
A Programmable Editor for Developing Structured Documents
based on Bidirectional Transformations

Zhenjiang Hu Shin-Cheng Mu Masato Takeichi

Department of Mathematical Informatics, University of Tokyo
7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
{hu,takeichi,scm}@mist.i.u-tokyo.ac.jp

Abstract

This paper presents a novel editor supporting interactive re-
finement in the development of structured documents. The
user performs a sequence of editing operations on the doc-
ument view, and the editor automatically derives an effi-
cient and reliable document source and a transformation
that produces the document view. The editor is unique in
its programmability, in the sense that transformation can
be obtained through editing operations. The main tricks
behind are the utilization of the view-updating technique
developed in the database community, and a new bidirec-
tional transformation language that cannot only describe
the relationship between the document source and its view,
but also data dependency in the view.

Keywords: XML, Presentation-oriented Editor, Document
Engineering, Functional Programming, Bidirectional Trans-
formation, View Updating

1 Introduction

XML [BPSM98] has been attracting a tremendous surge of
interest as a universal, queryable representation for struc-
tured documents. Everyday, a countless number of struc-
tured documents in XML are constructed, and so many ed-
itors [Sof04] are designed and implemented to support the
construction of XML documents. This has in part been
stimulated by the growth of the Web and e-commerce, where
XML has emerged as the de facto standard for representa-
tion of structured documents and information interchange.
While the existing XML editors are helpful for the creation
of the documents, they are rather weak to support devel-
opment of structured documents in the sense they hardly
provide powerful mechanism for dynamic refinement of the
structured documents.

Let us take a close look at the process of using exist-
ing editors with an example of construction of an address
book. It basically includes three steps: designing a suit-
able document type, constructing an XML document with
the designed type for storing information, and defining a
transformation for viewing the document. We may start by
defining an address book type (Figure 1), which allows an
arbitrary number of people’s addresses including a name,
some email addresses if there are, and a telephone number.
Then, we construct an XML document (Figure 2) of this
type to store address information. And finally, we define a

transformation (Figure 3) to display1 the address book in a
friendly way (Figure 4), say by sorting persons according to
the last names and adding an name index. Notice the dif-
ference between the two XML documents, the original XML
document in Figure 2 and the view in Figure 4. Besides
difference in their structures, the former has no redundancy
information, while the later does; e.g., names appear twice
in the view. The result of this development is a structured
document with three components: a data type definition, an
XML document representing the source data, and a trans-
formation for viewing the data.

While the final documents may be of static and physical
form, the documents themselves are a fluid, evolving object.
It is also observed that document development follows a life-
cycle similar to the development of computer programs, in
which the document is iteratively refined. However, the ex-
isting editors do not support this interactive refinement (up-
dating) very well:

• First, they treat the three components of structured
documents independently, which makes it hard to keep
them consistent with each other. Take the address book
example, if we want to make a change on the data type
by splitting the telephone number (tel) into two parts,
country code (ccode) and local code (tel), to share the
country code, we may refine the document type defini-
tion in Figure 1 to that in Figure 5. This refinement
requires corresponding changes on the XML document
and the transformation, which is difficult.

• Second, they expect the users to be XML experts know-
ing DTD, XML, and XSLT for the construction of the
three components of structured documents. This may
be rather disappointing to those who know very little
about XML (for example, whose who possessing merely
some basic knowledge of HTML), but still want to cre-
ate structured documents in their daily work. In fact,
more and more people nowadays want to be able to
create their structured documents in an user-friendly
manner, pretty much like how spreadsheets are created.
The intuitive interface of the latter contributes a lot to
its popularity.

In this paper, we propose a novel programmable editor
that supports interactive refinement during the development

1To simplify our presentation, we consider the view as another
XML data. It should be very straightforward to present this XML
data in another format with a suitable stylesheet description.

<!ELEMENT addrbook (person*)>
<!ELEMENT person (name, email*, tel)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT tel (#PCDATA)>

Figure 1: A DTD for the Address Book

<addrbook>
<person>
<name> Masato Takeichi </name>
<email> takeichi@acm.org </email>
<tel> +81-3-5841-7430 </tel>

</person>
<person>
<name> Zhenjiang Hu </name>
<email> hu@mist.i.u-tokyo.ac.jp </email>
<email> hu@ipl.t.u-tokyo.ac.jp </email>
<tel> +81-3-5841-7411 </tel>

</person>
<person>
<name> Shin-Cheng Mu </name>
<email> scm@mist.i.u-tokyo.ac.jp </email>
<tel> +81-3-5841-7411 </tel>

</person>
</addrbook>

Figure 2: An XML Document of the Address Book

<xsl:template match="/addrbook">
<addrbook>

<index>
<xsl:for-each select=’’person’’>

<xsl:sort select=’’name’’/>
<xsl:value-of select=’’name’’/>

</xsl:for-each>
</index>
<xsl:for-each select=’’person’’>

<xsl:sort select=’’name’’/>
<xsl:value-of select=’’person’’/>

</xsl:for-each>
</addrbook>
</xsl:template>

Figure 3: A Transformation in XSLT

<addrbook>
<index>
<name> Zhenjiang Hu </name>
<name> Shin-Cheng Mu </name>
<name> Masato Takeichi </name>

</index>
<person>
<name> Zhenjiang Hu </name>
<email> hu@mist.i.u-tokyo.ac.jp </email>
<email> hu@ipl.t.u-tokyo.ac.jp </email>
<tel> +81-3-5841-7411 </tel>

</person>
<person>
<name> Shin-Cheng Mu </name>
<email> scm@mist.i.u-tokyo.ac.jp </email>
<tel> +81-3-5841-7411 </tel>

</person>
<person>
<name> Masato Takeichi </name>
<email> takeichi@acm.org </email>
<tel> +81-3-5841-7430 </tel>

</person>
</addrbook>

Figure 4: A View of the Address Book in XML

<!ELEMENT addrbook (ccode, person*)>
<!ELEMENT ccode (#PCDATA)>
<!ELEMENT person (name, email*, tel)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT tel (#PCDATA)>

Figure 5: An DTD for the Address Book

2

of structured documents. Given a sequence of editing oper-
ations on the view and a data type definition for the final
view, an efficient and reliable structured document with the
three basic components can be obtained automatically. The
main trick behind this editor is a new bidirectional trans-
formation language describing the relationship among the
source data, the view, and the transformation between the
source data and the view.

