, sor + y denotes the terri-)xy.

A substitution (ommatch) is a partial function from
variables to closed terms like = {p — Ax.xb}. The

tern satisfy the following conditions.

(i) Vi.FV(E)) #{}.

(i) Vi,j.i#£j=E LEj.
(iii) Vi.(v € FV(E;) = v ¢ FV(P)).
(iv) Foralli, E; is first-order.

The conditions on the arguments are relaxation
of Miller's idea from “distinct and bound variables”
to “non-mutually embedded terms containing bound
variables”:

(i) E; should not be a closed term. For example, the
term pl is not aDSP because the argument 1 is
closed.

(i) For all i, j (i # j), E; is not a subterm of;.
Therefore,Ax.px(x + 1) is not aDSP since
the argument is a subterm of another argument
x+1

(iii) Free variables inE; should be bound in the
patternP. As a result,pg is notDSP.
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(iv) For example,p(Ax.x) is not DSP because the
argumeniix.x) is more than first-order.

The following are examples @SP wherec and
d are constants.

Ax.p(cx)(dx),
Axy.px(cy),
Ax.c(px)(gx).

In the rest of the paper, we use the following
notational convention. Small lettetsb, ¢, d represent
constants, and other small letters suchpag, v, x,

y, z represent variables. Normally, we ugegq to
denote the free variables andy, z to denote bound
variables. Greek identifiegs, v, o represent matches

(substitutions), and capital letters represent terms or

patterns. Lists of variables, - - - x; are represented by
x, and lists of termsts - - - Ey, by E. For example, a
termixy---x;.pE1--- Ep, IS represented byx.pE.

3. Deterministic second-order matching

A pattern is a term which can contain free vari-
ables. Given a patter® and a closed terni’ where
P andT areBn-normal, aruleis a pair of terms writ-
tenasP — T.

The generatnatching problemis: given a ruleP —
T, find all the substitutiong such thatp P =.s, T
Such a substitutio is called amatch, denoted by
¢ = P — T. If there exists at most one mat¢h we
say the match igleterministic. If there exists exactly
one match, we simply say that the mattlis unique.
If the maximum order of the free variables iis at
most two, we say that matching problemsiscond-
order.
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dischargesc =c¢
dischargesv = replacesv
discharges(Ax.T1) =
let T’ = replaces(ix.Ty)
inif 7/ = (Ax.Ty) then Ax.(dischargesTq) else T’
discharges(T1T2) =
let T" = replaces(T1T>)
inif 7" = (11 1)
then ((dischargesTy)(dischargesT»))
dse T’

replace[ 1T =T
replace((y, E) : )T =
if E=T then y else replacesT

Fig. 1. Discharging algorithm.

discharge{ (y1. E1), . ... Ym» Em)]T
replaces all the occurrences®i, ..., E,, with fresh
variablesys, ..., y,, respectively inT. That is:
B = discharge] (y1, E1), ..., (ym, Em)]T
= (A\y.B)E =4p,y T AVi.E; 4 B.

Lemma?2. If P = Ax.pE isa DSP where p isafree
variable, then there is at most a single match ¢ such
that¢p - P — T.

Proof. There is no match ifl" is not transformed
into Ax.T" by an-conversion. The match of a rule
pE — T’ should be in the form{p — Ay.B}. Since

Second-order matching is known to be nondeter- free variables in eachf; are bounded inP by
ministic. Algorithms computing all the matches has Definition 1(iii), by definition of match the equation
been proposed in, for example, [9]. The contribution (A3.B)E =us, T’ should be satisfied. Therefore, a
of this paper, on the other hand, is to show that second-term B is a result of replacingz with j in T7’. By
order matching is deterministic if we restrict the pat- Definition 1(i), subterms; (1 <i < m) contain free
terns toDSP. variables and if we leave any occurrencesBfin

To begin with, let us introduce the important con- B, theniy.B will contain free variables. This results
cept of discharging subterms. Dischargifyg ..., E,, in generating an illegal substitution containing free
by y1, ..., ym in T means replacement of all the occur- variables. Instead, a ter® should be obtained by full
rences ofEy, ..., E, with fresh variablegn, ..., y, discharging; replacing all the occurrencesmiwith
respectively inT. One possible implementation is y in T, i.e.,(Ay.B)E =up, T’ AVi.E; 4 B. If some
given in Fig. 1. Intuitively, the function free variables still occur imB after the discharging,
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this results in illegal substitution. Otherwise, since 0Ne A q[ax; .- x;.Py — Ax1 -+ x0.T1]

argument is not a subterm of another argument by

Definition 1(ii), the order of replacing does not affect

the result of the match. Thus, the match is obtained

deterministically. O

Note that as in the proof, for discharging the
arguments of free variables infaSP, we can use any
discharging function satisfying the conditioy. B) E
=apy T' AVi.E; £ B. In the following, we use the
functiondischargefor discharging the arguments from
a term. We now give our main theorem below.

Theorem 3. If P isa DSP, there is at most a single
match ¢ suchthat¢p - P — T.

Proof. We use mathematical induction on the struc-
ture of the pattern.

Case (P = Ax.cE). There is no match if the cor-
responding term cannot be transformed infoc F by
an-conversion where the lengths BfandF are equal.
Otherwise, the matching can be decomposed imto
matchingsg; - Ax.E; — Ax.F; fori =1...m. By
the induction hypothesis, each matght- Ax.E; —
AX.F; is unique or there is no match in which case
¢; = fail. Thereforep’ = P — T is the unique match
or there is no match i’ is fail where¢/ =¢10---0
m-

Case(P = Ax.vE Av ¢ FV(P)). Similar to the first
case.

Case (P = Ax.vE Av e FV(P)). By Lemma 2, the

= M([Axg---x;.P1 = Axy - x1. T1xp41 - X7
if o < 1A PpandTy are notr-abstraction
M[AE.CE1 - Ep — AX.dTy--- Ty
= M[rx.Eq — Ax.Ty] o+ o M[AX.Ep — AX.Ty]
ifc=d
M[AxX;Eq-- Em — AX.X Ty T ]
= M[AX.Ex — 3Z.T1] o o M[AX.Ep — AX.Tp]
ifi=j
M[rx.pEq--- Em — Ax.T1]
={p—=>AyL---ym.B}
if Lyy---ym.B is closed
where
y1,..., ym are fresh variables
B = discharge[(y1, £1), -, (Ym, Em)]1T1
M[_] =fall

Fig. 2. The matching algorithm.

fail. In Fig. 2, the first case acts gsexpansion, so,
M[rx.p(cx) — c] returns M[rx.p(cx) — Ax.cx].

The second and the third cases correspond to the cases
in our proof of Theorem 3. If the heads of the pat-
tern and the term are equal and the lengths of their
arguments are the same, the rule is decomposed into

match generated by the pattern is unique or there is nosmaller ones. The fourth case which calls the func-

match. O

For example, consideP = Ax.p(cx)(dx) and the
term T = Ax.a(cx)(b(dx)) wherea, b, c andd are
constantsp andx are variables, ang occurs free in
P. To matchP againstT’, we replace:x anddx with
fresh variables1 andy; in T resulting in the unique
match{p = Ay1y2.ay1(by2)}.

4. An efficient deter ministic second-order
matching algorithm

Given a ruleP — T where P is a DSP, the al-
gorithm M[P — T], defined in Fig. 2 computes its
unique match if it exists. Otherwise it returns the spe-
cial match fail. For exampleM[c — Ax.d] returns

tion discharge for exhaustive discharging corresponds
to Lemma 2 M[rar.a ® sSumr — Lar.a x a + sumr]
is an example of the fourth case and computes the fol-
lowing match.
{® = Axy.

discharge] (y1, ), (y2, sumr)](a * a + sumr)}.

Formally, we can prove the soundness of the

algorithmM, i.e., M returns the unique match if there
exists one.
Theorem 4 (Soundness)f P isa DSP, then
pF-P—>T & ¢p=M[P—T]A¢#fail.

Proof. We prove it by induction on the structure of
the pattern. The proof is straightforward except for the
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case where the rule is in the forkx.pE1--- E,;, —
Ax.T1. We only show this case.
(&) Let

B = dl&harge[(yla El)a L] ()’nu Em)]Tl-
By the property ofdischarge, (,y.B)E = T1 holds.
Therefore, the following matching property holds.
{p+— Ay.B}F Ax.pE — Ax.Ty.

(=) By Theorem 3, there is at most a single match
¢ such that
¢FAx.pE1---Ep — AX.T1.

The form of the match should b= {p > Ay1---
ym.B} where

{yi=>E1,...,ym > En}B =qpy T1.

A term B should be made by replacing sorfie with

y; from Ty. By Definition 1(i), E; contains free vari-
ables. Thus ifB containsk;, theng is illegal match.
Therefore a ternB should be made by replacing all
the occurrenceE; with y; from Ty. This operation
matchesB = discharge[(y1, E1), ..., Ym, En)]T1. O

The complexity of our matching algorithm is sum-
marized in the following theorem. Ledize(r) be a
function computing a size of the term
sizec=1,
sizev=1,
size(t1tp) = 1+ Sizer, + Sizer,
size(\x.t) =1+ sizet.

Theorem 5 (Efficiency).Let P be a DSP, n be the
size of theterm T', and m be the size of the pattern P.
The time complexity of M[P — T] is O(m?n).

Proof. Except forthe second last case of the definition
of the matching algorithmM in Fig. 2, the time
complexity of M is straightforwardly linear in the

size of the pattern. For the second last case, the

function discharge traverses the term, calling the
function replace that checks for each argumeast.
Since equality check ineplace needs @m), replace
costs Qm?). Thereforadischarge costs Gm?n). O

Sincem is often small and bounded, andis much
smaller thann in practice, the algorithm is almost
O(). For a fixed pattern, the algorithm iS®).
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5. Conclusion

In this paper, we proposed a class of patterns
that have the unique second-order match. We believe
that the advantage of determinism is helpful for
a user to express his intention to the compiler of
program-transformation system in a more precise and
predictable way. And it makes possible for the second-
order matching to be used in functional languages
efficiently [7].

Our pattern is a simple and natural extension of
Miller's pattern [11] which has a single most general
unifier, and is a sort of a restriction of the two-
step valid pattern of Sittampalam and de Moor’s [14,
15]. But it is not linear time. They also developed
an efficient higher-order matching algorithm, one-step
matching algorithm which covers at least complete
second-order matches [5,14].

While the second-order matching algorithm is NP-
complete [1] and the implementations are expen-
sive [3,9], the restriction on patterns sometimes leads
to fast matching algorithms. Second-order pure match-
ing (even unification) with a bounded number of vari-
ables is PTIME [16]. Hirata, Yamada and Harao [8]
have studied the complexity of various second-order
matching. According to their classificatioRSP is a
predicate, namely any arguments of free variables in-
cludes no function variables. The matching problem of
a predicate is polynomial if it ibinary function-free,
namely, any function variables are at most 2-ary and it
includes no function constantsinear context match-
ing, a restricted form of linear higher-order matching,
is O(n2) [13]. They solve the problem by dynamic pro-
gramming with table of size @?) building from the
bottom up. Our restriction makes our matching algo-
rithm fast; given a fixed pattern, the time complexity
of our deterministic matching algorithm s linear in the
size of a term being matched.
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