Our main contributions can be summarized as follows.

• We, as far as we are aware, are the first to recog-
nize the importance of the view-updating technique in
the design of the editors for interactive development of
structured documents. The view-updating technique
[BS81, DB82, GPZ88, OT94, Abi99] has been inten-
sively studied in the database community, where modi-
fication on the view can be reflected back to the original
database. We borrow this technique and use it in the
design of our editor with a significant extension not
exploited before: editing operations can modify not
only the view but also the transformation (from the
database to the view).

• We have designed a powerful language for the speci-
fication of the relationship between the original data
and the view. Comparing to similar languages in
[Mee98, GMPS03], our language is more capable of de-
scribing data dependency, thanks to a new language
construct allowing duplication. The language is power-
ful enough to describe the editing operations (insert,
delete, move, and copy) as well as other important
transformations.

• We have successfully implemented our idea in a proto-
type editor. The editor is particularly interesting in its
programmability feature, and a unified presentation-
oriented interface for developing the three components
through editing operations on the view of the struc-
tured documents.

– Presentation Oriented: we provide a uniform
view-based editing interface for users to construct
and refine their documents. It looks like a tree
version of the spreadsheet, which is easy to use.

– Programmable: transformation programs can be
constructed though interactive editing opera-
tions. In fact, thanks to the bidirectional trans-
formation, the three basic components of struc-
tured documents can be automatically derived,
after the edition on the view.

The rest of the paper is organized as follows. We start by
giving a simple definition of structured documents in func-
tional notations, and demonstrate what our editor can do
in Section 2. After defining the bidirectional transformation
language that plays an important role in our editor in Sec-
tion 3, we propose the design principle and implementation
technique in Section 4. Related work and conclusions are
given in Sections 5 and 6 respectively.

2 Developing Structured Documents

In this section, we introduce the notations that will be
used to describe structured documents in this paper, before
demonstrating through a concrete example how our editor
can support development of structured documents.

data Addrbook = Addrbook [Person]
data Person = Person (Name, [Email], Tel)
data Name = Name String
data Email = Email String
data Tel = Tel String

Figure 6: Address Book Type in Haskell

addrbook = Addrbook
[Person (Name "Masato Takeichi",

[Email "takeichi@acm.org"],
Tel "+81-3-5841-7430")

Person (Name "Zhenjiang Hu",
[Email "hu@mist.i.u-tokyo.ac.jp",

Email "hu@ipl.t.u-tokyo.ac.jp"]
Tel "+81-3-5841-7411")

Person (Name "Shin-Cheng Mu")
[Email "scm@mist.i.u-tokyo.ac.jp"]
Tel "+81-3-5841-7411")]

Figure 7: Source Data for Address Book in Haskell

2.1 Representation of Structured Documents

A structured document is defined by a triple (T, D, X), where
T denotes the document type, D the document source that
has type T , and X the transformation to map the document
source the its view for display. The document displayed to
the suer is called the view. For instance, the structured doc-
ument in the introduction specifies T using DTD, D using
XML, and X using XSLT.

For conciseness, we choose the Haskell-like2 notations in-
stead of XML to represent structured documents. Figures 6,
7 and 8 specify the structured document in the introduction
in our notation; their correspondence is rather clear except
for the transformation which will be explained in detail in
Section 3.

Our formulation is significantly simplified from the XML
standard in many ways. First, we omitted attributes, which
should not be too difficult to cope with by some simple ex-
tension. Second, we do not allowed IDRef to refer to other
nodes through a unique identifier. This will be one of our
future work.

2.2 Generic Representation

Any tree constructed in the way described above is type-
checked by the Haskell type system, which is a good thing
for the final document. However, for the interactive refine-
ment of the documents, we should allow inconsistency dur-
ing document development. To this end, we make use of the
following generic tree that represents contents of any XML
document, independent of all DTDs.

data Tree = N String [Tree]

The following gives an example of this representation of
the the document source in Figure 7.

2In fact, we could have chosen HaXML [WR99], XDuce [HVP00]
or CDuce [BCF03] which are designed for specification of XML doc-
uments in functional languages. Instead, we used only the standard
Haskell notations, therefore readers need only the basic knowledge of
functional programming to understand this paper.

3

sortX ;
applyX [] Dup ;
applyX [1] (modifyRootX “Index′′ ; Map keepX) ;
copyX [1] [2, 1] ;
deleteX ;
hoistX “Dup′′

Figure 8: Transformation in X

addrbook = N "Addrbook"
[N "Person"
[N "Name" [N "Masato Takeichi" []],
N "Email" [N "takeichi@acm.org" []],
N "Tel" [N "+81-3-5841-7430" []]],

N "Person"
[N "Name" [N "Zhenjiang Hu" []],
N "Email" [N "hu@mist.i.u-tokyo.ac.jp" [],

N "hu@ipl.t.u-tokyo.ac.jp" []],
N "Tel" [N "+81-3-5841-7411" []]],

N "Person"
[N "Name" [N "Shin-Cheng Mu" []],
N "Email" [N "scm@mist.i.u-tokyo.ac.jp" []],
N "Tel" [N "+81-3-5841-7430" []]]]

It seems that the generic representation does not distin-
guish tag names from texts, since both of them are repre-
sented by strings. As a matter of fact, we can think of labels
attached to inner nodes as tag names, and labels to leaves
as text.

2.3 Development of Structured Documents: An
Example

We view the development of structured documents as the
process of constructing a triple (T, D, X) meeting the re-
quirements the designer had in mind. Such a development
is an interactive refinement process, therefore, it is not rea-
sonable to expect consistency of the document all the time.
This is why we introduce the generic form, and its use will
be shown in this section.

We illustrate the main idea of our editor by going
through the development of the address book in the intro-
duction. From scratch, we start with an empty document
with only one node labeled "Root":

N "Root" []

In the demonstration to follow, we will construct, via in-
teraction with the editor, the triple (T, D, X) like those in
Figures 6, 7, and 8, such that the resulting view looks like
that in Figure 4.

The node or subtree in focus, on which the user performs
editing operations, is selected by a cursor. Here, for simplic-
ity, we use a path to denote the subtree we select. A path is
a sequence of positive integers [a1, a2, . . . , an], denoting the
subtree obtained by going into the a1-th child of the root,
then into the a2-th child, and so on. For example, [] denotes
the root node (or the entire tree), and [1] denotes the first
child of the root.

The complete list of operations the user can perform on
the focused subtrees is given in Section 4. In this section, we
will only make use of the following operations: insert, copy,

duplicate, delete, and editing of the names of tags. We first
change the label "Root" to "Addrbook",

N "Addrbook" []

and, by the insert operation, we insert a name and some
contacts information as a subtree of the root (the node at
position []), which could be done by inserting nodes one by
one.

N "Addrbook"
[N "Person"

[N "Name" [N "Masato Takeichi" []],
N "Email" [N "takeichi@acm.org" []],
N "Tel" [N "+81-3-5841-7430" []]]]

We may continue to add another person’s contacts by copy-
ing the subtree rooted at [1] using the copy operation. The
copied tree becomes a sibling of the original:

N "Addrbook"
[N "Person"

[N "Name" [N "Masato Takeichi" []],
N "Email" [N "takeichi@acm.org" []],
N "Tel" [N "+81-3-5841-7430" []]],

N "Person"
[N "Name" [N "Masato Takeichi" []],
N "Email" [N "takeichi@acm.org" []],
N "Tel" [N "+81-3-5841-7430" []]]]

We then change values at the nodes to the second person’s
name and contacts:

N "Addrbook"
[N "Person"

[N "Name" [N "Masato Takeichi" []],
N "Email" [N "takeichi@acm.org" []],
N "Tel" [N "+81-3-5841-7430" []]],

N "Person"
[N "Name" [N "Zhenjiang Hu" []],
N "Email" [N "hu@mist.i.u-tokyo.ac.jp" []],
N "Tel" [N "+81-3-5841-7430" []]]]

It should be noted that we are editing both the source
document and the view, though we are not quite aware of
this fact so far. The transformation X, is currently simply
the identity function. Now suppose we want to sort persons
according to their names, by selecting all the persons and
apply a sort transformation on it. The result looks like

N "Addrbook"
[N "Person"

[N "Name" [N "Zhenjiang Hu" []],
N "Email" [N "hu@mist.i.u-tokyo.ac.jp" []],
N "Tel" [N "+81-3-5841-7430" []]],

N "Person"
[N "Name" [N "Masato Takeichi" []],
N "Email" [N "takeichi@acm.org" []],
N "Tel" [N "+81-3-5841-7430" []]]]

What is sorted is the view. The source remains the same,
while the transform X now equals the function performs
the sorting. In Section 4 we will formally describe how each
components of the triple are changed by each operation.

Now we want to make an index of names of people in the
address book. To do so, we first make a copy of the address
book by a duplicate operation:

4

N "Dup"
[N "Addrbook"

[N "Person"
[N "Name" [N "Zhenjiang Hu" []],
...],

N "Person"
[N "Name" [N "Masato Takeichi" []],
...]],

N "Addrbook"
[N "Person"

[N "Name" [N "Zhenjiang Hu" []],
...],

N "Person"
[N "Name" [N "Masato Takeichi" []],
...]]]

and then keep only the names by repeatedly deleting the rest
of the information, from the duplicated address book (and
change the tag "Addrbook" to "Index"):

N "Dup"
[N "Index"

[N "Name" [N "Zhenjiang Hu" []],
N "Name" [N "Masato Takeichi" []]]

N "Addrbook"
[N "Person"

[N "Name" [N "Zhenjiang Hu" []],
...],

N "Person"
[N "Name" [N "Masato Takeichi" []],
...]]]

It should be remarked that the duplication is one of the
most important features of our system. It is different from
the copy operation, which we performed just now to add
a new person in the address book. Copied data are inde-
pendent from each other. On the other hand, the dupli-
cate operation indicates that the subtree and its duplicate
should be synchronized. In this example, deletion, inser-
tion, or modification of a person’s information at one side
causes corresponding change on the other side, unless we ex-
plicitly inform the editor to perform the editing operations
independently.

The keep operation in the above, for example, is such
an independent transformation. When it was applied to the
subtree at [1] to extract the names, the main address book
at [2] remains unchanged. On the other hand, if we insert
the following entry

N "Person"
[N "Name" [N "Shin-Cheng Mu" []],
N "Email" [N "scm@mist.i.u-tokyo.ac.jp" []],
N "Tel" [N "+81-3-5841-7411" []]]

to the "Addrbook" subtree at [2] as its last child, the name
“Shin-Cheng Mu” will automatically appear in the index of
names, resulting in:

N "Dup"
[N "Index"

[N "Name" [N "Zhenjiang Hu" []],
N "Name" [N "Shin-Cheng Mu" []]],
N "Name" [N "Masato Takeichi" []]

N "Addrbook"
[N "Person"

[N "Name" [N "Zhenjiang Hu" []],

...],
N "Person"
[N "Name" [N "Shin-Cheng Mu" []],
...]],

N "Person"
[N "Name" [N "Masato Takeichi" []],
...]]]

Note also that although the entry is inserted (by the user)
as the last child of the ‘‘Addrbook in the view, the resulting
view has both the entries under the ‘‘Addrbook’’ and the
names under the ‘‘Index’’ sorted.

Finally, we tell the system that the type of the view
should be the following

data Addrbook = Addrbook (Index, [Person])
data Index = Index [Name]
data Person = Person (Name, [Email], Tel)
data Name = Name String
data Email = Email String
data Tel = Tel String

and our system automatically returns the triple (T, D, X)
as in Figures 6, 7 and 8.

We summarize the important features of our pro-
grammable editor as follows.

• Our editor is presentation-oriented (view-oriented),
with which the developer can directly edit the view,
the exact display of the document. This WYSIWYG
style is more friendly than existing editors. Those with
little knowledge about XML will feel easy to use this
system to develop their structured documents.

• Our editor allows simple description of data depen-
dency in the view by the duplicate operation, and pro-
vides an efficient solution to keep consistency of the
data in the view. As far as we are aware, this is the
first structured document editor with local data syn-
chronization.

• Our editor integrates the three components of a struc-
tured document in the view displayed to the user. The
source data and the transformation are gradually built
while the user edits the view, before the user finally
imposes a type on the view.

3 A Bidirectional Transformation Language

Our editor is view-oriented, allowing users to develop their
structured documents by directly editing the view, while
producing the three components of a structured docu-
ment automatically. This view-oriented environment re-
quires a mechanism to relate the three components with
the view. We borrow the view-updating technique [BS81,
DB82, GPZ88, OT94, Abi99], which has been intensively
studied in the database community. Given a database and
a query which produces a view from the database, the view-
updating technique is to reflect view modification upon the
database. Though the idea is very similar, there are two ma-
jor difficulties in using this technique in our view-oriented
editor.

• Our view may contain local data dependency as seen
in Section 2 where the same name appears twice in the
view), which hardly happens in a view of database.

5

• Our view modification should be reflected not only on
the source data, but also on the transformation. In
other word, the transformation (query) part, which is
assumed to be fixed in the existing view-updating tech-
nique, should be modifiable in our framework.

In this section, we extend the existing bidirectional trans-
formation languages [Mee98, GMPS03] to a more powerful
language for specification of the relationship between source
data and view. This transformation language plays a very
important role in the design of our editor (see Section 4).

3.1 Bidirectionality

Before explaining our language, we clarify what we mean by
being bidirectional. Following the convention in [GMPS03],
we call the type of source documents C (concrete view) and
that of target documents A (abstract view). They are both
embedded in Tree but we nevertheless distinguish them for
clarity. A transformation x defined in X is associated with
two functions. The function φx :: C → A maps the concrete
view to an abstract view, which is displayed and edited by
the user. The function �x:: C × A → C takes the edited
abstract view and the original concrete view, and returns
an updated concrete view. In [GMPS03] they are called get
and put respectively.

We call a transformation x bidirectional if the following
two properties hold:

PUT-GET : φx (c �x a) = a where a = φx c
GET-PUT : c′ �x (φx c′) = c′ where c′ = c �x a

The GET-PUT property says that if c′ is a recently updated
concrete view, mapping it to its abstract view and immedi-
ately performing the backward update does not change its
value. Note that this property only needs to hold for those
c′ in the range of �x. For an arbitrary c we impose the
PUT-GET requirement instead. Let a be the abstract view
of c. Updating c with a and taking the abstract view, we
get a again.

Unlike in [Mee98, GMPS03], we do not require the PUT-
GET property to hold for arbitrary a, nor the GET-PUT
property for arbitrary c′. In [Mee98, GMPS03], the two
properties are stronger because it is not allowed to duplicate
values in the concrete view. Once we introduce duplication
into our language, however, an editing action at one loca-
tion of the abstract view may cause corresponding changes
at other locations. Therefore we need an extra φx to per-
form the change in the abstract view. The two bidirectional
properties above guarantees that no further updating is nec-
essary.

A final remark: a similar pair of properties, that two
functions form inverses of each other in restricted ranges, is
true of Galois-connected functions. However, the fact that
�x takes two arguments makes it difficult to formulate the
bidirectionality properties in terms of a Galois connection.

3.2 The Language X

The syntax of the language X for specifying bidirectional
transformation is given in Figure 9. Primitive transfor-
mations are denoted by non-terminal B. They can be
composed to from more complicated transformations by
one of the combinators defined in X. The language looks

X ::= B { primitives }
| X ; X { sequencing }
| X ⊗ X { product }
| If P X X { conditional branches }
| Map X { apply to all children }
| Fold X X { fold }

B ::= GFun (f, g) { Galoi function pairs }
| NFun f { a simple function }
| Dup { duplication }

Figure 9: The Language X for Specifying Bidirectional
Transformations

very similar to the bidirectional languages proposed in
[Mee98, GMPS03]. The most important difference lies in
the new language construct Dup, which enables description
of data dependency inside the view.

In this section, we will focus on how to use the language
to describe transformation of our interest. An important
property of the language X is the following theorem, whose
proof is omitted due to space limitation.

Theorem 1 (Bidirectionality of X)
Any transformation described in X is bidirectional. �

3.2.1 Primitive Transformations

Rather than giving a fixed set of primitive transformations
as in [GMPS03], we adopt a general way to define two classes
of primitive transformations — the bidirectional primitives
(GFun) and the unidirectional ones (NFun). Together with
the special primitive Dup, they are described below.

Duplication

In the forward direction, the function φDup generates two

copies of its input.

φDup c = N “Dup” [c, c]

In the backward direction, �Dup checks which of the two

copies was touched by the user by comparing them with the
original view c, and keeps only the changed one.

c �Dup (N “Dup” [a1, a2]) = a2 if a1 = c

= a1 if a2 = c
= a1 otherwise

Here we assume that the user performs only one editing
action before an updating event is triggered. Therefore, if
none of a1 and a2 equals c, it must be the case that a1 = a2,
because they result from the same editing action.

The Dup operator is the only means in X to specify value
dependency among different parts of the view — when one
of the copies is edited by the user, the other should change as
well. This is achieved by a backward update �Dup followed

by a forward transform φDup. The backward phase updates

the touched value. The forward phase then overwrites the
copies in the abstract view with new values.

6

The presence of Dup makes φx, where x uses Dup, a
non-total transformation. This is in contrast with [Mee98,
GMPS03], where all transformations are bi-total. The defi-
nition of �Dup is mostly about designing a reasonable way

to “fill in the missing slots”.

Bidirectional Primitive Transformations

A bidirectional primitive GFun (f, g) consists of two func-
tions f and g satisfying:

INV1 : f ◦ g ◦ f = f
INV2 : g ◦ f ◦ g = g

That is, g is the inverse of f in the range of f . The property
is satisfied by all Galois-connected pairs of functions, thus
the name GFun. The bidirectional semantics of GFun (f, g)
is given by

φGFun (f,g)
a = f c

c �GFun (f,g)
a = g a

In words, the abstract view is obtained by applying f to
the concrete view, while the concrete view can be obtained
by applying g to the abstract view, ignoring the original
concrete view. That φGFun (f,g)

and �GFun (f,g)
satisfy the

bidirectional property is a direct consequence of INV1 and
INV2.

Let us see some useful primitive transformations defined
in this way. The simplest transformation is the identity
transformation:

idX = GFun (id, id)

which relates two identical data, and is defined by a pair of
two identity functions. In this example, the pair of functions
are inverse of each other.

Another interesting transformation is defined by

sortX = GFun (sortT, sortT)

which relates the concrete data with the abstract data such
that the children of the root in the abstract view are sorted.
The function sortT sorts the subtrees of the root, according
to the first child value of each subtree. It is clear that sortT
is not invertible, but sortT and sortT do satisfy the INV
property.

Similarly, we may define other primitive transformations
that are useful for manipulating tree locally.

• swapX i j swaps the ith and jth subtrees of the root.

• hoistX n: If the root has label n and a single child v,
then the result is v.

• newRoot n makes the current tree the single child of a
new root with label n.

• exchangeX exchanges the root with the node of the left-
most child tree that has no child.

• insertHoleX inserts Ω, a special tree denoting a hole, as
the leftmost child of the root.

• deleteHoleX deletes the hole appearing as the leftmost
child of the root.

• replaceHoleX v replaces the hole with tree v.

Restrictive Primitive Transformations

Not all primitive transformations we wish to have satisfy the
INV property. One example is the constX transformation
that does not care about the concrete view but only requires
the abstract view to be a constant tree. Another example is
the numberX transformation that relates the concrete view
with the abstract view such that the abstract view shows
the number of the children of the root in the concrete view.

We specify these transformations using a single function

NFun f

only showing how to map the concrete view to the abstract
view. The bidirectional semantics of this kind of transfor-
mation can be defined as follows.

φNFun f
a = f c

c �NFun f
a = c

Notice that c �NFun f
always returns the original concrete

view c, and ignores any change on the abstract view a.

Below are the definitions of the two transformations men-
tioned above.

constX v = NFun (λx. v)
numberX = NFun (length ◦ children)

In a sense, transformations defined by NFun f are not
really “bidirectional”, since all changes on the abstract view
are simply ignored. However, it is still very helpful when
used together with Dup.

3.3 Transformation Combinators

The set of transformation combinators is useful to construct
bigger transformations. An informal explanation of these
combinators is given in Figure 10. Most of the combinators
are essentially the same as those in [GMPS03]. There are
three new combinators, namely duplication, condition, and
fold. The duplication combinator is to introduce data de-
pendency inside a document. Different from the reference
structure for sharing data, the duplication transformation
treats in the same way the duplicated part and the original
part. The condition combinator is important to apply differ-
ent transformations according to the context or information
of the local tree, and the fold combinator is useful to specify
iterative processing on documents.

3.3.1 Sequencing

Given two bidirectional transformations x1 and x2, the
transformation x1; x2 informally means “do x1, then do x2”.
Its bidirectional semantics is given by

φx1;x2 = φx2 ◦ φx1

c �x1;x2 a = c �x1 ((φx1 c) �x2 a)

The forward transform φx1;x2 is simply the sequential com-
position of φx1 and φx2 . To update the concrete view c with
a modified abstract view a, we need to know what the inter-
mediate concrete view was. It is computed by φx1 c. The
expression (φx1 c) �x2 a then computes an intermediate
abstract view, which is used to update c with �x1 .

7

Dupdup

f

g

f

GFun(f,g)

NFun f

Dup

x1;x2
x1 x2

x2

x1

Map x
x

x1 x x2

Fold x1 x2

Fold x1 x2

x1

Figure 10: Intuitive Explanation of Transformation Combinators

3.3.2 Product

The product construct x1⊗x2 behaves similar to products in
ordinary functional languages, apart from that we are work-
ing on trees rather than pairs. The forward transformation
is defined by

φx1⊗x2 (N c (c1 : cs)) = N a (a1 : as)

where a1 = φx1 c1

N a as = φx2 (N c cs)

The input tree is sliced into two parts: the left-most child,
and the root plus the other children. The transform x1 is
applied to the left-most child, while x2 is applied to the
rest. The result is then combined together. The backward
updating is defined by updating the two slices separately.

(N c (c1 : cs)) �x1⊗x2 (N a (a1, as)) = N c′ (c′1 : cs′)

where c′1 = c1 �x1 a1

N c′ cs′ = (N c cs) �x2 (N a as)

3.3.3 Conditional Branches

In the forward direction, the combinator If p x1 x2 applies
the transform x1 to the input if the input satisfies the pred-
icate p. Otherwise x2 is applied.

φIf p x1 x2
c = φx1 c , if p c

= φx2 c , otherwise

In the backward direction, we check the root label to deter-
mine whether to apply �x1 or �x2 to the modified view.

c �If p x1 x2
a = c �x1 a , if p c

= c �x2 a , otherwise

3.3.4 Map

Given the well-known function map on lists, defined by

map f [] = []
map f (a : x) = f a : map f x

The forward transform of Map x simply applies the trans-
formation x to all subtrees of the given tree, leaving the root
label unchanged.

φMap x
(N c cs) = N c (map φx cs)

The backward updating is defined by updating the subtrees
separately,

(N c cs) �Map x
(N c as) = N c (zip�x cs as)

where the function zip is defined as follows.

zip⊕ [] [] = []
zip⊕ (a : x) (b : y) = a ⊕ b : zip⊕ x y

3.3.5 Fold

The transform Fold x1 x2 is defined like a fold on rose trees.
The transform x2 is applied to leaves, x1 to internal nodes.
Its forward transform is defined by

φFold x1 x2
(N c []) = φx2 (N c [])

φFold x1 x2
(N c cs) = φ

(Map (Fold x1 x2));x1
(N c cs)

In the base case, we simply apply x2 to the leaf. In the
recursive case, Fold x1 x2 is applied to all subtrees of the
input tree, before x1 is applied to the result, thus the use of
sequencing.

In the backward direction, we use the cached copy of
the concrete view to determine the depth of recursion to go

8

into. Being able to reuse Map and sequencing significantly
simplifies the definition.

(N c []) �Fold x1 x2
a = (N c []) �x2 a

c �Fold x1 x2
a = c �

(Map (Fold x1 x2));x1
a

If we expand the second clause of the definition, we get

(N c cs) �Fold x1 x2
a = N c′ cs′

where (N c′ as′) = (N c as) �x1 a
as = map φFold x1 x2

cs

cs′ = zip�Fold x1 x2
cs as′

Like in sequencing, we need an application of
map φFold x1 x2

to create an intermediate value in

order to perform �x1 . The subtrees are then updated using
zip�Fold x1 x2

.

3.4 Editing as Bidirectional Transformation

With the language X, we are able to define the following
important editing operators as bidirectional transformation.

insertX v = insertHoleX ;
(replaceHoleX v) ⊗ idX

deleteX = (constX Ω) ⊗ idX ;
deleteHoleX

modifyRootX n = insertX (N n []) ;
exchangeX ;
deleteX

We may insert some document v as the leftmost child of
the root using insertX v, or delete the leftmost child using
deleteX, or modify the root node information with a new
name n using modifyRootX n.

Other editing operators like moveX and copyX can be
defined via a combination of insertX and deleteX. Another
useful editing operator, keepX, which is to return the left-
most child tree, could be naively realized by a sequence of
deletion operations. But we can define it more efficiently by

keepX = idX ⊗ (constX Ω) ;
hoistX (RootΩ)

where RootΩ denotes the root node of the Ω tree. In fact,
there are many ways of defining an editing transformation;
one may go extremely to define them just as basic trans-
formations in terms of NFun with a non-invertible function.
Compared with another definition of insertX’ by

insertX’ v = NFun f
where f (N n ts) = N n (v : ts)

which forbids any modification on the view, our definition of
insertX imposes no restriction at all on editing of the view.

So far, a transformation is applied to the whole tree.
More often, we want to apply a transformation x to the
subtree at path p but leave other parts of the tree unchanged.

applyX [] x = x
applyX (i : p) x = swapX 1 i ;

applyX p x ⊗ idX ;
swapX 1 i

Note that the applyX behaves as a higher order transforma-
tion; it accepts a transformation and return a new transfor-
mation as the result.

4 The Programmable Editor

Our editor serves as an view-oriented environment support-
ing interactive development of structured documents. It al-
lows users to develop structured documents in a WYSIWYG
(what you see is what you get) manner, and automatically
produces the three components of a structured document.

4.1 Editing Operators

We consider the following editing operators.

E ::= InsertE p v
| DeleteE p
| CopyE p1 p2

| MoveE p1 p2

| FieldEditE p l
| DuplicateE p
| TransformE p x

They are standard except for the last two operators. For
instance, InsertE p v inserts a tree v as the first child of the
node at path p, and FieldEditE p l modifies the label of the
node at path p to l. The last two new editing operators,
DuplicateE p and TransformE p x, are the special features in
our editor: DuplicateE p duplicates the tree at path p and
the two trees should be kept identical, and TransformE p x
applies a bidirectional transformation x to the tree at path
p.

The state of the editor is a triple

S = (c, x, a)

where c and a denote the internal data and the view respec-
tively, and x denotes a bidirectional transformation. Each
state S = (c, x, a) holds the following SYNC property.

a = φx c
c = c �x a

This SYNC property expresses the relationship among the
three elements in a state, and the bidirectionality of x en-
sures an automatic adjustment among the three elements in
case one of them is modified. Let (c, x, a) be a given state.

• If c changes to c′, the new state is (c′, x, φx c);

• If x changes to x′, the new state is (c, x′, φ′
x c).

• If a changes to a′, the new state is (c �x a′, x, φx (c �x

a′));

We define the following functions for the above adjustments.

Acx (c, x, a) = (c, x, φx c)
Aa (c, x, a) = Acx (c � a, x, a)

The operational semantics of the editing operators is
given in Figure 11. Each editing operator is a state trans-
former. Given the state (c, x, a), the operator InsertE p v is
to insert a tree v to the view a by a general tree insertion
function insert, and to change the path expressions in the
transformation x so that the nodes at these paths refer to
the same ones. Note that insP x p is a function to “increase”
some node number in some paths in x. Let p = p1++[a], and
p′ be a path expression in x satisfying p′ = p1++ [b]++ p2 and

9

[|[InsertE p v]]| (c, x, a) = Aa (c, incP x p, insert p v a)
[|[DeleteE p]]| (c, x, a) = Aa (c, decP x p, delete p a)
[|[CopyE p1 p2]]| (c, x, a) = Aa (c, incP x p2, copy p1 p2 a)
[|[MoveE p1 p2]]| (c, x, a) = Aa (c, incP (decP x p1) p2, move p1 p2 a)
[|[FieldEditE p l]]| (c, x, a) = Aa (c, x, fieldEdit p l a)
[|[DuplicateE p]]| (c, x, a) = Acx (c, (x; applyX p Dup), a)
[|[TransformE p x]]| (c, x, a) = Acx (c, (x; applyX p x)), a)

Figure 11: The Operational Semantics of the Editing Operators

b > a, then p′ will be changed to p1 ++ [b + 1] ++ p2. Other
editing operators like deleteE, copyE, moveE, and fieldEditE
are defined similarly. The duplicateE and transformE are two
editing operators that change the transformation x. Thanks
to the SYNC property of the editor state, their semantics is
very clear.

Note the difference between the two editing operations
in our editor:

InsertE p v
TransformE p (insertX v)

The former inserts a tree to the view and propagates this
change to other places of the view, while the later performs
an independent insertion on the view, causing no changes
elsewhere. Note also that not any editing sequence is valid
in our system. For example, the view produced by a re-
strictive primitive transformation is not editable by InsertE.
However, it can be modified by an independent editing op-
eration.

4.2 Producing Final Structured Documents

This section explains how to produce the three components
for a structured document. Recall that in Section 2 the
three components of a structured document is a document
type, a document source which does not have redundant
information, and a transformation that produces the final
visible structured document.

The first two elements of the editor state (c, x, a) almost
give the source document and the transformation we want to
have. What is remained to do is to find a suitable document
type to structure c and to make x a transformation accepting
typed document sources. The difficult lies in finding the
document type. One way is to use the automatic extraction
techniques [Chi02, GGR+00] to extract the document type
information from c, however this approach is effective only
when there is large amount of sample documents, which is
not really suitable in our situation.

We adopt another approach. We ask the users to provide
a type for the view (see our example in Section 2.3), and we
infer types for the document source and the transformation.
To do so, we borrow the idea from [PV00], where given a
DTD for the XML source data and a query, an inference
system derives a tight DTD for the view. Since our trans-
formations are built up upon primitive transformations in
terms of GFun (f, g) and NFun f , we can utilize the infer-
ence algorithms in [PV00], if the types for functions used in
the primitive transformations are given. We hope to design
a language to define the functions used in primitive transfor-
mations and derive their types automatically in the future.

4.3 Infinite Undo/Redo

A nice side effect of bidirectional transformations in our edi-
tor is the ability to implement infinite numbers of operations
of undo/redo. The following set of equations indicate that
for any editing operations, there always exists another edit-
ing operation to recover the state.

[|[DeleteE p]]| ([|[Insert p v]]| s) = s
[|[InsertE p (s|p)]]| ([|[InsertE p v]]| s) = s
[|[DeleteE p2]]| ([|[CopyE p1 p2]]| s = s
[|[InsertE p1 (s|p1)]]| ([|[DeleteE p2]]| ([|[MoveE p1 p2]]| s)) = s
[|[FieldEditE p (root(s|p))]]| ([|[FieldEditE p n]]| s) = s
[|[undoX]]| ([|[DuplicateE p]]| s) = s
[|[undoX]]| ([|[TransformE p]]| s) = s

Here s|p denotes the subtree in the view s at the path p,
root v returns the label of the root node of the tree v. undoX
is a new editing operation for undoing the last transforma-
tion. Its semantics can be defined by

[|[undoX]]| (c, x, a) = Acx(c, deleLast x, a)

where deleLast (x1; x2) = x1.

5 Related Work

There are plenty of XML editors [Sof04], which have been
designed and implemented for supporting development of
structured documents in XML. Most of them, such as XML-
Spy [Kim02], develop structured documents in the order of
DTD, document content, and presentation. These kinds of
tools cannot effectively support interactive document devel-
opment, as strongly argued by researchers [FQA88, VRL00]
in the field of document engineering. Moreover, these tools
require developers to have much knowledge about DTD,
XML and XSLT. In contrary, our editor provides a single
integrated WYSIWYG interface, and requires less knowl-
edge about XML.

The most related system to ours is Poxima [SJ03, Jeu04],
a single presentation-oriented generic editor designed for all
kinds of XML-documents and presentations. It is very sim-
ilar to our system; it is also presentation orient and allows
description of transformation and computation over view
through editing operations. However, for each transforma-
tion and computation, users must prepare two functions to
explicitly express the two-way transformation. In contrast,
we provide a bidirectional language with the view-updating
technique, facilitating bidirectional transformation. An-
other similar system is the TreeCalc system [THK+03], a
simple tree version of the spreadsheet system, but it does
not support structure modification on the view.

Our representation of the editor state by a triple (the
document source, and transformation, and the view) is in-
spired by the work on view-updating [BS81, DB82, GPZ88,

10

OT94, Abi99] in the database community, where modifi-
cation on the view can be reflected back to the original
database. We borrow this technique with a significant ex-
tension that editing operations can modify not only the view
but also the query, which is not exploited before. Since our
transformation language does not have the JOIN operator,
the problem of the costive propagation of deletion and an-
notation through views [Pet02] does not happen in our case.

The design of the bidirectional transformation language
X learns much from the lens combinators in [GMPS03],
where a semantic foundation and a core programming lan-
guage for bi-directional transformations on tree-structured
data are given. The lens combinators cannot describe de-
pendency inside the view. This is not the problem in the
context of data synchronization, but has to be remedied in
our view-oriented editor. Our language with duplication
makes dependency clearly described. Another very much
related language is that given by Meertens [Mee98], which
is designed for specification of constraints in the design of
user-interfaces. Again the language cannot deal with depen-
dency in the view.

Our idea of duplication in X is influenced by the in-
vertible language in [GK03], where duplication is considered
as the inverse of equality check and vice versa. In inverse
computation, an inverse function computes an input merely
from an output, but in bidirectional transformation, a back-
ward updating can use both the output and the old input
to compute a new input. Therefore adding duplication to a
bidirectional language needs a more involved equality check
mechanism. It should be interesting to see if inverse trans-
formation with duplication can implement the view updat-
ing, and to compare these two approaches. An attempt has
been made in [MHT04].

6 Conclusions

In this paper, we have proposed a presentation oriented edi-
tor suitable for interactive development of structured docu-
ments. A novel use of the view updating technique in the ed-
itor, the duplication construct in our bidirectional language,
and the mechanism of changing transformation though edit-
ing operations, play a key role in the design of our editor
system. The prototyped system implemented based on the
system shows the promise of this approach.

This work is still in an early stage, and there is much
work to do. Particularly, rather than designing a new bidi-
rectional language, we are interested to see if it is possible
to make the existing transformation languages like XSLT to
be efficiently bidirectional. By efficiency, we means there is
as many editable parts as possible in the view produced by
XSLT.

Acknowledgments

We wish to thank Atsushi Ohori for introducing us the work
on the view updating technique, which actually motivated
this work. We should thank Dongxi Liu, Yasushi Hayashi,
Keisuke Nakano, and Shingo Nishioka, the PSD project
members in University of Tokyo, for stimulating discussions
on the design and implementation of this editor, and thank
our students Kento Emoto, Kazutaka Matsuda, and Aki-
masa Morihata for helping us to implement the prototype
system.

References

[Abi99] Serge Abiteboul. On views and XML. In Pro-
ceedings of the 18th ACM SIGPLAN-SIGACT
symposium on Principles of Database Systems,
pages 1–9. ACM Press, 1999.

[BCF03] V. Benzaken, G. Castagna, and A. Frisch.
Cduce: An xml-centric general-purpose lan-
guage. In Proceedings of 2003 ACM SIG-
PLAN International Conference on Functional
Programming. ACM Press, 2003.

[BPSM98] Tim Bray, Jean Paoli, and C.M. Sperberg-
McQueen. Extensible markup language (xml)
1.0. 1998.

[BS81] P. A. Bernstein and N. Spyratos. Updating
semantics of relational views. ACM TODS,
6(4):557–575, 1981.

[Chi02] Boris Chidlovskii. Schema extraction from
xml collections. In Proceedings of the second
ACM/IEEE-CS joint conference on Digital li-
braries, pages 291–292. ACM Press, 2002.

[DB82] U. Dayal and P. A. Bernstein. On the correct
translation of update operations on relational
views. ACM TODS, 7(3):381–416, 1982.

[FQA88] R. Furuta, V. Quint, and J. André. Interactively
editing structured documents. Electronic Pub-
lishing Origination, Dissemination, and Design,
1(1):19–44, 1988.

[GGR+00] Minos Garofalakis, Aristides Gionis, Rajeev
Rastogi, S. Seshadri, and Kyuseok Shim. Xtract:
a system for extracting document type descrip-
tors from xml documents. In Proceedings of the
2000 ACM SIGMOD international conference
on Management of data, pages 165–176. ACM
Press, 2000.

[GK03] Robert Glück and Masahiko Kawabe. A pro-
gram inverter for a functional language with
equality and constructors. In Atsushi Ohori, ed-
itor, Programming Languages and Systems. Pro-
ceedings, volume 2895 of Lecture Notes in Com-
puter Science, pages 246–264. Springer-Verlag,
2003.

[GMPS03] Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierc, and Alan Schmitt. A language
for bi-directional tree transformations. Techni-
cal Report Technical Report MS-CIS-03-08, De-
partment of Computer and Information Science
University of Pennsylvania, August 2003.

[GPZ88] G. Gottlob, P. Paolini, and R. Zicari. Properties
and update semantics of consistent views. ACM
TODS, 13(4):485–524, 1988.

[HVP00] Haruo Hosoya, Jerome Vouilon, and Banjamin
Pierce. Regular expression types for xml. In Pro-
ceedings of 2000 ACM SIGPLAN International
Conference on Functional Programming, pages
11–22. ACM Press, 2000.

11

[Jeu04] Johan Jeuring. Implementing a generic editor.
In 2nd Workshop on Programmable Structured
Documents, February 2004.

[Kim02] Larry Kim. The Official XMLSPY Handbook.
John Wiley & Sons, 2002.

[Mee98] Lambert Meertens. Designing con-
straint maintainers for user interaction.
http://www.cwi.nl/~lambert, June 1998.

[MHT04] S.C. Mu, Z. Hu, and M. Takeichi. An injec-
tive language for reversible computation. In Sev-
enth International Conference on Mathematics
of Program Construction (MPC 2004), Stirling,
Scotland, July 2004. Springer Verlag, LNCS.

[OT94] Atsushi Ohori and Keishi Tajima. A polymor-
phic calculus for views and object sharing. In
ACM PODS’94, pages 255–266, 1994.

[Pet02] Peter Buneman and Sanjeev Khanna and Wang-
Chiew Tan. On Propagation of Deletion and An-
notation Through Views. In Proceedings of ACM
Symposium on Principles of Database Systems
(PODS), Wisconsin, Madison, June 2002.

[PV00] Yannis Papakonstantinou and Victor Vianu.
Dtd inference for views of xml data. In Proceed-
ings of the nineteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database
systems, pages 35–46. ACM Press, 2000.

[SJ03] Martijn M. Schrage and Johan Jeur-
ing. Xprez: A declarative presenta-
tion language for xml. avaliable at
http://www.cs.uu.nl/research/projects/proxima/,
2003.

[Sof04] XML Software. A list of xml editors.
See http://www.xmlsoftware.com/editors.html,
2004.

[THK+03] Masato Takeichi, Zhenjiang Hu, Kazuhiko
Kakehi, Yasishi Yayashi, Shin-Cheng Mu, and
Keisuke Nakano. Treecalc : Towards pro-
grammable structured documents. In JSSST
Conference on Software Science and Technology,
September 2003.

[VRL00] L. Villard, C. Roisin, and N. Layada. A xml-
based multimedia document processing model
for content adaptation. In 8th International
Conference on Digital Documents and Electronic
Publishing, LNCS, September 2000.

[WR99] Malcolm Wallace and Colin Runciman. Haskell
and XML: Generic combinators or type-based
translation? In ACM SIGPLAN International
Conference on Functional Programming, pages
148–159, Paris, 1999. ACM Press.

12

